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Abstract
The discovery that RNA molecules can fold into complex structures and carry out diverse cellular
roles has led to interest in developing tools for modeling RNA tertiary structure. While significant
progress has been made in establishing that the RNA backbone is rotameric, few libraries of
discrete conformations specifically for use in RNA modeling have been validated. Here, we
present six libraries of discrete RNA conformations based on a simplified pseudo-torsional
notation of the RNA backbone, comparable to phi and psi in the protein backbone. We evaluate
the ability of each library to represent single nucleotide backbone conformations and we show
how individual library fragments can be assembled into dinucleotides that are consistent with
established RNA backbone descriptors spanning from sugar to sugar. We then use each library to
build all-atom models of 20 test folds and we show how the composition of a fragment library can
limit model quality. Despite the limitations inherent in using discretized libraries, we find that
several hundred discrete fragments can rebuild RNA folds up to 174 nucleotides in length with
atomic-level accuracy (<1.5Å RMSD). We anticipate the libraries presented here could easily be
incorporated into RNA structural modeling, analysis, or refinement tools.
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INTRODUCTION
The cellular role of RNA is now known to extend far beyond simple transfer of genetic
information to include catalysis, molecular recognition, and genetic control 1. Thus, RNA
can act as a folded macromolecule with striking parallels to proteins 2. Knowledge of RNA
3D structure can therefore be critical for understanding the structural mechanisms involved
in RNA conformational changes, ligand and protein binding, and catalysis. Despite the
growing interest in RNA tertiary structure, the development and success of computational
tools for RNA structural modeling has lagged behind the counterpart tools for proteins. This
is in part due to the difficulty in determining experimental RNA structures with sufficiently
high resolution, and is in part due to the complexity inherent in the six torsional degrees of
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freedom within the RNA backbone of each nucleotide (Figure 1A). In the last two decades,
the number, diversity, and quality of solved RNA structures has grown tremendously and
this has allowed the structural features of the RNA backbone 3; 4; 5; 6; 7; 8 and bases 9; 10 to
be analyzed in great detail.

Recently, several groups identified rotameric backbone conformations that occur repeatedly
within RNA structures 5; 6; 7; 8. Rotameric conformations have long been observed for the
torsion angles of small molecules, as well as for the torsions of the protein backbone 11 and
side chains 12. The discovery that protein side-chains have strong torsional preferences led
to the development of protein rotamer libraries that have been used with great success in
molecular modeling for prediction and design13; 14 or structural validation15. Initially,
protein rotamer libraries consisted of a limited number of idealized side-chain conformations
that were understood to represent local minima on the potential energy surface 16; 17.
However, several studies suggested that early rotamer libraries were incomplete and, as a
result, expanded protein rotamer libraries were developed that consisted of hundreds, or
even thousands, of side-chain conformations 18; 19; 20; 21. The conformations within these
libraries typically consisted of side-chains taken directly from high-resolution crystal
structures and therefore did not always correspond to local energy minima. Nevertheless, the
larger rotamer libraries were shown to be superior to earlier libraries in achieving accuracy
in protein modeling 18; 19; 20; 21.

A consensus RNA backbone rotamer library of 46 conformations was recently published
that incorporates and builds upon several earlier RNA rotamer libraries 5; 6; 7. While the
consensus library represents a significant achievement in terms of quantitatively describing
RNA backbone structure, incorporating the consensus library into modeling tools that build
RNA structure may present a unique challenge. This is because each rotameric backbone
state is defined in terms a new unit of RNA structure, termed a “suite” (Figure 1A) 7; 8. A
“suite” consists of seven backbone torsions (δ, ε ,ζ, α, β, γ and δ and spans two nucleotide
sugars (Figure 1A). The suite notation is straightforward to use for structure quality
assessment 22. However, because each suite both begins and ends with a sugar ring,
assembling individual suites into larger RNA structures can be difficult. Whereas two
traditional nucleotides can be joined at a single phosphate atom, joining two suites requires
that they overlap completely by one sugar ring. Therefore, a minimization protocol would
need to resolve any potentially differing sugar conformations resulting from overlapping
suites. While a local minimization step could be incorporated into rotamer based modeling
tools, doing so could undercut advantages in computational speed that normally would be
gained from using a purely rotamer based approach.

To date, no finite list of representatives of the 46 suites within the consensus rotamer set has
been published. Thus, to use the suite notation during modeling building, a protocol is
needed to select among the many different possible conformations that could simultaneously
satisfy the ranges of seven backbone torsions involved in each of the consensus suites.
Keating and Pyle recently illustrated the only technique available thus far to combine suites
during model building. Their protocol requires that a backbone trace is known in advance
and then uses coordinate minimization to generate suite conformations compatible with the
pre-existing backbone trace 23. In this work, we provide an alternative approach to using the
consensus set during model building. Specifically, we present several discrete libraries of
RNA conformations that are easy to combine and do not require coordinate minimization or
a pre-existing backbone trace. The libraries we present should be ideal for use in de novo
modeling tools that employ pair-wise decomposable energy functions or require discrete
rotamers. However, they could also be useful as a starting point for modeling approaches
that employ conformational minimization.
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Instead of a rotamer set, most tools that model RNA employ either a coarse-grained
modeling approach or make use of large databases of RNA fragments (for a review, see 24).
In coarse-grained modeling, low-resolution models are generated by representing each
nucleotide in a highly reduced form, typically as one or more spheres 25; 26; 27. Coarse-
grained modeling can afford large advantages in speed, especially for modeling larger RNA
folds 25; 26; 27. However a second round of computational prediction is required to produce
all-atom models from coarse-grained traces 28. In contrast, all-atom RNA models are often
built using either groups of base pairs 29; 30 or three-nucleotide long fragments taken from a
single ribosomal subunit structure 31. Fragment based structure assembly has successfully
generated models of small and medium sized RNA molecules with backbone accuracies of 2
to 10 Angstroms 29; 30; 31. However, it is currently unknown what limitations these fragment
libraries currently have. It is possible that some fragment libraries may over-represent
certain RNA structural features, such as helical regions, but completely lack appropriate
representatives for others.

