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Animal and cellular work has shown that central cannabinoid-1 receptors modulate neural oscillations in the gamma range (40 Hz), which

may be important for normal perceptual and cognitive processes. In order to assess the effect of cannabinoids on broadband-frequency

neural oscillations in humans, the current study examined the effect of chronic cannabis use on auditory steady-state responses (ASSRs)

utilizing electroencephalography (EEG). Passive ASSRs were assessed using varying rates of binaural stimulation (auditory click-trains;

10–50 Hz in increments of 5 Hz; 80 dB SPL) in carefully screened cannabis users and controls. Chronic cannabis users (n¼ 22; 12 h

abstinence before study; positive 11-nor-9-carboxy-delta-9-tetrahydrocannabinol urine levels) and cannabis naı̈ve controls (n¼ 24) were

evaluated. Time X frequency analyses on EEG data were performed using Fourier-based mean trial power (MTP) and phase-locking

(inter-trial coherence; ITC). Transient ERPs to stimulus onset (auditory N100 components) were also evaluated. As predicted, a decrease

in spectral power (MTP) at 40 Hz was observed in the cannabis group (po0.018). No effects on phase-locking (ITC) or the N100 were

observed. Further, within the cannabis group, lower 40 Hz power correlated with an earlier age of onset of cannabis use (po0.04).

These data suggest that chronic exposure to exogenous cannabinoids can alter the ability to generate neural oscillations, particularly in

the gamma range. This is consistent with preclinical animal and cellular data, which may have implications for understanding the short- and

long-term psychopharmacological effects of cannabis.
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INTRODUCTION

Cannabis remains one of the most widely used psychoactive
substances in the world (United Nations Office on Drugs
and Crime, 2009). The principal psychoactive constituent
in cannabis, D9-tetrahydrocannabinol (THC; Gaoni and
Mechoulam, 1971), affects‘ the brain via the action of central
cannabinoid-1 receptors (CB1R; Devane et al, 1988; Pertwee
et al, 2010). The CB1R is one of the most abundant
G-protein-coupled receptors in the central nervous system,
with high densities in areas such as the cerebral cortex, basal
ganglia, hippocampus, and cerebellum (Egertova and
Elphick, 2000; Eggan and Lewis, 2007; Glass et al, 1997;
Herkenham et al, 1990; Pertwee, 1997, 1999; Tsou et al, 1998).
CB1Rs are primarily located presynaptically, and their
activation (by either endogenous or exogenous cannabinoids)

inhibits the release of other neurotransmitters such as
gamma-amino butyric acid (GABA) and glutamate by
decreasing Ca2 + influx via the inhibition of adenylate cyclase
and N-type Ca2 + channels (Freund et al, 2003). In the
cerebral cortex and hippocampus, this neuromodulation
principally occurs in networks of cholecystokinin-containing
GABAergic interneurons (Ali and Todorova, 2010; Bacci et al,
2004; Bodor et al, 2005; Eggan and Lewis, 2007; Eggan et al,
2010; Foldy et al, 2006; Hill et al, 2007; Katona et al, 2000).
Thus, it appears that CB1Rs may function as a molecular
‘brake,’ regulating the timing and release of GABA and other
neurotransmitters (Farkas et al, 2010).

Concerning the precise role that cannabinoids have in
GABA function, it has been hypothesized that ‘cannabis’
neurobehavioral effects may involve alterations in neural
synchronization’ (Skosnik et al, 2006a). Indeed, in vitro and
in vivo animal studies have shown that CB1Rs modulate
gamma- (30–80 Hz) and theta-band (4–7 Hz) synchronized
oscillations in networks of GABAergic interneurons in the
cerebral cortex and hippocampus (Hajos et al, 2000, 2008;
Katona et al, 1999; Morgan et al, 2008; Reich et al, 2005;
Robbe et al, 2006). This may be particularly germane to
the psychopharmacological effects of cannabis, as neural
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oscillations are thought to be involved in several domains
of cognitive and perceptual function. For example, cellular
studies and computational models have suggested that
gamma-band rhythmic synchronization across neuronal
assembles has an important role in the integration and
binding of perceptual features, associative learning, and
conscious awareness (Melloni et al, 2007; Singer, 1999;
Uhlhaas et al, 2009; Whittington et al, 2000).

