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Purpose: Motion-compensated temporal processing can have a major impact on improving the im-
age quality in gated cardiac single photon emission computed tomography (SPECT). In this work, we
investigate the effect of different optical flow estimation methods for motion-compensated temporal
processing in gated SPECT. In particular, we explore whether better motion estimation can substan-
tially improve reconstructed image quality, and how the estimated motion would compare to the ideal
case of known motion in terms of reconstruction.
Methods: We consider the following three methods for obtaining the image motion in 4D reconstruc-
tion: (1) the Horn–Schunck optical flow equation (OFE) method, (2) a recently developed periodic
OFE method, and (3) known cardiac motion derived from the NURBS-based cardiac-torso (NCAT)
phantom. The periodic OFE method is used to exploit the inherent periodic nature in cardiac gated
images. In this method, the optical flow in a sequence is modeled by a Fourier harmonic representa-
tion, which is then estimated from the image data. We study the impact of temporal processing on 4D
reconstructions when the image motion is obtained with the different methods above. For quantita-
tive evaluation, we use simulated imaging with multiple noise realizations from the NCAT phantom,
where different patient geometry and lesion sizes are also considered. To quantify the reconstruction
results, we use the following measures of reconstruction accuracy and defect detection in the my-
ocardium: (1) overall error level in the myocardium, (2) regional accuracy of the left ventricle (LV)
wall, (3) accuracy of regional time activity curves of the LV, and (4) perfusion defect detectability
with a channelized Hotelling observer (CHO). In addition, we also examine the effect of noise on the
distortion in the reconstructed LV wall shape by detecting its contours. As a preliminary demonstra-
tion, these methods are also tested on two sets of clinical acquisitions.
Results: For the different quantitative measures considered, the periodic OFE further improved the
reconstruction accuracy of the myocardium compared to OFE in 4D reconstruction; its improvement
in reconstruction almost matched that of the known motion. Specifically, the overall mean-squared
error in the myocardium was reduced by over 20% with periodic OFE; with noise level fixed at 10%,
the regional bias on the LV was reduced from 20% (OFE) to 14% (periodic OFE), compared to 11%
by the known motion. In addition, the CHO results show that there was also improvement in lesion
detectability with the periodic OFE. The regional time activity curves obtained with the periodic
OFE were also observed to be more consistent with the reference; in addition, the contours of the
reconstructed LV wall with the periodic OFE were demonstrated to show less degree of variations
among different noise realizations. Such improvements were also consistent with the results obtained
from the clinical acquisitions.
Conclusions: Use of improved optical flow estimation can further improve the accuracy of re-
constructed images in 4D. The periodic OFE method not only can achieve improvements over
the traditional OFE, but also can almost match that of the known motion in terms of the
several quality measures considered. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4738377]
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I. INTRODUCTION

In nuclear cardiology, single photon emission computed
tomography (SPECT) plays an important role for detection
and evaluation of coronary artery disease. It can provide

information of both myocardial perfusion and ventricular
function.1 In gated SPECT, the data acquisition is divided into
multiple time intervals according to the electrocardiogram
(ECG) signal, and images are reconstructed for the different
time intervals. Gated SPECT can further provide valuable
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functional information such as ejection fraction, wall motion,
and wall thickening.

However, due to reduced data counts associated with gat-
ing, gated SPECT images suffer from significantly increased
noise compared to standard SPECT. In recent years, a num-
ber of different spatiotemporal methods have been studied to
improve the image quality in gated SPECT, e.g., Refs. 2–8.
Collectively, these methods are known as 4D methods in the
literature. A common theme among these different methods
is to introduce an additional processing for the gate (i.e., tem-
poral) dimension besides the traditional three spatial dimen-
sions, the purpose of which is to exploit the correlation of the
signal components among the different gates in a cardiac se-
quence for noise reduction.

A key issue associated with temporal processing in 4D
reconstruction is the use of a temporal prior to enforce
smoothing among the different gate frames. For example, a
Bayesian estimation approach was proposed in Ref. 3 for re-
construction of gate frames based on a prior motion model. In
Refs. 5 and 6, a joint reconstruction framework was presented
in which motion estimation and image reconstruction were
performed in an alternating fashion. In Ref. 7, we introduced
a reconstruction approach in which a temporal prior was
defined in the form of motion-compensation, where the
motion was estimated from the image data using the classical
optical flow method.9 Besides gated imaging, motion is also
a key factor in other imaging applications. For example, in
Ref. 10 motion compensation was used for correction of
respiratory motion of the thorax in list-mode PET. In Ref. 11,
the optical flow method was applied to deal with the partial
volume effect in cardiac PET.

Recently in Ref. 12, we investigated the effects of vari-
ous degrading factors in gated SPECT, ranging from depth-
dependent spatial blur, attenuation, scatter, and motion blur-
ring, on the reconstructed images with several reconstruction
methods. It was demonstrated that the use of temporal pro-
cessing in 4D reconstruction can lead to the most significant
improvement in gated images when compared to several other
factors. Motivated by this result, in this work we investigate
whether we can further improve the temporal prior in 4D for
temporal processing.

Ideally, the temporal prior in 4D should enforce smooth-
ing along the trajectories of cardiac motion in order to avoid
motion blur. However, in practice this motion information is
not readily available, and has to be estimated from the image
data. Conceivably, an improved estimation of the motion in-
formation for the temporal prior is expected to also lead to
improved accuracy in the reconstructed images. In this work,
we will conduct a quantitative evaluation study of the effects
of motion estimation on 4D reconstruction. We will consider
optical flow methods for motion-compensated temporal pro-
cessing. In particular, we ask the following important ques-
tions: Does better motion estimation substantially improve
reconstructed image quality? Moreover, how does estimated
motion compare to the ideal case of known motion in terms
of reconstruction?