In this work, we aim to develop libraries of discrete conformations (“filtered fragment
libraries”) that exhaustively span RNA conformational space, are easy to assemble without
implementation of minimization protocols, and are consistent with those already identified
using the more comprehensive suite notation. To generate the filtered fragment sets, we use
a pseudo-torsional notation that mimics the phi-psi notation of the protein
backbone 32; 33; 34. To form the pseudo-torsions, consecutive RNA backbone C4’ and
phosphate atoms are linked with virtual bonds (Figure 1B). This creates two pseudo-torsions
per RNA nucleotide: η [C4’i-1,Pi,C4’i,Pi+1] and θ [Pi,C4’i,Pi+1,C4’ i+1] (arrows in Figure
1B). The RNA pseudo-torsion nomenclature might be ideal for generating libraries of RNA
conformations for several reasons. First, nucleotides with similar η and θ values are often
found within the same units of tertiary structure 32 and these values can be used to identify
known or novel structural motifs within existing RNA structures 35; 36. Second, small motifs
of RNA, such as the GNRA tetra-loop, can be rebuilt with high accuracy by replacing native
nucleotides in silico with non-tetraloop nucleotides that have similar pseudo-torsions 33.
Finally, when nucleotide pseudo-torsions are plotted in two-dimensional space, their
associated RNA backbone conformations appear to cluster 32; 33. Importantly, the clustering
of nucleotide pseudo-torsions in two-dimensions has recently been shown to correspond to
the clusters of the RNA backbone suites observed in seven-dimensions 23.

The accuracy of protein modeling had generally improved after expanded rotamer libraries
were introduced 18; 19; 20; 21. Thus, we created six libraries of RNA filtered fragments that
varied in size from small (~70 fragments) to large (~500 fragments) and then we examined
how the accuracy of RNA modeling depended on the choice of library used. The various
libraries were constructed by using the pseudo-torsional notation to select representatives
directly from a dataset of high quality crystallographic structures with η and θ values spaced
every 60º, 30º, 20º, 15º, 10º, or 5º. While each library was created using a coarse-grained
approach based on only two atoms per nucleotide (C4’ and P, see Figure 1), each individual
library conformation retained all-atom detail. As the word rotamer is typically reserved for
ideal conformations located at the bottom of a local energy minimum, we refer to the
members of each of the libraries of discrete RNA conformations as “filtered fragments”.

Here, we first briefly describe the features of the six libraries, and then we present
methodological rules for connecting the fragments into dinucleotides that are consistent with
the previously published suite nomenclature. We evaluate the performance of each library at
modeling single nucleotides, dinucleotides, and entire RNA folds and we find that the
modeling accuracy at all structural levels is dependent on the filtered fragment library used.
Importantly, we find fewer than several hundred well chosen fragments are sufficient to
build models of RNA folds with atomic-level accuracy. These sets of pseudo-torsion based
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libraries are small enough to ensure speed and efficiency for modeling tools, but large
enough to model RNA folds with high accuracy. Thus we anticipate the pseudo-torsion
based libraries will be of use in the future for a wide variety of modeling applications.

RESULTS
Generation of Filtered Libraries of Pseudo-Torsional Fragments

The same dataset of 171, high quality, crystallographic structures that was used to identify
clusters of RNA backbone torsions in 7-dimensions 7 (“RNA05”; see Methods) was also
used to generate the pseudo-torsion based libraries. As in 7, we eliminated from the dataset
nucleotides with high atomic b-factors or residues with steric clashes (see Methods).
Further, to ensure that only the highest quality nucleotides were included within the
libraries, we removed nucleotides that had poorly-defined sugar puckers or that lacked all
necessary pseudo-torsional atoms (see Figure 1A and Methods).

Once the dataset of high quality filtered nucleotides was created, we first surveyed the range
of pseudo-torsions present by measuring the η and θ values of each filtered nucleotide (see
Methods and Figure 1B) and plotting these values against each other in a 2-D,
Ramachandran-like, scatter plot (Figure 2A). In keeping with precedent set in other
studies 32; 33, nucleotides were first grouped by sugar pucker (see Methods) and two η- θ
plots were created: one η- θ plot for nucleotides with C3’-endo sugar pucker (Figure 2A,
top) and a second plot for nucleotides with C2’-endo (Figure2A, bottom) sugar pucker.

Not surprisingly, the η-θ plots of the filtered RNA05 dataset were remarkably similar to η-θ
plots observed in an early analysis of pseudo-torsions within a small set of 52 structures 32.
Most notably, a large number of C3’-endo nucleotides had η- θ values within a very narrow
range that was previously associated with the helical A-form of RNA 32; 33 (Figure 2A, grey
regions; 150 < η <190; 190 < θ < 240). The η- θ plots of the filtered RNA05 dataset were
also roughly the same as η- θ plots generated after applying an automated clustering
algorithm to a larger set of approximately 7000 unfiltered crystallographic nucleotides 33.
Interestingly, the regions of scatter removed by automatically clustering nucleotides based
on the similarity of their η- θ values 33 appeared similar to the regions of scatter removed by
quality filtering the RNA05 nucleotides to eliminate steric clashes, to have low b-factors,
and to have well-defined pseudo-torsions and sugar pucker (see Methods and Suppl. Figure
1).

