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Abstract

Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses 

pathologically as heart failure ensues1. Here we report that genetic loss of APJ confers resistance 

to chronic pressure overload by dramatically reducing myocardial hypertrophy and heart failure. 

In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an 

apelin independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an 

attenuated response to stretch, indicating that APJ is a mechano-sensor. Activation of APJ by 

stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas 

apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-

dependent G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is 

prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. 

Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch 
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and for the endogenous peptide apelin. By sensing the balance between these stimuli, APJ 

occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy.

GPCRs have been widely implicated in the control of cardiac function. These receptors 

couple to heterotrimeric GTP-binding proteins of the Gαs, Gαi, Gαq/11 and Gα12/13 families, 

and transduce the GPCR signal to intracellular targets. Numerous studies have linked Gαs to 

increased contractility, Gαq/11 to pathological hypertrophy2,3, and Gαi to cardioprotection4. 

APJ is a GPCR identified as the receptor for the adipokine apelin5,6. Apelin-activated APJ 

signals through Gαi exerting a positive effect on cardiac contractility7–9 and a vasodilator 

activity that counteracts angiotensin-II-induced atheroma1011. Apelin administration blunts 

progression to hypertrophy (Suppl. Fig. 1 and Suppl. Tables 2–3) and apelin-KO mice show 

susceptibility to heart failure12 (also see Suppl. Fig. 1 and Suppl. Table 1). Thus, apelin and 

its receptor APJ are emerging as potential therapeutic targets.

We examined the response of APJ knockout mice to sustained pressure overload by 

transaortic constriction (TAC). Although deletion of APJ resulted in some prenatal 

lethality 13,14, all viable APJ-KO mice displayed normal adult appearance and 

cardiovascular parameters at baseline (Suppl. Table 4). However, APJ-null animals were 

resistant to the pathological hypertrophic response to TAC (Fig. 1a–d) observed both in WT 

and in apelin-KO mice (Suppl. Fig. 1g–I). APJ-KO mice responded to TAC by initially 

increasing cardiac mass but the maladaptive progression to dilated ventricular hypertrophy 

was blunted shortly after injury (Suppl. Table 4). The protective effect persisted long-term 

(Fig. 1a, b and g,h) in all parameters measured, including diminished cardiomyocyte size 

(Fig. 1c, d), reduced fibrosis (Fig. 1e, f), sustained cardiac contractility (Fig. 1g) relative to 

WT and apelin-KO mice (Suppl. Tables 1, 4), and reduced heart weight/body weight ratio 

(Fig. 1h). Baseline cardiac contractility measured as percent fractional shortening (%FS), 

was approximately 38% across genotypes. After 90 days of TAC, % FS decreased to 22 ± 

2% in WT, 23 ± 1% in apelin KO mice, but remained at 34 ± 2% in APJ-KO mice (p=0.01 

between APJ-KO and WT) (Fig. 1g and Suppl. Tables 1, 4). In summary, both WT and 

apelin-KO mice presented clear signs of heart failure after 90 days of TAC, while APJ-KO 

mice were almost unaffected. The maintenance of cardiac function in the APJ-KO 

demonstrates that the expression of APJ is necessary to elicit heart failure in response to 

pressure overload.

The different responses of apelin-KO and APJ-KO mice to TAC imply that either apelin can 

act independently of APJ, or that APJ transduces a signal independently of apelin. We tested 

the first hypothesis by infusing APJ-KO mice with apelin (285 μg/kg/24h) and examining 

two readouts: contractility under TAC, and vascular tone. Notably, apelin infusion did not 

increase cardiac contractility (%FS) in TAC-APJ-KO mice, in contrast to the characteristic 

improvement seen in TAC-WT animals (Suppl. Fig. 2a). In the absence of apelin infusion, 

endogenous levels of apelin in blood increased after TAC from 1ng/ml to 2ng/ml and that 

rise was not-different in WT and APJ-KO mice, making it unlikely that the protection 

achieved in the APJ-KO is due to hyper-activation of apelin signaling (Suppl. Fig. 2b). To 

test vascular tone, systolic and diastolic blood pressures were increased by infusion of Ang-

II (1,000 ng/kg/min). Apelin infusion significantly decreased systolic blood pressure in WT 

Scimia et al. Page 2

Nature. Author manuscript; available in PMC 2013 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



animals but not in APJ-KO mice (Suppl. Fig. 2c–f), further suggesting that apelin activity 

requires APJ.