Toward this goal, we will consider two optical flow meth-
ods for the purpose of comparison, one is the classical optical

flow equation (OFE) method9 used previously in Ref. 7, and
the other is a periodic OFE method we developed recently
in Ref. 13. The latter method can be viewed as an extension
of the classical OFE to a periodic image sequence. In this
approach, a Fourier harmonic model is used to regulate the
temporal behavior of the optical flow in a periodic sequence,
and the optical flow is determined simultaneously for the
entire sequence by estimating the parameters of the harmonic
model. This approach was first proposed in Ref. 14, and
further developed in Ref. 13 by exploring a piecewise smooth-
ness constraint based on the total variation (TV) of the motion
field. This piecewise smoothing property potentially can bet-
ter accommodate the discontinuities in the motion field asso-
ciated with an object boundary.15 It can be desirable for mod-
eling the motion of the heart wall, which can differ greatly
from that of nearby organs (i.e., the liver which can have high
uptake).

In our evaluation study, we will use simulated imaging
with the NURBS-based cardiac-torso (NCAT) phantom,16

wherein the ground truth is known for quantitative evaluation.
Moreover, the motion trajectories of a set of anchor points
on the left ventricular wall are also provided in NCAT. The
NCAT phantom was modeled from real patients, in which
the geometry of different organs was based on the 3D Vis-
ible Human CT dataset, and the cardiac motion was mod-
eled from 4D tagged MRI acquired from normal subjects.16

In our experiments, these known trajectories are used to de-
rive the motion for the temporal prior. Thus, the reconstruc-
tion with this known motion serves as an upper bound for
comparison with that from estimated motion as described
above.

In the experiments, we apply multiple noise realizations
obtained from two sets of NCAT data with different patient
geometry, one male and one female, of which the latter has
significantly higher breast attenuation. For lesion detection,
perfusion defects of different sizes, contrasts, and locations
are introduced in the phantoms. We conduct a thorough quan-
titative evaluation of the reconstructed myocardium using a
number of metrics: (1) overall accuracy of the myocardium,
(2) regional accuracy of the left ventricular (LV) wall through
bias-variance analyses, (3) accuracy of regional time activity
curves (TACs), (4) perfusion lesion detectability quantified by
a channelized Hotelling observer (CHO).17 Furthermore, as
an indicator of distortion in the reconstructed LV wall, we also
examine the shape of the LV wall by detecting its contours. As
a preliminary demonstration, we also reconstruct two clinical
acquisitions using the different motion models.

II. METHODS

To facilitate the presentation of the material in this section
we will begin with a brief description of the 4D reconstruction
method used in this study. We will then present the different
motion estimation methods considered for 4D reconstruction.
Afterward we will describe the different metrics for quanti-
tative evaluation of the reconstruction results, followed by a
description of the image datasets used for evaluation.
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II.A. 4D reconstruction

In gated cardiac SPECT, the acquired projection data are
binned into K cardiac intervals by using the ECG signal. The
imaging data are described by the following model:

E[gk] = Hfk + rk, k = 1, 2, . . . , K (1)

in which gk, fk, and rk are vectors representing the acquired
data, original image, and expected scatter component, respec-
tively, of the kth gate interval, E[ · ] is the expectation operator,
and H is a matrix describing the imaging system (a.k.a system
matrix). In H, each element hij represents the probability that
a photon emitted at voxel location j is detected at detector bin
i without being scattered. In this study, both the depth depen-
dent blur and attenuation effects are modeled in the system
H.12

In 4D reconstruction, the different gates fk, k = 1, . . . , K,
are treated as a single entity and determined simultaneously
from the projection data gk, k = 1, . . . , K. Specifically, let
F ≡ (f T

1 , . . . , f T
K )T , i.e., a vector consisting of all the gate

frames; similarly, let G ≡ (gT
1 , . . . , gT

K )T . Then F is obtained
with maximum a posteriori (MAP) estimation as

F̂ = arg max
F

{log p(G|F) + log p(F)}, (2)

where p(G|F) is the likelihood function of G parameterized
by F, and p(F) is a prior distribution on F.

We use a separable Gibbs prior for p(F), which is defined
in the following:

p(F) ∝ exp[−βsUs(F) − βtUt (F)], (3)

where Us(F) and Ut (F) are two energy functions defined over
space and gate intervals, respectively, and βs and β t are their
corresponding scalar weighting factors.12

In Eq. (3), the energy function Ut (F) is used to enforce
temporal smoothing among the different gate frames. It is de-
fined as

Ut (F) =
K∑

k=1

∥∥∥∥fk − 1

C

K∑
l=1,l �=k

[
1 − 2|k − l|

K

]
Ml→kfl

∥∥∥∥
2

, (4)

where Ml→k denotes the motion-compensated prediction op-
erator from gate frame l to frame k, C is a normalization con-
stant for the weighted temporal prediction to have unit dc
gain, and ‖ · ‖ is the l 2 norm. The above definition is to penal-
ize the difference in image intensity along the trajectories of
a given point. The weighting coefficients are so defined that
temporally neighboring frames will have more contribution to
the current frame than frames that are further away.

The operator Ml→k in Eq. (4) depends on the relative image
motion from gate frame l to frame k. This is rarely known
in practice and has to be estimated from the available image
data. As mentioned in the Introduction, the purpose of this
study is to evaluate several motion estimation methods for 4D
reconstruction, which we introduce in the following.

II.B. Image motion models

For comparison, we consider the following three methods
for obtaining the image motion in 4D reconstruction: (1)

Horn–Schunck optical flow method,9 (2) periodic optical flow
method developed recently in Ref. 13, and (3) known motion
directly from the NCAT phantom. For convenience, in the
following we first describe briefly the Horn–Schunck optical
flow method, and then extend it to a periodic image sequence
as in Ref. 13. We will use 2D notation in the presentation
in favor of its simplicity; however, in our experiments the
motion estimation is actually implemented in 3D.