We next sought to create libraries of nucleotides with pseudo-torsions that spanned, or
completely covered, the range of observed η- θ values. A previous study identified 11
pseudo-torsional based clusters by using standard clustering techniques 33. However, we
employed a non-clustering based methodology that allowed us to systematically generate
libraries that varied in size but also ensured that representatives of all 11 previously
observed clusters were included in each filtered fragment library. Specifically, we chose to
bin the two filtered η- θ plots at one of six different resolutions (60º, 30º, 20º, 15º, 10º, or 5º)
and selected from each resolution of bins the single nucleotide closest to the center of each
bin (Figure 2B-D; see also Methods). If a bin was unpopulated, no nucleotide was selected.
In such a manner, one “ideal” representative was chosen from each bin and taken to be
representative of all other nucleotides within the same bin.

This binning process created six libraries that ranged in size from 67 to 577 (Figure 2F).
Because almost every 60º and 30º bin was populated (Figure 2B-C), the 60° and 30°
libraries contained filtered fragments with fairly uniformly spaced η-θ values (Figure 2F). In
contrast, when the η-θ plots were binned at 20° or finer, many bins were located within the
empty regions of the η-θ plots, which were unpopulated (Figure 2D). As a result, the 20°,
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15°, 10° and 5° libraries were significantly smaller in size than expected from the total
number of bins (Figure 2F). Further, a large number of the nucleotides within the 20°, 15°,
10° or 5° bins were located within the helical η-θ region (Figure 2D). As a result, the largest
four libraries did not have evenly spaced η-θ values, but instead were biased towards helical
conformations (Figure 2D, 2F). As an example, Figure 2D illustrates the selection of
nucleotides using a 10° bin size and Figure 2E shows ten filtered fragments, each with
helical η but varying θ, selected after binning at 10°. Note that each fragment consists of the
backbone and base coordinates of a single selected nucleotide (Figure 2E, wheat atoms), as
well as the coordinates of all the atoms involved in defining the selected nucleotide’s
pseudo-torsions (Figure 2E, grey atoms). By saving the atoms that define the η and θ values
of each library fragment, the pseudo-torsions of each fragment can be directly used during
model building.

Filtered fragment library accuracy: Modeling the backbone and bases of individual
nucleotides

To build accurate models of RNA folds, a filtered fragment library must reproduce structural
features that are found within individual nucleotides. As a first test of each library, we thus
asked how accurately the filtered fragments within each library could reproduce the
backbone coordinates of each of the 8,466 individual nucleotide conformations within the
original unfiltered RNA05 dataset (see Methods). To do so, we aligned the backbone atoms
of every fragment within each library to the corresponding backbone atoms of every
nucleotide in the RNA05 dataset and noted the RMSD over all the backbone fragment
atoms, including those defining its η and θ values. We then used the backbone RMSD
calculations to determine which of the library fragments was the most structurally similar to
each individual RNA05 nucleotide.

We evaluated the ability of each library to represent the diversity of backbone conformations
within the RNA05 dataset by counting how many nucleotides had a library fragment with a
backbone RMSD within 1Å or 0.5Å. Regardless of which filtered fragment library was
examined, the majority of RNA05 nucleotides had a library fragment within 1Å backbone
RMSD (Figure 3A). However, the six libraries differed in the number of nucleotides with a
library fragment within 0.5Å backbone RMSD (Figure 3A, inset). For example, the 60°
library modeled the backbone coordinates of approximately 50% (4349/8466) of the
nucleotides to within an accuracy of 0.5Å, while the 30° library reproduced the backbone
coordinates of 68% (5773/8466) of the nucleotides to within 0.5Å (Figure 3A, blue and
green). In this case, a small increase in library size of only approximately 100 fragments
resulted in a large increase in the number of nucleotides modeled to within 0.5Å accuracy.
The shift towards modeling more RNA05 nucleotides with increased backbone accuracy
continued for the remaining libraries. Impressively, all four libraries binned at 20° or finer
were able to cover or “mimic” the backbone structure of 75% to 80% of the RNA05
nucleotides to within 0.5Å (Figure 3, yellow, orange, brown and magenta). This level of
structural accuracy in modeling individual nucleotides is comparable to that typically
calculated for many protein side-chain rotamer libraries 18; 19.

We next evaluated how accurately each library could reproduce the full coordinates of all of
the unfiltered RNA05 nucleotides, including each nucleotide’s base. To compute all-atom
RMSDs, we computationally mutated the base of each filtered fragment to match that of
each RNA05 nucleotide prior to aligning all heavy atoms (see Methods). The library
fragment with the minimum all-atom RMSD to each nucleotide was then noted.
Surprisingly, the accuracy of the library fragments in modeling the dataset of nucleotides in
all-atom detail was very similar to the accuracy previously observed for modeling only the
backbone atoms of each nucleotide. Even when the base atoms were included, each of the
filtered fragment libraries modeled the majority of nucleotides to within 1Å accuracy.
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Further, the largest four libraries modeled 70-78% of nucleotides to within 0.5Å accuracy
(Figure 3B). Often, the filtered fragment that “best fit” the coordinates of an entire
nucleotide when calculating all-atom RMSD was the same library fragment that “best fit”
the nucleotide when only backbone RMSD coordinates had been considered (Suppl. Figure
2). These results suggest that when a library fragment accurately models the backbone atoms
of a nucleotide, the base atoms of the nucleotide will often be modeled accurately as well.