Since the mechanical properties of the heart change dramatically during pressure overload15, 

and the structurally related angiotensin receptor (AT-1) can act as a mechanosensor16, we 

asked whether APJ responds to mechanical stretch. Initially these experiments were 

challenging as cultured cardiomyocytes consistently down-regulate the expression of 

endogenous APJ (Suppl. Fig. 3a), and studies had to be restricted to freshly isolated adult 

cardiomyocytes. We mimicked the effect of pressure overload by using a carbon fiber (CF) 

technique17 to stretch cardiomyocytes and evaluated their Frank-Starling Gain (FSG). FSG 

is a dimensionless metric of the force that can be recruited by stretch18. Freshly isolated 

adult cardiomyocytes from WT mice displayed a significantly higher FSG than 

cardiomyocytes from APJ-KO mice (Fig. 2a–c). Treatment with apelin decreased the FSG in 

WT cardiomyocytes but showed no effect in APJ-KO cells, (Fig. 2d). Therefore, apelin 

modulated the response to stretch only in cardiomyocytes with APJ receptors.

Engineered cells stably expressing human APJ (APJ-HEK) responded to apelin by 

increasing the content of pERK (Fig. 3a, b) whereas parental (HEK) cells showed no 

significant change. Stretch also increased pERK content in cells expressing APJ (Fig. 3a,b). 

pERK levels, therefore, reflect the cellular response to APJ activation by either stretch or 

apelin. pERK was therefore used as a simple readout of APJ activation. The Gαi inhibitor 

PTX blocked the ability of apelin, but not stretch, to induce APJ-dependent phosphorylation 

of ERK (Fig. 3a,b), first suggesting that separate mechanisms link stretch and apelin to APJ 

intracellular signaling.

We next examined whether activation of APJ by stretch or apelin differentially modulate G-

protein-generated second messengers. Activation of Gαi is associated with inhibition of 

adenyl-cyclase and reduced cAMP, whereas activation of Gαs increases cAMP19. cAMP did 

not increase after application of stretch or apelin, arguing against activation of adenyl-

cyclase (and Gαs) (Fig. 3c–d, no isoproterenol conditions). In contrast, when isoproterenol 

was used to elevate the intracellular concentration of cAMP20, apelin addition decreased 

cAMP levels in the APJ-HEK cells (Fig. 3c). This effect of apelin was partially inhibited by 

PTX, consistent with the involvement of Gαi (Fig. 3c). Apelin did not modify isoproterenol-

stimulated cAMP formation in untransfected HEK controls, showing that the decrease is 

mediated by APJ. These data agree with previous reports21 and demonstrate that Gαi 

transduces the signal initiated by apelin binding to APJ. In contrast, stretch reduced cAMP 

in parental HEK as well as in APJ-HEK cells (Fig. 3d), indicating that, although stretch can 

activate Gαi signaling, this response is not mediated through APJ.

The Gα16 subunit couples any activated GPCR to phospholipase C, which results in 

accumulation of inositol phosphates (IP1), and thus provides a general readout of G-protein 

activation22. Stretch did not increase IP1 production whereas apelin did so in a dose-

responsive manner (Fig. 3e). Importantly, for any given concentration of apelin, stretch 

consistently reduced G-protein activation (Figure 3e). There was a decrease in maximal 

levels and a shift in EC50 from 5.1 × 10−9 to 5.5 × 10−8 when both stimuli were applied 

simultaneously (Fig. 3e). These experiments demonstrate that APJ activation by stretch is 
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largely G-protein independent and that stretch interferes with apelin-mediated G-protein 

activation by APJ.