II.B.1. Horn–Schunck method

The Horn–Schunck method is based on the fundamental
assumption that the image intensity at an object point remains
constant along its motion trajectory over time. Consider an
image sequence I(x, y, t), where t denotes time and (x, y) de-
notes a spatial location in image domain D. Let (u, v) denote
the displacement vector of point (x, y) from time frame t to
(t + 1). That is,

I (x, y, t) = I (x + u, y + v, t + 1). (5)

The intensity consistency condition in Eq. (5) alone is
not sufficient for determining the displacement vector (u, v)
(known as the aperture problem in optical flow estimation).
In order to deal with this ill-posed nature of the problem, in
the Horn–Schunck method a spatial regularization term is im-
posed on the motion field. The unknown vector (u, v) is then
determined by minimizing the following objective function:

E(u, v) = E1(u, v) + αE2(u, v), (6)

where the first energy term E1(u, v) is to enforce the condition
in Eq. (5), and the second energy term E2(u, v) is to enforce
spatial smoothness in the solution. The constant coefficient α

is used to control the trade-off between the two terms.
Specifically, the term E1(u, v) in Eq. (6) is defined as

follows:

E1(u, v) =
∫

D

(I (x, y, t) − I (x + u, y + v, t + 1))2 dxdy,

(7)

which, upon first-order Taylor series approximation, can be
rewritten as

E1(u, v) =
∫

D

(Ixu + Iyv + It )
2 dxdy, (8)

where Ix = ∂I/∂x, Iv = ∂I/∂y, and It = ∂I/∂t.
The regularization term E2(u, v) in Eq. (6) is defined as

E2(u, v) =
∫

D

(|∇u|2 + |∇v|2)dxdy, (9)

where ∇ denotes the spatial gradient operator. Such a defi-
nition is based on the motivation that spatially neighboring
points on an object tend to move together with similar direc-
tions.

II.B.2. Periodic optical flow model

In our recent work,13, 14 we extended the optical flow
method to periodic image sequences. Such an extension is
motivated by the fact that the image motion in a periodic
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FIG. 1. Illustration of a sequence of 16 gate frames in short-axis view. For
clarity, the background activity is not shown. First row: gates 1 to 8 (left to
right); second row: gates 9 to 16 (right to left).

sequence (such as the gate frames in a cardiac cycle, as il-
lustrated in Fig. 1) is inherently periodic over time. In this
approach, we directly model the image motion at a spatial lo-
cation by a periodic Fourier model over the period of the se-
quence. The image motion is then estimated simultaneously
for the entire image sequence by determining the parameters
of the Fourier model. This model plays an essential role of in-
corporating temporal regularization implicitly on the motion
field of the sequence. In our preliminary work,13 this period
model was demonstrated to be more robust in the presence of
imaging noise.

Consider I(x, y, t) a periodic image sequence with period
T, that is, I(x, y, 0) = I(x, y, T). Our goal is to determine the
motion field (u, v) for all the time frames t = 0, . . . , T − 1.

Based on Fourier series expansion, we model the motion
components (u, v) at location (x, y) over time t as

u(x, y, t) =
L∑

l=1

[al(x, y) cos ωlt + bl(x, y) sin ωlt],

v(x, y, t) =
L∑

l=1

[cl(x, y) cos ωlt + dl(x, y) sin ωlt],

(10)

where al(x, y), bl(x, y), cl(x, y), and dl(x, y) are the coefficients
associated with harmonic component l, ωl = 2πl

T
, and L is the

number of harmonics used.
In Eq. (10), it is assumed that the net displacement at

a point (x, y) is zero over the time period T, and thus, no
dc component is included. However, this component can be
easily accommodated when it is present. The representation
model in Eq. (10) can be advantageous in several aspects.
First, by varying the number of high order harmonics used
in the model, it can achieve different degrees of temporal
smoothing of the motion field. Moreover, it can also allow
one to directly incorporate a temporal smoothing scheme in a
spatially-adaptive fashion on the motion field by varying the
model order in different regions of the image domain.

Our goal then is to determine the model coefficients al(x,
y), bl(x, y), cl(x, y), and dl(x, y), l = 1, . . . , L, in Eq. (10). Let
a, b, c, and d denote the collection of coefficients al(x, y), bl(x,
y), cl(x, y), and dl(x, y), respectively. We seek a simultaneous
solution by minimizing the following objective function:

E(a, b, c, d) = E1(a, b, c, d) + αE2(a, b, c, d), (11)

where the two energy terms are defined in detail below.
The first energy term in Eq. (11) is used to enforce the

constancy condition in Eq. (5) between all consecutive frames

throughout the whole sequence. It can be written from Eq. (8)
as

E1(a, b, c, d) =
T −1∑
t=0

∫
D

(Ixu + Iyv + It )
2 dxdy. (12)

By substituting the model in Eq. (10) into Eq. (12), and upon
some algebraic manipulation, we obtain

E1(a, b, c, d) =
T −1∑
t=0

∫
D

(
L∑

l=1

Ial
al +

L∑
l=1

Ibl
bl +

L∑
l=1

Icl
cl

+
L∑

l=1

Idl
dl + It

)2

dxdy, (13)

where Ial
= Ix cos ωlt , Ibl

= Ix sin ωlt , Icl
= Iy cos ωlt , and

Idl
= Iy sin ωlt .
The second energy term in Eq. (11) is to used to enforce

spatial regularization. With the periodic representation, this
regularization term is defined directly on the model coeffi-
cients al, bl, cl, and dl. Specifically,

E2(a, b, c, d)

=
L∑

l=1

∫
D

(|∇al| + |∇bl| + |∇cl| + |∇dl|) dxdy. (14)

Note that in Eq. (14) the L1 norm of the gradient terms
is used. The energy term E2 is formed by the total-variation
of the model coefficients. Such a definition is out of the con-
sideration to better accommodate piecewise discontinuities in
the motion field (e.g., along the object boundaries).15 The nu-
merical algorithm for optimization of the objective function
in Eq. (11) is given in Appendix A.