Pseudo-torsional guided assembly of filtered fragments into in silico dinucleotides
We next asked whether the filtered fragments within each library could be assembled into
physically realistic dinucleotides. Assembling two single nucleotides into a dinucleotide
requires choosing how to place one nucleotide with respect to another. While a large number
of dinucleotide conformations could theoretically be formed from a pair of individual
nucleotides, we chose to orient and assemble individual library fragments into dinucleotides
by using their pseudo-torsions as a guide (Figure 4A).

Specifically, dinucleotides were formed from two individual fragments by aligning three of
the atoms involved in defining the θ torsion of one fragment with three of the atoms
involved in defining the η torsion of a second fragment (see Figure 4A and Methods). In
order to form a contiguous dinucleotide, the aligned pseudo-torsion atoms were joined at the
phosphate atom, and all pseudo-torsional atoms were removed (see Figure 4B and Methods).
However, for building structures longer than dinucleotides (see Modeling RNA Folds
section), the pseudo-torsional atoms at the ends of a joined dinucleotide can remain and be
used to guide attachment of the next incoming fragment. As a shorthand, we refer to each
assembled dinucleotide by its θ-η value (red arrows in Figure 4A, bottom).

We evaluated whether assembling filtered fragments into dinucleotides based on their
pseudo-torsions built realistic two-nucleotide conformations in the following manner. To
begin, we created a library of dinucleotides from each fragment library by connecting, pair-
wise, every combination of individual fragments in silico using the three-step assembly
protocol. We then noted the θ- η value of every dinucleotide assembled in silico. To survey
the connectivity of the in silico dinucleotides, we separated the dinucleotides by sugar
pucker and plotted how frequently each pair of θ- η values occurred within the set of in
silico dinucleotides (Figure 4C). We observed that a large number of dinucleotides with
helical conformations connecting individual C3’-endo nucleotides had been formed in silico
(Figure 4C; note C3’-endo sugars with 190 < θ < 240 or 150 < η <190). This trend was
especially prevalent for the dinucleotides assembled from the 20º, 15º, 10º and 5º libraries
(Suppl. Figure 3). As these four libraries contained a relatively large number of individual
fragments with C3’-endo helical conformations (Figure 2F), this bias towards helical
dinucleotide connectivities was not too surprising. We then compared the frequency of the
in silico dinucleotide θ- η values (Figure 4C) to the frequency of the θ- η values calculated
for two-nucleotide stretches within the dataset of RNA05 structures (Figure 4B). A similar
strong bias towards connecting nucleotides with helical C3’-endo pseudo-torsions occurred
within the experimental structures. We note that there is intrinsically no reason for this bias
towards C3’-endo connectivity. Rather it is just a consequence of the population of filtered
fragments selected to be within each library. Nevertheless, we conclude that assembling
individual library fragments by using their pseudo-torsions as a guide results in dinucleotide
orientations that largely mimic those observed within crystallographic structures.

While we observed that the in silico dinucleotides had orientations that largely mimic those
seen experimentally, there was no guarantee per-se that the in silico dinucleotide
conformations were physically realistic and free of steric overlaps. To address this, we next
checked to see whether each in silico dinucleotide contained steric clashes by measuring
overlap of van der Waals radii for each pair of atoms (see Methods; van der Waals radii
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were scaled by 60% due to the discrete nature of the fragments being assembled). After the
dinucleotides identified to have serious clashes were removed from the exhaustive set
(approximately 10% to 12%; Figure 4E) and the combinations of θ- η torsions of the
remaining dinucleotides were re-plotted (Figure 4D), we observed that the pattern of θ- η
frequencies appeared virtually unchanged (compare Figure 4C and Figure 4D). We thus
conclude that the majority of the time, when two arbitrary fragments are assembled into a
dinucleotide using their respective pseudo-torsions the conformation that results will be
physically realistic.

Comparison of in silico dinucleotides and rotameric suites
Ideally, any library of discrete RNA conformations should include representatives of each of
the previously identified backbone rotameric states 8. The two sugars within each in silico
dinucleotide constitute one RNA suite (see Figure 1A). Based on this information, we were
able to determine whether each set of in silico dinucleotides contained all of the previously
published rotamer suites. To do so, we used the program Suitename 8 to calculate which
suite, in 7 dimensional space, was most closely identified with each dinucleotide assembled
in silico. We performed this calculation only for dinucleotides that had already been
determined by van der Waals overlap to be free of steric clashes.

Most, but not all, of the consensus rotamer suites were identified within the dinucleotides
generated in silico from the 60o and 30o libraries (46 published suites + 8 “wannabe” suites;
see Figure 4E and Suppl. Figure 4). In contrast, all consensus suite conformations were
observed repeatedly within the dinucleotides assembled from the libraries binned at finer
resolution (Figure 4E; Suppl. Figure 4). Unsurprisingly, the most frequently generated suite
type from the 20º, 15º, 10º and 5º libraries was suite 1a, which is the suite most closely
associated with the helical A-form of RNA (Figure 4E; Suppl. Figure 4). While most in
silico dinucleotides had torsions consistent with one of the established rotamer suites, each
library also generated dinucleotide conformations that were considered non-rotamer outliers
(Figure 4E). This trend occurred less often for the larger, more extensive filtered fragment
libraries. Backbone conformations identified as outliers by Suitename also occur within
crystallographic structures and within the original, unfiltered RNA05 dataset, approximately
14% of the RNA conformations could not be identified by Suitename to be associated with
any consensus rotamer suite (Figure 4E). Thus while the majority of dinucleotide
conformations generated from the filtered fragment libraries are suite-like, other
dinucleotide fragment conformations may represent previously unidentified suites or contain
torsional values that lie just outside a traditional suite.