Although several experiments have examined the effect of
cannabinoid manipulations on synchronized oscillations
using cellular and animal preparations (Hajos et al, 2000,
2008; Katona et al, 1999; Morgan et al, 2008; Reich et al,
2005; Robbe et al, 2006), there has been a paucity of studies
assessing CB1R effects on frequency-specific neural oscilla-
tions in humans. One non-invasive technique that can be
used to study neural oscillations in humans is electro-
encephalography (EEG). EEG is one of the few available
neuroimaging methodologies that can directly measure
neural events (postsynaptic potentials) with high temporal
precision in humans (Luck et al, 2011). Neural network
oscillations can be probed and assessed by entrainment of
the EEG to rhythmic sensory stimulation (eg, auditory click
trains at specific frequencies). Because the EEG waveform
entrains to the frequency and phase of the presented
stimulus, it serves as an indicator of the functional state of
the neural circuits supporting synchronized oscillations. In
the auditory modality, the output of such stimulation is
termed the auditory steady-state response (ASSR). Evidence
suggests that the ASSR has a preferred gamma-band
resonance (Galambos et al, 1981; Picton et al, 2003), is
generated by the brainstem, thalamus, cerebellum, and
auditory cortex (Hari et al, 1989a, 1989b; Makela and Hari,
1987; Pantev et al, 1996; Pastor et al, 2002, 2006; Steinmann
and Gutschalk, 2011), and is mediated by the GABAergic
system (Vohs et al, 2010). As aptly described by Spencer
et al (2008), ‘Although it is not thought that the ASSR itself
reflects any process related to the formation of cell
assemblies, its 40-Hz resonance suggests that the underlying
neural circuits preferentially oscillate at this frequency and
thus might rely on some of the same circuit and intrinsic
neuron properties as non-driven (sensory evoked and
cognitive-related) oscillations (Spencer et al, 2008).’ Thus,
the auditory steady-state paradigm may represent a valid
probe with which to test the ability of neural networks
to oscillate at frequencies important for normal perceptual
and cognitive processes. Indeed, the ASSR has been used
successfully to demonstrate neural oscillation deficits in
psychotic illnesses such as schizophrenia and bipolar
disorder (Krishnan et al, 2009; Kwon et al, 1999; Light
et al, 2006; O’Donnell et al, 2004; Rass et al, 2010; Spencer
et al, 2008).

In the only previous study of the effects of cannabis use
on neural oscillations using the ASSR paradigm, it was
demonstrated that 20 and 40 Hz harmonic EEG spectral
power were decreased during beta-band auditory stimula-
tion (Skosnik et al, 2006a). However, this initial study only
assessed a sample of self-reported cannabis users, with no
objective confirmation of recent cannabis use (eg, detection
of urinary THC metabolites). Further, only three frequen-
cies of stimulation were utilized (20, 30, and 40 Hz), and the
fast Fourier transform measure of power did not examine
the temporal dynamics of the ASSR, or differentiate effects

on power vs phase locking. Therefore, the current study
examined the effect of chronic cannabinoids on broadband-
frequency neural oscillations in confirmed cannabis users
utilizing the ASSR paradigm. On the basis of previous
animal and cellular work, it was hypothesized that the
cannabis group would exhibit ASSR deficits (decreases in
mean trial power (MTP) and inter-trial coherence (ITC)),
specifically in the gamma band.

MATERIALS AND METHODS

Subjects

This study was approved by the Indiana University
Bloomington Human Subjects Committee. Current cannabis
users (n¼ 22) and healthy drug-naive controls (n¼ 24) were
recruited from the local university community, paid for their
participation, and written informed consent was obtained
from each.