II.B.3. Known motion from NCAT

As an upper bound on the performance of the estimated
motion for 4D reconstruction, we also use the known motion
vectors derived from the NCAT phantom. In NCAT, the mo-
tion trajectories of a set of premarked reference points on the
heart wall are given over the different gate frames. The motion
vectors at these premarked reference points are used to inter-
polate the motion vectors (with distance weighting) at integer
voxel locations on the heart wall.

II.C. Numerical evaluation metrics

II.C.1. Overall error level of myocardium

To quantify the overall accuracy of the reconstructed
myocardium, we compute the mean square error (MSE)
of the reconstructed images of a 30 × 28 × 20 volumetric
region containing the entire LV, of which a 2D slice is shown
in Fig. 2. The MSE of this region is computed and averaged
over all the K gate frames. The detailed definition of MSE is
given in Appendix B.
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(a) Male Phantom (b) Female Phantom

FIG. 2. Regions of interest (ROIs) defined in the two phantoms for bias-
variance, CHO, and TAC. These are from original source distributions; (a)
and (b) are in short-axis slices.

II.C.2. Regional bias-variance analyses

To quantify the regional accuracy of the reconstructed
LV, we conduct bias-variance analyses on regions of interest
(ROIs) selected on the LV wall as shown in Figs. 2(a) and
2(b). Such analyses provide results on both the bias and vari-
ance levels of the regional intensity of the LV wall in the re-
construction. In our experiments, a total of Q = 30 noise real-
izations were used. A detailed description of the bias-variance
analysis procedure is given in Appendix B.

II.C.3. Time activity curve

In order to demonstrate the effect of potential temporal
smoothing on cardiac motion, we also calculate the TAC of a
ROI near the base of the LV myocardium shown in Figs. 2(a)
and 2(b). As the wall moves in and out of this ROI during the
beating cycle, the intensity of the ROI will vary accordingly,
and thus, serves as a good indicator on the degree of tempo-
ral smoothing. To quantify the accuracy of the reconstructed
TAC of the ROI, we compute the normalized cross-correlation
coefficient (CC) between the reconstructed TAC and its ideal
reference. The definition of CC is given in Appendix B.

II.C.4. LV surface contour

The presence of strong noise in gated images is known to
cause distortion in the wall shape of the reconstructed LV.
The noise pattern can vary greatly among the different gates,
which exhibits as “boiling” noise when displayed in cine. To
demonstrate the effect of motion compensation on reducing
this noise pattern, we examine the geometric shape of the LV
surface in the reconstruction. To characterize the geometric
shape, we apply a boundary detector to find the surface of
the LV from the reconstructed images. To illustrate this, in
Fig. 3(a) we show a segment of the boundary contour of the
epicardial surface of the LV in a 2D slice (obtained from the
ideal reference). The Laplacian of Gaussian operator is ap-
plied to detect this contour which corresponds to the location
of zero-crossings in the detector output.18

II.C.5. Lesion detectability

To quantify lesion detectability in the reconstructed im-
ages, which is relevant to diagnostic accuracy, a CHO is

(a)

(b)

FIG. 3. Contour plots of reconstructed LV by different motion models: (a)
reference contour of a slice on the epicardial surface of the anterior-lateral
wall of the LV near the end-diastole (ED) phase; (b) contours obtained from
30 noise realizations of the same slice with different motion models.

used.17 In the CHO, four rotationally symmetric, nonoverlap-
ping input channels are used and internal noise is included
as in Ref. 19. In our experiments a total of 60 noise realiza-
tions (30 lesion-present and 30 lesion-absent) were used and
the reconstructed images by each method were assessed by
the CHO. The detection performance was summarized using
the area under the receiver operating characteristic (ROC)
curve (denoted as Az). These ROC studies represented a
“signal-known exactly” and “background-known exactly” ob-
server study.

It is noted that lesion detection is mostly conducted on un-
gated images in the literature because of the high noise level
in conventional gated images. However, this also ignores the
cardiac motion which could potentially cause blurring of the
defect. As demonstrated in our previous study,12 the use of 4D
reconstruction with improved noise suppression could lead to
improved detectability of perfusion defects in individual gate
frames. To demonstrate the effect of motion compensation on
gated images, in this study the CHO is used to evaluate the
lesion detectability in gated images. In our experiments, the
CHO results were reported for the first gate (end-diastole)
frame during which the heart wall is expanded and small le-
sions are easier to be seen.

II.D. Image data sets

II.D.1. Phantom simulation

The 4D NURBS-based cardiac-torso (NCAT) 2.0
phantom16 was used to simulate gated SPECT imaging
with Tc-99m labeled sestamibi as the imaging agent. The
simulation was based on a Philips Prism 3000 SPECT system
with a low-energy high-resolution (LEHR) collimator. The
projection data were 64 × 64 bins with a pixel size of
0.634 cm. For a circular camera rotation of 28.5 cm radius,
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64 projection sets were collected for each gate for a total of
16 gates. The average spatial resolution at the location of the
heart in the image slices was approximately 1.3 cm in full-
width at half-maximum (FWHM). Monte-Carlo simulation
with SIMIND (Ref. 20) was used for the projection data.
Poisson noise at a level of 8 × 106 total counts was introduced
for the entire acquisition as in a typical clinical acquisition.
The following relative activity levels were introduced for
the different organs: heart (ventricular and atrial walls) 1.0,
liver 1.0, kidney 1.0, spleen 1.0, gall bladder 0.8, and tissue
background 0.053. Attenuation, scatter, and detector response
effects were all included in the simulation data. In the re-
construction, both attenuation and detector depth-dependent
blur effects were directly modeled in the system matrix in
Eq. (1); the scatter component was estimated using the TEW
method19 and included in the likelihood function.