Deriving a “lower-limit” estimate of model quality: Modeling RNA Folds
Thus far we have found the libraries binned at 20º or finer to be superior in reproducing the
coordinates of individual nucleotides and generating dinucleotides compatible with the
rotameric suites. We next subjected the filtered fragment libraries to a more rigorous
modeling test: could the fragments within each library be used to build realistic, accurate
models of known RNA folds of varying lengths?

To address this question, we developed a protocol to model any arbitrary target RNA fold as
accurately as possible and provide a best-case (or “lower-limit”) estimate of model RMSD
that could be expected from each filtered fragment library. Briefly, the protocol uses a
Monte Carlo simulation to grow an RNA chain, one fragment at a time, by: (1) sampling all
fragments at each nucleotide position, mutating the base of each fragment to match that of
the target fold being built; (2) calculating the backbone RMSD after aligning the growing
chain to the target structure for each sampled fragment; (3) selecting fragments by the
backbone RMSD of the growing chain according to a Metropolis criterion (see Figure 4A
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for illustration of assembly and Methods for details). Physically realistic folds were built by
performing excluded volume calculations during sampling and rejecting fragments that
caused atomic overlaps (see Methods). However, the use of any other energy function terms
was avoided, as using such terms might introduce potentially negative bias. We found that a
Metropolis Monte Carlo sampling strategy produced models with lower backbone RMSD
than naively selecting, at each assembly step, the single clash-free fragment yielding the
lowest backbone RMSD to the target fold (data not shown).

It is important to note that the strategy we employed did not use any information about the
original positioning of the crystallographic bases during model building. Instead, for each
starting crystal structure, the bases were removed, and only the coordinates of
crystallographic backbone were used to guide rebuilding the fold from each set of discrete
library fragments.

Pseudo-Torsional Libraries Can Model RNA Folds with Atomic-Level Accuracy
We selected twenty RNA folds that ranged in size and complexity from simple hairpins to
complex ribozymes (Figure 6A) and used the “lower-limit” protocol in conjunction with
each filtered fragment library to rebuild each fold 1000 times (Figure 5A). For the libraries
binned every 60 or 30 degrees, sampling of low RMSD structures was often poor (2-6
Ångstroms; Figure 5A, blue and green curves). Further, even though every step of model
assembly was directly guided by backbone RMSD, the best models generated by the 60º and
30º libraries were only in the 2–4 Ångstrom range (Figure 6A). This agrees with the overall
poor coverage found for these libraries at the nucleotide level. The other four libraries
consistently sampled low backbone RMSD models (1-4 Ångstroms; Figure 5A, yellow,
orange, brown and magenta curves). The backbone RMSD of the best-sampled models
improved as library binning became finer and finer (Figure 6A) and the 15°, 10° and 5°
libraries consistently produced models with atomic-level accuracy (<1.5 Å backbone
RMSD; Figure 6A, Figure 5C-F). As each of the filtered fragment libraries varied in its
ability to accurately model the crystallographic target folds, we conclude that the quality of
fragments used in RNA modeling can limit the accuracy with which RNA models can be
built.

Surprisingly, we found no large differences in the accuracy with which each library was able
to model small, medium and large RNA folds (Figure 6A-B). The one exception to this
finding was the 60º library, which generated relatively poor quality models overall,
regardless of size (see standard deviation bars in Figure 6B). While the filtered fragment
libraries modeled large and small RNA folds with approximately the same accuracy, there
was often a significant variation in the RMSD of the models produced by the Monte Carlo
protocol for large folds (Figure 5A, 3DIL). This was reflected both in a significant
broadening of the 1000 RMSD values sampled by the Monte Carlo protocol (see Figure 5A,
3DIL), as well as the speed with which the best observed fold among the 1000 was sampled
(data not shown). Because of this, we conclude that even if a library contains fragments
capable of generating a high quality model, increased structural sampling may be needed to
produce accurate models of longer RNA folds.

Evaluating Model Folds Using Other Backbone Metrics: Suiteness and Helicity
The backbone quality of the models generated from each filtered fragment library was also
evaluated by two other non-RMSD based metrics. First, we used Suitename to calculate the
overall “suite score” for the original twenty targets as well as for the models of each target
fold (Figure 6C, 1st row). Briefly, the “suite score” reflects how many suites within a
structure have backbone torsions consistent with one of the previously identified rotameric
suites. Again, models built from the 60º, 30º, and 20º degree libraries performed poorly,
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with their average “suite score” indicating only 22% - 40% of the model nucleotides to be
suite-like (Figure 6C, 1st row). In contrast, the average “suite score” of models generated
from all other libraries was almost identical to that of the original dataset (Figure 6C, 1st

row). In a few cases, the suite score of a crystallographic target was dramatically improved
when the fold was rebuilt using library fragments (see Suppl. Table 2 and Discussion).