Using a β-arrestin/APJ complementation assay, apelin was found to induce a dose-dependent 

increase in β-arrestin signaling, as expected (Fig. 3f). Stretch in the absence of apelin 

boosted β-arrestin signaling 2-fold over baseline (Fig. 3g). Notably, stretch increasedβ-

arrestin recruitment in response to apelin at all doses tested (Figure 3g). Taken together, 

stretch causes APJ to signal less effectively/potently via G-proteins, but to more effectively 

recruit β-arrestin.

In order to investigate whether these distinct mechanisms of APJ action differentially affect 

cardiac hypertrophy, we examined cardiomyocyte cell growth and the expression of 

molecular markers of pathological hypertrophy in neonatal rat ventricular cardiomyocytes 

(NRVC)23,24. NRVC in culture respond to mechanical stretch25, mainly through the 

angiotensin II receptor AT-126 and the endothelin1 receptor ET-A27, which are also GPCRs. 

To test the specific effect of APJ in cardiac stretch/hypertrophy, we used pharmacological 

inhibitors of AT-1 (100 nM candesartan) and ET-A (300 nM BQ123), hereafter labeled as 

“inhibitors”. To overcome APJ down-regulation during cardiomyocyte culture, we 

reestablished APJ expression by adenoviral transduction (about 90% efficiency) with either 

control GFP (Ad-GFP) or an APJ-GFP fusion protein (Ad-APJ-GFP). Hypertrophy was 

assessed by the characteristic increase in perinuclear immunolocalization of atrial natriuretic 

factor (ANF) (Fig. 4a–m). Remarkaby, apelin treatment did not increase ANF 

immunostaining, in Ad-APJ-GFP nor in Ad-GFP-infected cells (Fig. 4d–f and m). In 

contrast, stretch applied in the presence of inhibitors significantly increased the number of 

perinuclear ANF+ cells in APJ-restored cardiomyocytes (27 ± 1%), but not in control 

cardiomyocytes infected with Ad-GFP (5.8 ± 2.1%) (Fig. 4g–I, m). Co-stimulation with 

apelin and stretch reduced the number of ANF+ cells (Fig. 4j–l, m). Stretch also induced 

specific changes in the expression of other molecular markers of hypertrophy, including an 

increased ratio of βMHC/αMHC (Fig. 4n) and increased cell size (Fig. 4o). Similar to its 

effects on ANF, the addition of apelin also attenuated effects of stretch on other parameters 

of hypertrophy (Fig. 4m–o). The induction of ANF by stretch was PTX-insensitive, but the 

ability of apelin to antagonize stretch-induced hypertrophy was prevented by treatment with 

PTX (Fig. 4w).

Several control experiments confimed that APJ is directly involved in the response to 

stretch: NRVC treated with forskolin responded to apelin only upon reconstitution of APJ 

expression, as monitored by their ability to decrease intracellular cAMP levels (Fig. 4p). The 

possibility that stretch induces the secretion of factors that might indirectly activate 

hypertrophy through APJ was considered but appears unlikely since conditioned medium 

from APJ-transfected cardiomyocytes did not induce ANF expression (Fig. 4q). Moreover, 

the concentration of apelin in the media remained unchanged (approximately 5ng/ml) with 

or without stretch (Fig. 4r), and conditioned media from stretched cells could not activate β-

arrestin recruitment (Fig. 4s). Single cell analysis of low multiplicity APJ-GFP transduced, 

cells showed that cardiomyocytes require APJ to induce ANF upon stretch (Fig. 4t–v, note 

perinuclear ANF immunostaining only in GFP+ cells in panel v), further demonstrating that 

APJ activation through stretch is sufficient to elicit cardiac hypertrophy. Prior studies 
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showed that APJ interacts with AT-1 and apelin antagonizes AT-1 function11. As shown in 

Fig 4x, in the presence of AT-1 inhibitors, only those cells expressing APJ responded to 

stretch by significantly increasing perinuclear ANF expression. In the absence of AT-1 

inhibitors, APJ-transduced and non-transduced cells reached the same maximal level of 

ANF expression (Fig. 4y). Thus, blocking AT-1 does not impair the ability of APJ to 

respond to stretch, indicating that APJ alone is sufficient to transduce a stretch-induced 

hypertrophy signal.