A total of 30 noise realizations were used in our eval-
uation. For motion estimation, the images of the different
gates were first prereconstructed independently using fully
3D MAP, which was equivalent to 4D with spatial smooth-
ing alone [i.e., setting β t = 0 in Eq. (3)]. The parameter βs

with the best MSE results was used. The motion estimation
algorithms were then applied to these prereconstructed im-
ages. Afterward, the images were reconstructed with the 4D
reconstruction algorithm in Eq. (3).

As reference, the gated images were also reconstructed
from the noiseless projection data (without attenuation and
scatter) using the OSEM algorithm (10 iterations, 16 sub-
sets). These images represent the ideal case of perfect
acquisition (denoted as “Ideal” below). Two versions of
the phantom, one male and one female, were generated;
one transverse slice is shown in Fig. 4 for each phan-
tom. The male phantom was generated with the follow-
ing body dimensions: 35.2 cm, 26.7 cm, and 41.7 cm
in long-axis, short-axis, and height, respectively; the cor-
responding rib dimensions were 30 cm, 22.7 cm, and
37.3 cm, respectively. The female phantom was generated
with the same body dimensions, but with the following
smaller rib dimensions: 24 cm, 18.2 cm, and 29.8 cm in long-
axis, short-axis, and height, respectively; the corresponding
breast dimensions were 18.2 cm, 7.0 cm, and 14.0 cm, respec-
tively. Consequently, the female phantom suffers from more
significant breast attenuation. For each phantom, two datasets
were generated, one with a lesion and the other without. For

(a) Male Phantom (b) Female Phantom

FIG. 4. Transverse slices of (a) male and (b) female phantoms.

the male phantom, a transmural perfusion defect with 20% in-
tensity reduction was introduced in the septal wall of the LV.
For the female, a transmural perfusion defect with 50% inten-
sity reduction was introduced in the anterior-posterior region
of the LV. These defect locations are shown in Figs. 2(a) and
2(b). Each dataset included 30 noise realizations. There was
also a high concentration of activities in the liver. For attenua-
tion correction, the corresponding attenuation map from each
phantom was used.

II.D.2. Clinical data

As a preliminary demonstration, we also used two sets of
clinical data. These studies were under IRB approval with in-
formed content. One was from a 69-year-old female and one
was from a 50-year-old male. In clinical interpretations the
ECG-gated images show normal wall motion and thicken-
ing for both patients. The datasets were acquired by an IRIX
system21 with 68 projections (three-degree steps) and a 128
× 128 matrix. The pixel size was 0.467 cm. The acquisition
started from right anterior oblique, passed through anterior
and left anterior oblique, and ended at left lateral oblique. A
total of eight gates were used. The photopeak window was
15% centered at 147.5 keV. The total number of counts ac-
quired was 4.34 ×106 and 12.84 × 106, respectively. For
attenuation correction, the attenuation maps were estimated
from the transmission images of the patients. Note that in
these sets of clinical data the photopeak window was set to be
centered at 147.5 keV so that it was asymmetric to the high
side in order to decrease scatter within the acquired photopeak
window data.22

III. RESULTS AND DISCUSSIONS

III.A. Quantitative accuracy of reconstructed
myocardium

In Fig. 5, we show the MSE results of the reconstructed
myocardium with 4D using different motion models. The re-
sults are given for each of the two phantoms. In these plots,
each curve was obtained by varying the temporal parame-
ter β t as in Eq. (3), while the spatial parameter was kept at
βs = 0 (such a setting was based on the optimal results pre-
viously obtained in Ref. 12). For each phantom, these MSE
results were obtained from the average over 30 different noise
realizations.

From Fig. 5, it can be seen that the periodic motion
model (periodic OFE) yields notably lower MSE than the
traditional OFE in both phantoms. As expected, the known
motion achieves the smallest MSE among the three methods.
However, the periodic model achieved almost a similar MSE
level as the known motion in both phantoms. In particular, for
the male phantom, the smallest MSE values achieved by the
three motion models were 3.21 (OFE, β t = 0.5 × 10−3), 2.64
(periodic OFE, β t = 0.5 × 10−3), and 2.31 (known motion,
β t = 0.7 × 10−3), respectively. Similarly, for the female
phantom, the achieved smallest MSE values were 7.36 (OFE,
β t = 0.2 × 10−3), 5.93 (periodic OFE, β t = 0.2 × 10−3), and
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FIG. 5. MSE of the reconstructed myocardium obtained from 30 noise realizations. (a) Male and (b) female phantoms.

5.82 (known motion, β t = 0.2 × 10−3). It is noted that the
MSE level in the female phantom is higher than that in the
male phantom, which we believe is caused by the significant
breast attenuation in the female phantom.

It is also noted that in Fig. 5(b) for some β t values the pe-
riodic model seemingly could achieve even slightly better re-
sults than the known motion. This is likely due to the inherent
error in the estimated motion, which causes the impact of the
temporal smoothing term to vary with the motion estimation
methods. Consequently, it is more meaningful to compare the
different methods at their respective optimal settings.