Perhaps the most simple and defining characteristic of RNA folds is that they contain a high
percentage of helical nucleotides. Thus, we also determined whether the models and target
folds had a similar number of helical nucleotides. To do so, we again used the program
Suitename 8 and determined how many nucleotides within each target and model were
identified as the helical, 1a suite. Only 10%–40% of the nucleotides within the twenty best
models built from the 60º, 30º, and 20º libraries were identified as helical (Figure 6C, 2nd

row). These percentages were far less than the 57% of nucleotides identified as helical
within the twenty crystallographic folds (Figure 6C, 2nd row). In contrast, the 15º, 10º, and
5º libraries consistently rebuilt the target folds into RNA models with an average percent of
helical nucleotides close to the original dataset (51%–62% as compared to 57%, Figure 6C,
2 row). After examining the helical 1a suite, we asked whether corresponding nucleotide
positions for models and targets had identical suite conformations over the entire set of 54
conformers (see Methods). Suites within the 60º models rarely matched that of the target
fold (out of 966 suites, 115 suites had identical conformers and 29 were near-identical). In
contrast, >80% of suites within the 5º models were identical to that of their target folds (out
of 966 suites, 727 suites had identical conformers and 72 suites were near-identical). These
findings are in general agreement with the results previously described for evaluating
modeling accuracy for each library based on backbone RMSD.

Evaluating the RNA models in all-atom detail: All-atom RMSD
Base pairing and positioning often play a fundamental role in most computational tools that
model RNA de novo. However, the “lower-limit” protocol selects fragments during model
building using only backbone RMSD and ignores the location of all base atoms, except to
disallow fragments whose base atoms result in steric clashes. Thus it was possible that the
backbone coordinates of “lower-limit” models were accurate but that the individual bases
coordinates were not.

To check whether the models built from each library using a backbone-based RMSD
approach had accurate base placement, we first calculated the all-atom RMSD of the twenty
best models from each of the libraries to their targets (Figure 7A, 1st row). All-atom RMSD
values correlated strongly with the backbone RMSD values and, in most cases, were
approximately 0.6–0.7Å greater (Suppl. Table 3). The 60º library produced structures with
relatively poor all-atom RMSD values (4.6 Å; Figure 7A, 1st row) while the all-atom models
generated by the 5º library were surprisingly accurate (1.7 Å; Figure 7A, 1st row). We also
examined whether the models had any systematic differences in structural quality at helical
and non-helical regions. To do so, we aligned each of the best models to its target using all
backbone atoms and then, using this fixed alignment, we calculated the all-atom RMSD over
all helical (e.g. suite 1a) and non-helical nucleotides separately. We observed that helical
regions were modeled more accurately than the non-helical regions (Figure 7A, 2nd and 4th

rows; 5º model mean accuracy 1.2Å and 2.3Å, respectively; see also Suppl. Table 4). This
difference in accuracy appeared largely due to base placement: base atoms within helical
regions of the 5º models were located, over average, 1.5Å away from their position in the
target fold while the base atoms within non-helical regions of the same models were located
much farther away on average (3.2Å, Figure 7A, 3rd and 5th rows). The “lower-limit”
protocol had ensured that fragments with near ideal backbone RMSD had been selected
during model building for both helical and non-helical regions alike. Thus, the RMSD of
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base atoms within non-helical regions such as loops and junctions may be somewhat limited
by the current base conformations within the 5º library.

Evaluating the RNA models in all-atom detail: Base orientation and base pairing
In addition to RMSD, we also evaluated the accuracy of base positioning within the models
built by each library using two other metrics. First, we identified the number of nucleotides
within each of the models that had chi angles within 20º of the native nucleotide at the same
chain position. Correct base placement, as measured by chi angle, showed steady
improvements as the filtered fragment libraries grew larger and the bin resolution grew
finer. Using this metric, the 60º library performed poorly and positioned only approximately
40% (468/1207) of bases positioned within 20º of their targets (Figure 7A, 6th row). In
contrast, the models generated using the 5° library had almost 80% (959/1207) of
nucleotides placed in a correct base orientation (Figure 7A, 6th row). Achieving such a high
level of accurate base placement, despite the lack of enforcing any criteria to favor base
orientation during model building other than sterics, might be surprising. However, accurate
base placement based on pseudo-torsional information alone has been observed
before 23; 33; 36.

Placement of side chains within 20º is a standard often used for protein side-chain
modeling 20. However, it is not clear whether this level of accuracy would be sufficient to
observe hydrogen-bonding patterns among RNA base pairs. We thus used two freely
available annotation programs (RNAView and MC-annotate 37, (see Methods) to calculate,
for each target and each 5º model, how many canonical Watson-Crick pairs (G-C and A-U)
and how many other “non-Watson Crick” hydrogen bond pairs 9 were present (Figure 7C-D;
Suppl. Table 5). As in 37, we used the intersection of the paired interactions reported by both
annotation tools.