The inclusion criteria were as follows: (1) For the cannabis
group: current cannabis consumption (smoked joints) at the
rate of at least once per week during the last month, a
positive urine toxicology screen for THC metabolites
(THC-COOH), no other illicit substance use during the
past 3 months (including a negative urine toxicology
screen for other illicit drugs), and no DSM-IV diagnosis of
Axis I or II disorders, including no current or past history of
illicit substance abuse or dependence (other than cannabis);
(2) For the control group: no history of illicit substance use,
a negative urine toxicology screen for all drugs tested, and
no history of psychiatric illness (Axis I or II); (3)
For all participants: ages 18–35, completion of high-school
education, no family history of schizophrenia or bipolar
disorder, no history of cardiovascular disease, hearing
problems, neurological disease, learning disability, or head
injury resulting in loss of consciousness. In addition,
participants were excluded if they reported consumption
of more than two alcoholic drinks per day (one per
day for females). The cannabis group drug-use inclusion
criteria (cannabis use at least once per week; 12 h
abstinence) were chosen to minimize acute cannabis effects.
Human studies indicate that 80–90% of the total amount of
THC is excreted within 5 days, so a minimum use of once
per week enabled detection of THC metabolites (Hunt and
Jones, 1980).

Clinical Interviews, Questionnaires, and Drug Use
Assessment

The structured clinical interview for DSM-IV axis I and II
disorders (SCID I and SCID II) were administered to assess
current and past history of psychopathology. The SCID I
module E and a locally developed drug-use questionnaire
were used to ascertain current and past diagnoses for
alcohol and substance abuse and dependence. Levels of
cannabis consumption (estimated number of joints) were
determined via the interview and questionnaire for lifetime,
the past 6 months, 3 months, 1 month, and then for
the week before the test session as has been described
previously (Fridberg et al, 2010; Skosnik et al, 2006a, 2008).
Participants were instructed to consider each day of the
week and indicate, for an average week, how much they
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consumed per drug-use occasion for each length of time
assessed. Age of first use, number of joints smoked in the
last month, and time since last use are reported in Table 1.

Urine screens (Q10-1, Proxam Diagnostics, Sunnyvale,
CA, USA) were administered immediately preceding EEG
testing in order to corroborate self-reports from the drug
questionnaire and clinical interviews. The Q10-1 kit screens
for cannabis (THC-COOH; 50 ng/ml sensitivity), opiates,
amphetamines, cocaine, MDMA (ecstasy), tricyclic antide-
pressants, phencyclidine, benzodiazepines, methampheta-
mines, and barbiturates.

In addition to assessment of psychopathology and
substance use, subscales of the Wechsler Adult Intelligence
Scale III (WAIS-III; picture completion, digit symbol,
similarities, and digit span) were used to assess possible
deficits in general neuropsychological function.

Auditory Steady-state Responses

During the assessment of ASSRs, participants were seated
comfortably in a sound-attenuated room with eyes open
while passively listening to click trains presented through
Etymotic insert earphones (Etymotic Research, Elk Grove
Village, IL, USA). Auditory stimuli consisted of click trains
(square waves) presented at nine different frequencies in
each of the ten blocks (10, 15, 20, 25, 30, 35, 40, 45, and
50 Hz; 80 dB SPL). Each block contained 100 trials of the
frequency of interest, which were presented for 500 ms each
(interstimulus interval of 1000 ms). The order of frequency
blocks was randomized across subjects.

EEG Recording

The EEG was recorded continuously (band pass 0.1–100 Hz;
sampling rate 1000 Hz) from the scalp using a 32 channel
electrode cap with a nose reference, along with additional
electrodes to record the vertical electrooculogram (VEOG;
Neuroscan SynAmps, Compumedics Neuroscan, Charlotte,

NC, USA). Electrode impedances were maintained below
10 kO. The recorded EEG was segmented into epochs
consisting of the 500 ms during stimulus presentation,
along with a 500 ms baseline and a 500 ms offset period. Any
trial with a voltage 4±100 mV was excluded from analysis.
Ocular movement correction was applied using Gratton’s
algorithm (Gratton et al, 1983).