Importantly, siRNA specific for β-arrestin1 or β-arrestin2 (Fig. 4z) blocked the stretch 

induction of hypertrophic markers (βMHC/αMHC Fig. 4z, and ANF not shown) with an 

additive effect when both siRNAs were used together. These data substantiate the model that 

APJ signaling through β-arrestin mediates stretch-induced myocardial hypertrophy.

In summary, the mechano-response of APJ is necessary (blunted hypertrophic response to 

TAC of APJ-KO mice, Fig. 1) and sufficient (stretch induction of ANF expression occurs in 

cells expressing APJ, Fig. 4) to trigger myocardial hypertrophy in a β-arrestin-dependent 

manner (Fig. 4z). Apelin does not induce hypertrophy, but instead blunts stretch-induced 

hypertrophic induction (Fig. 4j-l-o,t-y), suggesting the ability of apelin to override 

pathological signaling from stretch. At a mechanistic level, APJ transduces apelin and 

stretch signaling differently. The response to apelin appears to be G-protein-PTX-sensitive, 

whereas that induced by stretch is PTX-insensitive and G-protein independent in the absence 

of exogenous apelin (Fig 3). Stretch profoundly affects apelin signaling, diminishing G-

protein activation while augmenting β-arrestin recruitment (Fig. 3e–g). These data indicate 

that APJ integrates apelin and stretch stimuli, biasing the levels of G-protein signaling 

versus β-arrestin recruitment accordingly.

These results have implications for the consideration of APJ as a drug target, since APJ/

stretch can be pathological. Therefore, a beneficial effect will be obtained not by general 

apelin receptor agonism, but rather by selectively inhibiting the ability of APJ to respond to 

mechanical stretch or by blocking its interaction with molecules that initiate pathological 

signaling cascades.

Summary of Methods

All experiments were performed in accordance with relevant guidelines and regulations. The 

Sanford-Burnham Medical Research Institute’s Animal Care & Use Program is accredited 

by AAALAC International and a Multiple Project Assurance A3053-1 is on file in the 

OLAW, DHHS.

APJ and apelin KO mice

APJ-KO mice were obtained from Deltagen. Apelin–KO mice are described elsewhere13. 

Both APJ and apelin lines (male and female) were in C57Bl/6 genetic background in a 99%–

100% purity, as demonstrated by microsatelite analysis (Radil). For detailed methods, see 

supplementary information.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. APJ-KO mice are protected from hypertrophy after TAC
a, Anatomical view and b, Histological sections of WT and APJ-KO mice 90 days after 

surgery. c, Cell membrane staining (wheat germ agglutinin). d, Quantification from (c). e, 
Trichrome staining (fibrosis in blue, stars). f, quantification of (e). g, Fractional shortening 

(%FS) decreased in WT mice after TAC, but did not change significantly in the APJ-KO 

mice. APJ-KO mice fail to develop heart failure upon sustained TAC as shown by 

echocardiographyc analysis. h, Heart weight-to-body weight ratio (HW/BW) at baseline and 

in TAC operated mice, 90 days after surgery (see Suppl. Table 4 for details). Error bars are 

SEM.*p<0.05 between indicated groups, ANOVA.
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Figure 2. APJ mediates a stretch response that can be modulated by apelin
a–b, Representative force measurements (arbitrary units) for end-diastolic and end-systolic 

length-tension relationships in adult cardiomyocytes from WT (a) and APJ-KO (b) mice 

plotted against diastolic length (normalized to unstretched length). Cells were paced at 1Hz. 