RNAView and MC-annotate both found instances of all 12 combinations of orientations
between the Watson-Crick, Hoogsteen, and sugar “faces” of nucleotide bases 9 within the 5º
models (data not shown). Importantly, whenever the two annotation tools agreed that a base
pair was present within the 5º models, the identical base pairing was almost found within the
target (high sensitivity, as reported by PPV values in Figure 7B). In contrast, many pairings
found within the target fold were not detected in the 5º models (low specificity, as reported
by STY values in Figure 7B). Upon examining the annotation results in greater detail, we
observed that the two tools often found widely differing sets of hydrogen bonding
interactions within the 5º models. For instance, within the 5º models, almost 65% of the base
pairing identified by MC-annotate and almost 45% of base pairings identified by RNAView
were disregarded because they did not intersect (data not shown). Figure 7C-D demonstrates
one example where both annotation tools failed to agree on base pairings within a model,
even though the base atoms of the model were located very close to the base atoms of the
target (model and target colored magenta and grey, respectively). This failure to detect
hydrogen bonding within helical regions of the 5º models was a common occurrence, despite
the fact that the RMSD of the base atoms within such regions was typically low (1.5Å on
average; Figure 7A, 3rd row). Thus while the criteria commonly employed by tools such as
RNAView and MC-annotate may be reliable for detecting hydrogen bonding patterns in
crystal structures, the same criteria may also fail to detect pairings in models that contain
bases with close to, but not ideal, geometry.

Despite the large number of false negatives within the 5º models, we nevertheless calculated
the deformation index (DI) for all twenty targets. The DI is a measure that accounts for both
base pairing interactions and RMSD (defined as √(PPV*STV)/RMSD 37). Over all twenty
targets, the average DI value was 2.6 (Figure 7B, last column). As a comparison, several of
the structures within the test-set (1KXK, 1XJR and 2QUS) were recently modeled using
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both MC-Fold and FARNA 38. Despite having poor RMSD overall (ranging from 9–15Å),
both the MC-Fold and FARNA models nevertheless had notably high specificity and
sensitivity values (PPV>0.8 and STY>0.6) 38. Thus DI values in these three modeling cases
were far higher than those reported here for the “lower-limit” models and ranged from
approximately 14–20.

DISCUSSION
In this study, we used a pseudo-torsional notation of the RNA backbone to generate six
filtered libraries of discrete fragments. We also presented a methodology for assembling the
individual filtered fragments into larger structures using each fragment’s pseudo-torsional
values as a guide. We found that accuracy in modeling individual nucleotides, dinucleotides,
and entire RNA folds consistently improved as the libraries grew in size and more
thoroughly covered pseudo-torsional space. The largest four libraries modeled most
individual nucleotides to within 0.5Å, reproduced all the previously described rotamer
suites, and built RNA folds with sub-atomic accuracy. Consequently, these libraries should
be useful for numerous modeling applications including de novo structural modeling,
structure analysis or crystallographic refinement.

LESSONS LEARNED FROM “LOWER-LIMIT” MODEL ASSEMBLY
Use of discrete libraries inherently limits modeling accuracy—Building all-atom
models of RNA folds using backbone RMSD as a guide is not an approach that can be
directly incorporated into modeling folds de novo. Nevertheless certain lessons can be
learned that are applicable to de novo modeling strategies. First, almost all RNA tertiary
modeling tools build models out of discrete pieces of RNA structure, most commonly either
RNA fragments 31 or cyclic nucleotides 29. However, the extent to which using different sets
of RNA pieces limits modeling accuracy is not tested explicitly. Twenty years ago, an early
test of nucleotide-based sampling determined that approximately 30 discrete conformations
could rebuild tRNA to an accuracy of 3.1Å 39; 40. This result is consistent with our finding
that the 60º library of 67 filtered fragments builds models with an accuracy of 2-3Å.
However, since this initial work 39, few or no tests have been performed to indicate the
range of modeling accuracy that can be expected from any given library of RNA
conformations.

The model building protocol we used here is guided by RMSD and lacks energetic terms.
Thus, we could assume that when models were poorly built, or had high RMSD to the target
fold, the errors were not due to scoring. Further, the libraries we tested were small and this
allowed us to use a model building protocol to perform exhaustive sampling at each point in
the assembly protocol (e.g. at each step of the assembly protocol, every fragment in the
library was tested and scored based on its RMSD to the target). Under these conditions, we
were able to directly study how library quality can affect modeling accuracy. While we
found that the use of discrete fragments during modeling especially limits accuracy when
libraries are small, we found that even the largest libraries we tested imposed some
limitations on modeling accuracy.

Filtered fragment libraries can build large and small folds with comparable
accuracy—Despite the limitations inherent in using discrete fragments, the RMSD based
building protocol showed that discrete libraries are capable of rebuilding both small and
large RNA folds with approximately equal accuracy. Our “lower-limit” protocol builds
models using an RMSD-based approach and thus eliminates any errors that might be
introduced by use of a scoring function. Thus, we conclude that if an appropriate library of
RNA conformations is used with near-perfect sampling, there should be no inherent
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difference in modeling large and small folds. In contrast, large RNA folds are often modeled
with far worse accuracy than small hairpins and folds in de novo modeling 31; 38. A similar
phenomenon is observed when building random models of RNA: the mean RMSD of a
random model has been shown to increase with RNA chain length 41. We were unable to use
our building protocol to directly test the accuracy of other published RNA fragment libraries
for building larger RNA folds. However, most of the fragment libraries currently in use are
quite large, and likely contain a large diversity of RNA conformations. Thus the difficulties
in de novo modeling of larger folds, as compared with smaller folds, likely results from
insufficiencies in either sampling or scoring and not the quality of the RNA fragment
libraries being used. With respect to sampling, we observed that, even when using RMSD to
the target as a guide to sample fragments, rebuilding larger RNA folds to the same modeling
accuracy as smaller RNA folds often required increased sampling. Small structural
differences in the fragments selected when building larger RNA folds may more easily
propagate through an entire structure, causing the models generated for larger RNA folds to
vary more widely in their overall backbone RMSDs. We conclude that a similar increased
sampling of larger RNA folds might also be necessary for accurately modeling large RNA
folds de novo.