EEG Signal Analysis

MTP and ITC were determined using a time X frequency
spectrogram with the Signal Processing and EEGLab tool-
box in MATLAB (Delorme and Makeig, 2004; Rass et al,
2010; Skosnik et al, 2006b). For MTP, a baseline-normalized
event-related spectral perturbation (ERSP) was obtained
by applying a fast Fourier Transform using a time-sliding
window on single-trial data. This results in a time X
frequency transform consisting of a complex number for
every timepoint, frequency, and trial. The 500 ms interval
before stimulus onset was used as the baseline for
computing the ERSP, and the sliding window had a
duration of 128 ms. After sufficient padding a frequency
resolution of 0.98 Hz was obtained and the time resolution
was 3.8 ms. A Hanning window (100%) was applied on the
data before the fast Fourier transform. No other taper
functions were used. Thus, MTP represents the average of
spectral power from individual trials after subtracting
the mean from the baseline period (500 ms before stimulus
onset).

For ITC (which represents phase synchronization of EEG
activity across trials at particular temporal intervals and
frequencies), the complex output of the ERSP was divided
by its complex norm (absolute value), which was then
averaged across trials. The complex norm of this averaged
value results in the ITC value for different time and
frequency points. ITC values range from 0 (absence of
synchronization) to 1 (perfect synchronization, or phase
reproducibility across trials at a given frequency).

MTP and ITC values (frequency bins ±5 Hz from the
frequency of stimulation in each condition) were averaged
using sequential 100 ms windows between onset and offset
of the stimuli (500 ms) as has been reported previously
(Rass et al, 2010; Skosnik et al, 2006b). This resulted in 5
MTP and ITC values for every subject and every channel.

For analysis of the transient auditory-evoked response
(N100), epochs were low-pass filtered at 15 Hz (24 dB/
octave) before averaging, and were baseline-corrected
(300 ms prestimulus baseline) after averaging. Peak ampli-
tude and latency values after stimulus onset were used as
the dependent measures, and were obtained for each
electrode within the time window of interest using an
automated algorithm (Vision Analyzer, Brain Products
GmbH, Gilching, Germany). The N100 was defined as the
most negative voltage between 90 and 150 ms after stimulus
onset as reported previously (Skosnik et al, 2008). The
signal amplitude showed local maxima in the frontal region
(FCz), and all subsequent statistical analyses were con-
ducted on data from this site. All N100 EEG processing was
performed using commercially available software (Vision
Analyzer, Brain Products GmbH).

Table 1 Demographic and Substance Use Data (mean±SD)

Controls
(n¼24)

Users
(n¼22)

P

Age (years) 21.6 (3.0) 21.1 (2.6) 0.59

Education (years) 15.0 (1.6) 14.4 (1.4) 0.20

Gender (no. of females)a 12 7 0.21

WAIS (piccom) Scores 12.9 (2.92) 12.3 (2.42) 0.43

WAIS (digit) scores 11.7 (2.53) 11.4 (2.40) 0.68

WAIS (sim) scores 12.4 (2.57) 12.5 (2.41) 0.91

WAIS (dspan) scores 10.8 (2.44) 11.7 (3.03) 0.28

Average number of alcoholic
drinks/week

0.96 (2.5) 5.3 (4.5) 0.001a

Age of first cannabis use F 15.3 (1.4) F

Frequency of cannabis use
(joints in last month)

F 54.0 (36.6) F

Hours since last cannabis use (h) F 41.4 (34.0) F

Note: WAIS version was the WAIS-III. Subscales included were picture
completion (piccom); digit symbol (digit); similarities (sim); digit span (dspan).
aResults of w2 test.
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Statistical Analysis