III.B. LV regional accuracy

In Fig. 6, we show the results of bias vs standard deviation
(std) obtained for the normal ROI on the LV (Fig. 2) in each of
the two phantoms. As in the MSE results above, each curve
was obtained by varying the temporal parameter β t with βs

= 0: β t = [0.1, 0.2, 0.5, 0.7, 1.2] × 10−3 for the male phan-
tom, and β t = [0.05, 0.1, 0.2, 0.5, 0.7] × 10−3 for the female
phantom. In these plots the left-end of each curve corresponds
to the smallest β t value. These results were obtained from 30
different noise realizations.

From these results, it can be seen that with increasing β t

the noise level shows a decreasing trend but at the expense of
increased bias for all the different motion models. Moreover,

periodic OFE achieved a smaller bias than OFE, while the
known motion achieved the smallest bias. For example, with
std level fixed at 10%, the achieved bias levels by the dif-
ferent motion models were approximately 20% (OFE), 14%
(periodic OFE), and 11% (known motion) in the male phan-
tom; similarly, with std level fixed at 10%, the bias levels
were approximately 22% (OFE), 18% (periodic OFE), and
17% (known motion) in the female phantom.

In both phantoms, the bias from periodic OFE was closer
to that of known motion than OFE. Also, the bias is no-
tably higher in the female phantom than in the male phantom,
thanks to the significant breast and diaphragmatic attenuation
in the former.

III.C. Time activity curve

In Table I, we show the results of normalized CC be-
tween the reconstructed and ideal TACs of the TAC ROI
(Fig. 2) obtained with the different motion models. For each
motion model, the temporal parameter β t with the best MSE
(Fig. 5) was used. These results were based on 30 different
noise realizations.

The results in Table I indicate that the TAC from periodic
OFE is more consistent with the ideal TAC than that from
OFE, while the known motion achieved the highest CC re-
sults in both phantoms. In particular, in the male phantom the
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FIG. 6. Bias-standard deviation plots for ROIs of the two phantoms, (a) male and (b) female phantoms, from 30 noise realizations.
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TABLE I. Cross-correlation coefficients between reconstructed and Ideal
TACs from 30 noise realizations.

Methods Male phantom mean (std) Female phantom mean (std)

OFE 0.7761 (0.0884) 0.8067 (0.1102)
Periodic OFE 0.9139 (0.0509) 0.8478 (0.1033)
Known motion 0.9631 (0.0362) 0.9243 (0.0500)

CC results from periodic OFE almost matched that from the
known motion.

It is noted that the TAC ROI (Fig. 2) is located at the
boundary of the lateral wall, which experiences significant
motion. The results in Table I show that the TAC from pe-
riodic OFE also achieved lower std values in CC than that
from OFE. This indicates that the TAC from periodic OFE is
less sensitive to the variations among different noise realiza-
tions. We believe that this is a result of the improved temporal
regularization from periodic OFE.

III.D. LV wall contour

In Fig. 3(b), we show the contours of the epicardial surface
of the LV extracted from one slice of the anterior-lateral wall
reconstructed with the different motion models. The LV was
near the end-diastole phase (gate #1). These results were ob-
tained from 30 different noise realizations, and each curve in
Fig. 3(b) corresponds to the contour from a particular noise
realization. For reference, the contour of the ideal reference is
also shown. For each motion model, the temporal parameter
β t with the best MSE (Fig. 5) was used.

From Fig. 3, we can see that the LV contours from OFE
show a larger degree of variation over the different noise re-
alizations than that from periodic OFE; the contours from pe-
riodic OFE exhibit an improved agreement with that from the
known motion.

In Fig. 7(a), we show the reconstructed images with the
different motion models; these images were all from the same
gate (gate #1) but from five different noise realizations; to
illustrate the sensitivity to noise by different methods, in
Fig. 7(b) we show the pairwise difference images between
different noise realizations. In addition, in Fig. 8 we show
the reconstructed images of different gates from one particu-
lar noise realization by the different methods. As can be seen
from these results, the images across the different realizations
are more consistent using periodic OFE than OFE, and the re-
constructions from periodic OFE are closer to the reconstruc-
tion using the known motion. The wall shape also appears
more consistent among the different gates in periodic OFE.
Owing to the limitation of showing static images, it is diffi-
cult to assess the various artifacts in the reconstruction such as
boiling noise, LV uniformity, and wall motion which are most
visible when viewed in cine. To facilitate better visual assess-
ment of the reconstructed images, we have created a cine dis-
play of the reconstruction results in Fig. 7 (see Ref. 24). This
cine display demonstrates that the improvement from the pe-
riodic method is even more evident. Compared to OFE, the
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FIG. 7. (a) Reconstructed images of the same slice in ED gate from five
different noise realizations; (b) the difference images between different noise
realizations, where Noise #1-2 is the absolute difference between Noise #1
and Noise #2 in (a), and similarly for Noise #2-3 and so on.

boiling noise is notably reduced and the LV wall appears more
uniform in the periodic model. We believe that such improve-
ment is a result of enforcement of temporal coherence in the
periodic motion model.

III.E. Lesion detectability

In Fig. 9, we show the lesion detectability results (mea-
sured by the CHO) obtained by different motion models.
These results were obtained by varying the temporal param-
eter β t and βs = 0. It can be seen that periodic OFE achieved
improved lesion detectability over OFE in both phantoms. In
particular, in the male phantom the best Az values achieved by
the three motion models are: 0.84 (OFE, β t = 0.5 × 10−3),
0.85 (periodic OFE, β t = 0.5 × 10−3), and 0.86 (known
motion, β t = 0.5 × 10−3); in the female phantom the best Az

values are 0.84 (OFE, β t = 0.1 × 10−3), 0.89 (periodic OFE,
β t = 0.2 × 10−3), and 0.89 (known motion, β t = 0.1 × 10−3).