c, Frank-Starling Gain (FSG) attained by dividing the active force by the passive force from 

experiments in (a) and (b) plotted as a function of diastolic length (n= 8 WT and 7 APJ-KO 

cardiomyocytes). d, Average FSG (at 1.02 sarcomeric length from c) is shown for APJ-KO 

and WT both with (+) and without (−) 10 nM apelin administration (n=6 for WT+apelin and 

n=7 for APJ-KO+apelin). Error bars are SEM.
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Figure 3. Stretch activation of APJ enhances β-arrestin while reducing G-protein signaling
a, Immunoblot and b, Quantification of ERK from APJ stably transfected (APJ-HEK) and 

parental (HEK) cells treated for 5 minutes with 100 nM apelin or stretch in absence or 

presence of PTX (Gαi inhibitor), n=3. c, Effect of 1 μM apelin or d, stretch on cAMP levels. 

1 μM isoproterenol (iso) was used to artificially elevate cAMP to study Gαi activation, n= 4 

(PTX). e, G-protein (Gαq,s,i and12/13) activation by apelin and effect of stretch (red) in CHO 

cells expressing APJ and Gα16. Receptor stimulation activated the promiscuous Gα16, 

phospholipase-Cβ and caused the accumulation of IP1 (representative of 3 experiments, n=4 

samples). f–g, Arrestin recruitment to the APJ receptor in response to apelin (black) and 

stretch (red) by an enzyme complementation assay in CHO cells expressing recombinant 

APJ and β-arrestin2 (representative of 3 experiments, n=3 samples). (f) Represents full range 

of β-arrestin binding to APJ under either physiological or pharmacological doses of apelin. 

(g) Shows the data points for 0 – 10−10 M apelin. RLU= Relative light units. Error bars 

represent SEM. *p<0.05 between indicated groups, ANOVA.
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Figure 4. APJ activation through mechanical stretch elicits cardiac hypertrophy
a–l, ANF immunostaining (white) and nuclear DAPI staining (blue) of rat neonatal 

ventricular cardiomyocytes transduced with rat APJ (Ad-APJ-GFP) or control GFP (Ad-

GFP, green). m, Quantification of from a-l (n=250–350 cells). n, qPCR analysis of the ratio 

between β– and α–MHCs, as an independent index of hypertrophy, n=3–5 samples. o, Mean 

cell sizes in a-l, n=24 cells. p, Responsiveness of transfected cells to apelin treatment, n=4–

5. q, ANF expression in cardiomyocytes in the presence of conditioned-media from 

stretched cardiomyocytes (str. media), n=3. r, Apelin ELISA of conditioned media (12 h) 

from cardiomyocytes (CM) non-stretched and stretched. s, Apelin standard curve of CHO 

APJ-β-arrestin interaction assay; red arrows represent the response elicited by 2 samples 

from (r) t–v. Higher magnification image of NRVC showing ANF (white) and APJ (green) 

expression. White arrow indicates APJ− cells not expressing ANF. w, Gαi inhibition with 

PTX blocked the ability of apelin to prevent ANF expression, n=5. x-y, qRT-PCR for ANF 

in cells treated with (x) or without (y) inhibitors, n=3. z, Diminished expression of 

hypertrophy markers in Ad-APJ-GFP cardiomyocytes transfected upon knockdown of 

βarrestin1 (siβARR1), βarrestin2 (siβARR2) or both (siβARR1+2), n=4. Except for (p) and 

(y) all experiments were performed in the presence of inhibitors of AT-1 (candesartan, 100 
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nM) and ET-A (BQ123, 300 nM) added one hour prior to stretch and/or apelin treatment 

until fixation. All are representative experiments performed at least three independent times. 

Error bars are SEM. *p<0.05 between indicated groups, ANOVA.
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