All analyses were conducted in the software package PASW
Statistics 18.0. For the primary EEG outcome measures
(MTP and ITC), a repeated measures ANOVA was utilized
to examine the between-subjects factor of group (2) and the
within-subjects factor of time (5) at electrode FCz (where
MTP and ITC were maximal). Separate ANOVAs were
performed for each frequency condition. Greenhouse–
Geisser corrections for non-sphericity were used, where
appropriate. The addition of gender, age, and level of
alcohol use as covariates did not alter the results for the
MTP or ITC analyses. For the transient N100 ERP,
amplitude and latency were assessed within each frequency
condition using a one-way ANOVA (at electrode FCz). In
order to examine possible relationships between the ASSR
and cannabis use variables (age of first use, number of
joints in the last month, and time since last use), Pearson
correlation coefficients were utilized. For the correlational
analyses, a single value was calculated for MTP and ITC
at the frequency of interest for the entire interval after
stimulus onset (average MTP and ITC between 0–500 ms).
All EEG data were normally distributed, as assessed with
Shapiro–Wilk tests for normality. A criterion of po0.05 was
used throughout to determine statistical significance, and
all tests were two-tailed.

RESULTS

Table 1 provides basic demographic information as well as
cannabis/alcohol use rates. A one-way ANOVA revealed
that there were no significant differences between the
groups in age, years of education, or WAIS-III subscale
scores. A w2 test showed that the gender distribution within
each group was not significantly different (Table 1). Because
of the stringent exclusion criteria (see below), alcohol use
rates for both groups were extremely low. However, there
was a significant difference in the average number of
alcoholic drinks consumed per week between the two
groups (Table 1).

In the ASSR EEG protocol, subjects in both groups
entrained to all nine stimulus frequencies, which can be
seen in the grand averaged time X frequency plots of MTP
and ITC across all frequencies taken from electrode FCz
(Figure 1a and b). Note the preferred resonance of the ASSR
at 40 Hz, particularly in MTP (Figure 1a), which has been
described previously (Galambos et al, 1981; Picton et al,
2003). For MTP, a repeated measures ANOVA revealed a
main effect of time for the 35, 40, and 50 Hz frequency
conditions, an indication of change in spectral power across
the stimulation time window, with the strongest response at
40 Hz (Table 2, top). Moreover, a main effect of group was
observed in the 40 Hz (F(1,44)¼ 6.01, po0.018) and 15 Hz
(F(1,44)¼ 4.19, po0.047) frequency conditions, indicating
that the cannabis group had significantly decreased spectral
power in the gamma and low beta bands. No group X time
interactions were observed for MTP. Time X frequency
plots of MTP comparing cannabis users vs controls in the
40 Hz condition can be seen in Figure 2.

For ITC, a main effect of time was observed for all
frequency conditions (Table 2, bottom). No group or group
X time interactions were observed for ITC.

For transient ERPs to stimulus onset, no group differ-
ences were observed in the N100 component in any
frequency condition, indicating that the group differences
in MTP were not due to altered early stimulus processing
and registration. For illustrative purposes, ERPs to stimulus
onset in the 40 Hz condition can be seen in Figure 3.

On the basis of a priori hypotheses, and the fact that
the cannabis group exhibited decreased MTP in the
gamma band (40 Hz), correlational analyses were carried
out to examine the relationship between cannabis
use variables and 40 Hz MTP. Cannabis use variables
analyzed were age of first cannabis use, number of
joints in the last month, and time since last use. A
significant correlation was observed between 40 Hz spectral
power and age of first cannabis use (r¼ 0.45, po0.041;
Figure 4). In other words, individuals with the earliest age of
cannabis use onset exhibited the lowest gamma-band
(40 Hz) MTP.

DISCUSSION

The present study evaluated neural oscillatory activity
by way of EEG in chronic cannabis users. The primary
finding was a decrease in spectral power (MTP) during
gamma- (40 Hz) and low beta-band (15 Hz) auditory steady-
state stimulation in the cannabis group. No group
differences were observed in ITC. Across all frequency
conditions, no differences were observed between the
groups in the transient N100 ERP component, indicating
intact early auditory processing and sensory registration.
Lastly, within the cannabis group, earlier onset of cannabis
use was associated with lower levels of 40 Hz oscillatory
power.