It is noted that the best Az value obtained with periodic
OFE is as high as the known motion in the female phantom.
We believe that this could be attributed to the location of the
lesion in the female phantom (anterior-lateral wall), which
experiences more motion than that in the male phantom
(septal wall); the improved motion by periodic OFE in
this case has led to increased lesion detectability in the
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FIG. 8. Reconstructed images of different gates from one noise realization
by different methods.
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FIG. 9. CHO detection results of reconstruction with different motion estimation methods.

reconstructed images. This is also consistent with the
observed improvement in the TAC and LV results above.

III.F. Temporal correspondence from optical flow

In this study, the estimated motion is only used to play an
intermediate role for defining the temporal prior in Eq. (4),
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FIG. 10. (a) Motion-compensated prediction error images from neighbor-
ing frames for two gates (ED and ES) obtained with different motion models
from a particular noise realization; (b) estimated motion vectors for the cor-
responding image slice in (a) from different models.

so that the smoothing across the different gates is carried out
along a trajectory with similar image intensity values. There-
fore, we have focused on evaluating the different motion mod-
els based on how they could improve the accuracy of the re-
constructed images, which after all is the ultimate goal.

To examine the effect of the motion models, we con-
sider the correspondence error between temporally neighbor-
ing frames from the estimated optical flow. Specifically, for
gate k, the correspondence error is computed as

e′
k = fk − 1

C

K∑
l=1,l �=k

[
1 − 2|k − l|

K

]
Ml→kfl. (15)

Note that this error term was also used in the definition of the
temporal prior term earlier in Eq. (4).

In Fig. 10(a), we show a slice of the correspondence error
images of two gates (ES and ED) of the male phantom ob-
tained by the different motion models. To minimize the effect
of noise, the ideal reference was used for computing the pre-
diction error; however, the underlying motion was estimated
from one particular noise realization. In these error images, a
dark or bright region indicates the presence of a large corre-
spondence error in that region by the motion model. As can
be seen, the error level is notably lower in periodic OFE than
in OFE; the error level in Periodic OFE is similar to that of the
known motion. The peak values of the error images of the ES
gate for the three models are: 0.192 (OFE), 0.077 (periodic
OFE), and 0.075 (known motion); similarly, for the ED gate
the peak error values are 0.085 (OFE), 0.068 (periodic OFE),
and 0.027 (known motion).

To help understand the cause of the improvement in
correspondence error by periodic OFE, in Fig. 10(b) we show
the estimated motion vectors by the different methods for the
corresponding slice in Fig. 10(a), where the in-plane vectors
are shown for the pixels on the LV wall. For reference, the
known motion is also shown; however, as noted earlier in
Sec. II.B, the optical flow condition in Eq. (5) is not sufficient
for finding the true object motion, and the resulting optical
flow only corresponds to the matching of image intensity
patterns among the different time frames. Nevertheless, it is
interesting to note in Fig. 10(b) that the radial component
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of the motion is recovered well in the estimated motion,
particularly in periodic OFE (e.g., the section indicated by
arrow A); however, the circumferential component is not
recovered (e.g., sections indicated by arrows B and C). The
latter is expected due to the diminished image gradient along
the circumferential direction of the LV wall when the wall
intensity is nearly uniform. In this case, the estimated motion
can still provide good temporal correspondence in terms of
image intensity, as indicated by the results in Fig. 10(a).

It is noted that, strictly speaking, the intensity consistency
condition in Eq. (5) required by OFE is not exactly satisfied
in gated images due to partial volume effects (PVE). To mit-
igate this effect, in our implementation the motion was de-
termined between only two temporally neighboring gates for
which the difference in PVE is small. Moreover, prior to mo-
tion estimation, the images were first prereconstructed using
fully 3D MAP in which resolution recovery was included. For
the clinical data, we also normalized the images to have the
same count level among the different gates in order to accom-
modate the difference in count levels.

III.G. Clinical images

Finally, we show reconstructed images from two sets
of clinical acquisitions with different motion estimation
methods in Fig. 11. Owing to lack of the ground truth, the
parameters βs and β t was chosen empirically, and both OFE
and periodic OFE used the same parameter values (βs = 0,
β t = 5 × 10−4). For comparison reconstructed images are
also shown for a clinical spatiotemporal processing method
(ST121) (Ref. 12); note that neither attenuation nor scatter
corrections were used in ST121. From Fig. 11(a) (e.g., the
section indicated by the arrow), it is noticed that the LV wall
exhibits more consistency across the different gates in terms
of both wall intensity uniformity and wall shape in periodic
OFE than in OFE. This can also be observed in Fig. 11(b)
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FIG. 11. Reconstructed images from two sets of clinical acquisitions by dif-
ferent methods.

(e.g., the section indicated by the arrow). When viewed in
cine, these images are perceived to have less “boiling” noise
with periodic OFE than OFE. This is also consistent with the
LV contour results obtained above with NCAT images.

IV. CONCLUSIONS

In this work, we conducted a quantitative evaluation on
the effects of motion-compensated temporal processing in
4D cardiac SPECT reconstruction. We considered two optical
flow methods for determining the temporal prior: the classical
Horn–Schunck OFE and a recently developed periodic OFE;
for comparison, we also used the known motion derived from
NCAT as an upper bound in reconstruction. We quantified the
4D reconstruction using several metrics on different aspects
of the myocardium, ranging from overall error level, regional
accuracy of the LV with bias-variance analyses, TAC, and le-
sion detectability. We also examined the surface contour of
the reconstructed LV from the different motion models.

The quantitative results demonstrated that periodic OFE
could further reduce the overall reconstruction MSE in the
myocardium compared with OFE; it could even achieve as
small MSE as with the known motion from the NCAT. The
bias-variance results showed that periodic OFE could also im-
prove the regional accuracy of the LV; specifically, for a fixed
noise level, periodic OFE could yield a bias level that was
smaller than that of OFE and comparable to that of the know
motion. In addition, the CHO results demonstrated that pe-
riodic OFE could also improve the lesion detectability over
OFE; its detection performance could almost match that of
the known motion.

