Skip to main content
. 1999 Sep 28;96(20):10955–10957. doi: 10.1073/pnas.96.20.10955

Figure 1.

Figure 1

The long-term global cycles of carbon and sulfur (pyrite, FeS2). Because little carbon can be stored in the ocean, inequalities between the weathering and burial of organic matter must result in the reciprocal formation or loss of CaCO3 to conserve carbon. The same is true for pyrite (FeS2), calcium sulfate, and sulfur. Also, any prolonged imbalance in the net flux between oxidized and reduced reservoirs of carbon must be balanced approximately by opposite fluxes between reduced and oxidized reservoirs of sulfur to avoid fluctuations in atmospheric O2 that would be too large for the maintenance of higher forms of life over geologic time. (Degassing caused by the deep thermal decomposition of organic matter and pyrite is here lumped under the heading of “weathering,” because the overall process of degassing, followed by air oxidation, results in an overall reaction chemically equivalent to oxidative weathering on the continents.)