The fact that cannabis users did not exhibit differences in
the transient N100 ERP is not surprising, as previous work
on this component has been mixed. The N100 is thought to
be related to basic perceptual processing, and in the
auditory domain, is likely generated by auditory and
frontal cortices (Naatanen and Picton, 1987). Skosnik et al
(2008) demonstrated that heavy cannabis users had
decreased N100 amplitudes for discrete 1000 Hz tones
during an associative learning task (Skosnik et al, 2008).
However, a subsequent study utilizing the same auditory
stimuli with a different sample of cannabis users failed to
replicate this finding (Edwards et al, 2008). Whether heavy
cannabis use can disrupt the transient N100 ERP therefore
remains equivocal.

The current study showed that exogenous cannabinoid
exposure decreased MTP, particularly in the gamma band.
Although power is thought to reflect the amplitude of neural
oscillations, ITC represents the variance of phase across
single trials, and is mathematically independent of power
and amplitude (Roach and Mathalon, 2008; Spencer et al,
2008). These results therefore suggest that for 40 Hz stimuli,
cannabis preferentially affected amplitude, while the var-
iance of phase across single trials was not disrupted.

The observed association between cannabis use and
altered gamma band activity is in agreement with previous
cellular work examining the effects of exogenous cannabi-
noids on neural oscillations. Hajos et al (2000) showed that
the administration of the highly potent cannabinoid agonist
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CP 55,940 robustly reduced the power of 40-Hz oscillations
elicited in hippocampal slices by kainate in vitro (Hajos
et al, 2000). In an in vivo study using rat entorhinal cortical

neurons, it was found that while the CB1R agonist
arachidonylcyclopropylamide had no effect on neural
oscillations, the CB1R antagonist LY320135 increased
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Figure 1 (a) Grand-averaged time X frequency plots demonstrating spectral power across all stimulation frequencies (FCz). Note the
preferred resonance of mean trial power (MTP) at 40 Hz stimulation. (b) Grand-averaged time X frequency plots for inter-trial coherence (ITC) across
all stimulation frequencies (FCz).
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gamma-band power in the deep medial entorhinal cortex
(Morgan et al, 2008). Interestingly, LY320135 suppressed
gamma power in more superficial layers of the entorhinal
cortex, illustrating the complex role of CB1Rs in cortical
oscillations.

Although the results gleaned from slice preparations are
highly informative, they are somewhat distal from the type
of EEG data described in the current study. More analogous
to the surface-based EEG data described here, several

groups have examined the effects of cannabinoids on neural
oscillations in vivo using animal-based local field potentials
(LFPs). For example, it has been shown that both THC and
CP 55,940 disrupt hippocampal theta and gamma oscilla-
tions in head-restrained and freely moving rats, effects that
were blocked by the CB1R antagonist SR141716A (Robbe
et al, 2006). Importantly, the alterations were shown to be
functionally relevant, as the degree of theta power disrup-
tion was correlated with performance on a hippocampal-

Table 2 ANOVA Table Showing Results for All Time X Frequency Analyses (MTP and ITC) Across All Frequency Conditions

ASSR condition (Hz) Group Time Group X time

Spectral power (MTP)