Moreover, the results also showed that the reconstructed
TAC by periodic OFE for a ROI on the LV could be more con-
sistent with the ideal reference. The contours of the epicardial
surface from periodic OFE exhibited an improved agreement
with the ideal reference. This was also demonstrated from the
reconstructed images where less variation was observed in the
wall shape among different noisy realizations with periodic
OFE.

As a preliminary demonstration, we also tested reconstruc-
tion with the different motion models on two sets of clini-
cal acquisitions. The reconstructed images were observed to
agree with the quantitative results from the simulated NCAT
imaging. Encouraged by these results, in the future we plan to
conduct further evaluations using a significantly larger set of
clinical acquisitions and expert observers.
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APPENDIX A: OPTIMIZATION IMPLEMENTATION

The objective function in Eq. (11) involves an L1 regu-
larization term defined in Eq. (14). For its optimization we
adopt a duality based approach as in Refs. 15 and 23. In this
approach, we introduce auxiliary variables a′, b′, c′, d′ and
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modify the objective function

Eθ (a, b, c, d, a′, b′, c′, d′)

= E1(a, b, c, d) + 1

2θ

L∑
l=1

∫
D

[(al − a′
l)

2 + (bl − b′
l)

2

+ (cl − c′
l)

2 + (dl − d ′
l )

2] dxdy + αE2(a′, b′, c′, d′),

(A1)

where θ is a small positive constant. Note that the above mod-
ified objective function becomes equivalent to the original ob-
jective function in Eq. (11) as θ → 0.

The modified objective function in Eq. (A1) is minimized
with the following alternating procedure:

Step 1: With a′, b′, c′, and d′ fixed, solve for a, b, c, and d
from minimizing the following:

Eθ1(a, b, c, d) = E1(a, b, c, d) + 1

2θ

L∑
l=1

∫
D

[(al − a′
l)

2

+ (bl − b′
l)

2 + (cl − c′
l)

2

+ (dl − d ′
l )

2] dxdy. (A2)

Step 2: With a, b, c, and d fixed, solve for a′, b′, c′, and d′

from minimizing

Eθ2(a′, b′, c′, d′) = 1

2θ

L∑
l=1

∫
D

[(al − a′
l)

2 + (bl − b′
l)

2

+ (cl − c′
l)

2 + (dl − d ′
l )

2] dxdy

+αE2(a′, b′, c′, d′). (A3)

Note that the objective function in Eq. (A2) is quadratic in
terms of a, b, c, and d. It can be solved with a standard gra-
dient descent algorithm. The objective function (A3) involves
the total-variation regularization term and can be solved by
the fast gradient projection method as in Ref. 23. Below we
describe this method in more detail.

First, note that the objective function in Eq. (A3) can be
minimized independently over the individual terms a′

l , b′
l , c′

l ,
and d ′

l . In particular, consider a′
l . Its solution can be deter-

mined from minimizing the following subobjective function:

Eθ2a′
l
= 1

2θ

∫
D

(al − a′
l)

2 dxdy + α

∫
D

|∇a′
l | dxdy. (A4)

The solution of Eq. (A4) can be found by the fast gradient
projection method23 as follows:

a′
l = al − 2θαdiv v, (A5)

where v is a vector obtained from the following iterative al-
gorithm:

1. Initially, let iteration index k = 0, and set m1 = v0

= (0, 0)T and t1 = 1;
2. At iteration k = 1, 2, . . . , do the following update:

vk = mk + 1

16θα
∇(al − 2θα div mk), (A6)

tk+1 =
1 +

√
1 + 4t2

k

2
, (A7)

mk+1 = vk + tk − 1

tk+1
(vk − vk−1); (A8)

3. Set k = k + 1, and repeat Step 2 above until the change
between successive iterates of vk is below a preset threshold.

APPENDIX B: DEFINITION OF QUANTITATIVE
METRICS

1. Mean square error

The mean square error (MSE) of a reconstructed ROI is
computed as

MSE = 1

N
‖f̂k − fk‖2, (B1)

where fk and f̂k denote the reconstructed ROI and its refer-
ence, respectively. Here the l2 norm is used.

2. Bias-variance analysis

Consider a ROI consisting of M voxels. Let f̄ROI denote
the mean intensity of reference image f in the ROI, i.e.,

f̄ROI = 1

M

∑
i∈ROI

f (i). (B2)

Our goal is to quantify the statistical accuracy of an estimate
of this quantity from different noisy reconstructions.

Let f̂ (q), q = 1, . . . , Q, denote estimates of f̄ROI obtained
from Q different noise realizations. The mean estimate is
computed as

μ̂ = 1

Q

Q∑
q=1

¯̂
f

(q)

ROI. (B3)

Then the bias and std of this estimator are, respectively,
estimated as

bias = |f̄ROI − μ̂|
f̄ROI

× 100% and (B4)

std =

√
1

Q−1

∑Q
q=1

( ¯̂
f

(q)

ROI − μ̂
)2

f̄ROI
× 100%. (B5)

3. Time activity curve

To quantify the accuracy of the TAC of a reconstructed
ROI, we compute the normalized CC between the recon-
structed TAC and its reference as follows:

CC(y, ŷ) = (y − ȳ)T (ŷ − ¯̂y)

‖y − ȳ‖ · ‖ŷ − ¯̂y‖ , (B6)
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where y = [y(1), . . . , y(K)]T and ŷ = [ŷ(1), . . . , ŷ(K)]T are
the ideal and reconstructed TACs of the ROI, respectively, and
ȳ and ¯̂y denote their respective mean values.
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