10 F(1,44)¼ 0.645, p¼ 0.426 F(2.99,131.56)¼ 1.46, p¼ 0.23 F(2.99,131.56)¼ 0.37, p¼ 0.78

15 F(1,44)¼ 4.19, po0.047* F(2.57,112.85)¼ 0.224, p¼ 0.851 F(2.57,112.85)¼ 1.33, p¼ 0.27

20 F(1,44)¼ 0.771, p¼ 0.385 F(2.04,89.73 )¼ 2.13, p¼ 0.12 F(2.04,89.73 )¼ 1.01, p¼ 0.37

25 F(1,44)¼ 0.034, p¼ 0.854 F(3.46,152.1 )¼ 0.6, p¼ 0.64 F(3.46,152.1 )¼ 0.1, p¼ 0.72

30 F(1,44)¼ 0.96, p¼ 0.332 F(2.0,87.6)¼ 0.53, p¼ 0.59 F(2.0,87.6 )¼ 1.0, p¼ 0.39

35 F(1,44)¼ 0.210, p¼ 0.649 F(3.44,151.3 )¼3.92, p¼ 0.007* F(3.44,151.3)¼ 0.5, p¼ 0.71

40 F(1,44)¼ 6.01, po0.018* F(3.15,138.6)¼7.8, po0.000* F(3.15,138.6)¼ 1.47, p¼ 0.22

45 F(1,44)¼ 1.43, p¼ 0.24 F(2.53,111.46)¼ 2.58, po0.07 F(2.53,111.46)¼ 0.64, p¼ 0.56

50 F(1,44)¼ 0.14, p¼ 0.91 F(3.32,146.2)¼4.0, po0.007* F(3.32,146.2)¼ 0.48, p¼ 0.49

Intertrial coherence (ITC)

10 F(1,44)¼ 0.04, p¼ 0.85 F(2.49,109.32)¼ 22.08, p¼ 0.000* F(2.49,109.32)¼ 0.75, p¼ 0.50

15 F(1,44)¼ 0.85, p¼ 0.36 F(3.13,137.78)¼ 17.38, po0.000* F(3.13,137.78)¼ 2.3, p¼ 0.08

20 F(1,44)¼ 0.21, p¼ 0.65 F(3.23,142.17)¼20.1, po0.000* F(3.23,142.17)¼ 1.69, p¼ 0.17

25 F(1,44)¼ 0.045, p¼ 0.83 F(3.20, 140.61)¼ 5.22, po0.002* F(3.20, 140.61)¼ 1.54, p¼ 0.21

30 F(1,44)¼ 0.02, p¼ 0.89 F(2.58,113.38)¼12.6, po0.000* F(2.58,113.38)¼ 0.34, p¼ 0.76

35 F(1,44)¼ 0.36, p¼ 0.55 F(2.60,114.24)¼ 84.57, po0.000* F(2.60,114.24)¼ 0.76, p¼ 0.50

40 F(1,44)¼ 1.71, p¼ 0.20 F(2.17, 95.43)¼ 102.61, po0.000* F(2.17, 95.43)¼ 1.34, p¼ 0.27

45 F(1,44)¼ 1.58, p¼ 0.22 F(2.40,105.46)¼ 83.84, po0.000* F(2.40,105.46)¼ 2.20, p¼ 0.11

50 F(1,44)¼ 0.62, p¼ 0.44 F(2.39,105.36)¼ 57.23, po0.000* F(2.39,105.36)¼ 1.52, p¼ 0.22

Significant effects are denoted with an asterisk* and bold font.
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Figure 2 (a) Grand-averaged time X frequency plots of MTP during gamma-band (40 Hz) auditory stimulation at electrode FCz for healthy controls (HC;
top; n¼ 24) and cannabis users (CB; bottom; n¼ 22). Greater 40 Hz power was seen in control subjects compared with cannabis users. (b) Average MTP
values in 100 ms intervals during the 500 ms window after onset of the 40 Hz click trains for control subjects (blue line) and cannabis users (green line) at FCz
(error bars indicate ±SE).
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dependent memory task. In a study exploring hippocampal
and cortical LFPs, Hajos et al (2008) demonstrated that rats
engaged in a sensory gating paradigm exhibited decreases
in gamma- and theta-band spectral power after the
administration of CP 55,940. CP 55,940 similarly affected
prefrontal cortical recordings during free movement
(attenuation of gamma and theta-band power). Importantly,
these results were both CB1R-specific, as the disruption in
neural oscillations was reversed by the CB1R antagonist
AM-251. Taken together, these results suggest that theta and
gamma oscillations in networks of GABAergic interneurons
are regulated by the endocannabinoid system, which can be
disturbed by the exogenous application of CB1R agonists.

In terms of human studies, the present findings are
consistent with the results of a number of experiments
examining the effects of both chronic and acute cannabi-

noids on neural oscillations. For example, two studies have
shown that chronic cannabis users exhibit disrupted neural
oscillatory activity using different EEG paradigms. Edwards
et al (2009) implemented a human analogue of the sensory
gating paradigm described above by Hajos et al (2008), and
found decreased gamma-band power during the auditory
click stimuli, which was negatively correlated with levels of
cannabis use (ie, those with the lowest gamma power had
the greatest levels of cannabis exposure) (Edwards et al,
2009). Further, Skosnik et al (2006a) found evidence of
decreased EEG spectral power using several frequencies of
stimulation in the ASSR paradigm (Skosnik et al, 2006a).
Regarding the acute effects of cannabinoids in humans,
Morrison et al (2011) recently demonstrated that intrave-
nous THC administration decreased theta power and inter-
electrode coherence during performance on an n-back task
of working memory (Morrison et al, 2011). Two previous
studies showed similar results with inhaled THC, including
decreased resting state theta power and disruptions in
working memory performance (Bocker et al, 2010; Ilan et al,
2004, 2005). To date, no human studies have shown altered
gamma-band activity in the context of acute cannabinoid
administration.

The current finding that 40 Hz power was associated with
a younger age of onset of cannabis use suggests that long-
term exposure to cannabis (and not recency of use or
residual cannabinoids) contributed to the observed find-
ings. This is noteworthy, given the known role of
cannabinoids in neurodevelopment. Both cellular and
animal studies have shown that the endogenous cannabi-
noid system has a key role in neurogenesis, neural
specification, neural maturation, neuronal migration, ax-
onal elongation, and glia formation (Harkany et al, 2007,
2008a, 2008b). Hence, earlier cannabis exposure during
adolescence may alter neurodevelopmental trajectories,
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which could permanently disrupt the ability of neural
circuits to generate synchronized oscillations. Interestingly,
cannabis use is now thought to represent a risk factor and
component cause in the development of schizophrenia
(Moore et al, 2007; Sewell et al, 2010). As schizophrenia
patients and their first-degree relatives also demonstrate
decreased 40 Hz ASSRs (Shin et al, 2011), it is reasonable
to speculate that these alterations are mediated in part by
disruptions in cannabinoid-GABA interactions. Future
research is needed to explicitly test this postulate.

There are several limitations to the current experiment.
First, the cross-sectional design of the study precludes the
ability to ascertain precise cause and effect relationships.
Hence, it remains unclear whether the observed results
were due to the residual effects of THC, cannabis
withdrawal, long-term cannabis exposure (eg, CB1R down-
regulation), or premorbid neurodevelopmental and/or
personality differences predisposing individuals to use
cannabis. Second, the cannabis plant contains nearly 70
phytocannabinoids, so it is unclear which specific con-
stituent has a role in neural oscillations. Each of these
limitations could be resolved in future studies by examin-
ing the ASSR in the context of acute THC administration in
humans. A third limitation is that while cannabis use status
was confirmed by urinary THC-COOH, no quantitative
assays of THC or THC-COOH were undertaken, which
would have been a more valid means to determine the
magnitude of recent cannabis exposure. Fourth, as previous
studies have shown that CB1Rs are also involved in theta-
band oscillations, future work should examine the effect
of cannabis on ASSRs in the 4–7 Hz range. Finally, the
functional significance of the ASSR remains unclear, as it is
unknown whether the neural oscillations evoked during
auditory steady-state stimulation are related to spectral
power and phase locking measured during cognitive tasks.
These limitations notwithstanding, the current data suggest
that chronic exposure to cannabis may alter the ability to
generate neural oscillations in the gamma range, which
may have implications for understanding the short- and
long-term psychopharmacological effects of exogenous
cannabinoids.
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