The backbone conformations and base orientations of filtered library
fragments are linked—Perhaps the most striking result of this study was that we
observed a strong correlation between the backbone orientations of the library fragments and
their base orientations. The result that correct base orientation can be ascertained from
backbone coordinates is not new, but has also been observed during semi-automated
crystallographic model building using pseudo-torsions 23. Here we show that selecting a
library of fragments based on their backbone η and θ values and assembling these fragments
based on their backbone RMSD to a target fold can generate models that accurately
reproduce both the all-atom coordinates of individual nucleotides (Figure 3B) as well as
entire RNA folds (Figure 6–7; Suppl. Table 3).

The all-atom models built in this study were not sampled using a base-centric approach with
stringent hydrogen bonding criteria. As a result, the hydrogen bonding network analysis did
not detect all native base pairing interactions within the models (Figure 7C-D). However, we
found that weakening the structural constraints by introducing an increased kT value
produced models with higher quality backbones overall. Indeed, enforcing perfect base
planarity or strict hydrogen bonding at an early stage of modeling is likely to limit overall de
novo modeling accuracy. This may be especially true in cases where slight deviations from
strict hydrogen bonding criteria could result in the correct placement of the correlated
backbone atoms. Certainly at later stages of modeling, one would fix inaccuracies
introduced by using a discrete set of fragments and correct base placement to conform to
stricter hydrogen boding criteria.

Finally, we note that a correlation between base orientation and the η and θ backbone
torsions has been observed before 23; 33; 36. In contrast, a similar correlation between base
orientation and the standard six backbone torsions was not observed 33. Thus the strong
correlation we observe between correct backbone conformation and base orientation may be
a property unique to using pseudo-torsion based fragments.

ADVANTAGES OF USING PSEUDO-TORSION FRAGMENT LIBRARIES
Selecting libraries for modeling accuracy—One advantage of the methodology
presented here is that a library of appropriate size and structural resolution can be selected
for the modeling task at hand. Many classification schemes have produced small sets of less
than 100 RNA conformations 3; 8; 39; 42. Our results show that using rigid sets of this size
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should be appropriate for building RNA models in the range of 2-4 Å RMSD. For instance,
the 60º library developed in this work contains approximately 70 fragments and was able to
build models with accuracies of 2.5 to 4Å backbone RMSD. This result is consistent with
the 3.1Å accuracy noted for building tRNA with 30 discrete conformations 39; 40. However,
as illustrated by the work of K. Keating23, atomic-level accuracies (e.g. <1.5Å) may be
obtained from libraries of this size if a coordinate minimization step is included into the
building process.

In agreement with this idea, many all-atom structural modeling tools use large libraries of
RNA structural fragments that can contain hundreds or even thousands of
conformations 29; 31. However, our results suggest that 300 to 500 well-chosen fragments
are sufficient to build RNA models with accuracies of 1.5Å backbone RMSD or better. Thus
tools using libraries significantly larger than this could gain an increase in modeling speed
without making a large sacrifice in modeling accuracy by selecting an appropriately sized
fragment set.

Focused library sampling using pseudo-torsion based fragments—Several tools
for modeling RNA incorporate experimental data or secondary structure predictions 27; 30.
Such tools might enjoy an additional advantage by using pseudo-torsion filtered fragment
libraries. Nucleotides involved in helical regions, tetra-loops, pi loops and other diverse
structural motifs have been shown to have η and θ values within well-defined ranges 33; 36.
Thus, only the subset of library fragments within these pseudo-torsion ranges may need to
be sampled in order to model such regions. Such a strategy of focused sampling could bias
simulations towards favorable conformations while, at the same time, increasing
computational speed. While some tools, such as MC-SYM, currently catalog structural
pieces of RNA as belonging to particular structural motifs 29, the pseudo-torsion based
libraries we present here could extend this idea to the single nucleotide level.

Likewise, generating all-atom models of medium and large sized RNAs still remains a
computational challenge, in part due to limitations imposed by conformational sampling. As
a result, coarse-grained models are often first produced for larger RNAs and, if desired, all-
atom detail is added later in a separate prediction step using the coarse-grained backbone
trace as a guide 28. Fragment libraries have already been employed in generating all-atom
models from coarse-grained backbone traces with good success 28. However, the pseudo-
torsion based filtered fragment libraries are smaller in overall size relative to fragment
libraries and they provide the advantages of focused sampling based on structural motifs
mentioned above. Additionally, if the pseudo-torsions of a coarse-grained model can be
directly measured, then these values could be used to directly guide fragment selection. A
similar approach, in which pseudo-torsions are measured from an electron density backbone
trace and used to guide all-atom crystallographic model building, has recently been
published 23.

Rebuilding models with increased rotamericity—One final advantage of using the
pseudo-torsion libraries we present is that they were generated from the same high-quality
dataset, RNA05, that was originally used to determine the consensus set of rotamer suites 8.
As a result, crystallographic folds that contained poor suite conformations or overall poor
suite scores could be rebuilt using library fragments into almost identical folds with
improved scores. For example, two crystallographic folds in the rebuilding test set, 361D
and 1Z43, originally contained a large number of dinucleotide suites identified as outliers, or
non-rotameric (11/19 and 53/112 suites, respectively). When each of these folds was rebuilt
using the filtered fragments from the 5º library, the new models contained notably fewer
non-rotameric suites (3/19 and 4/112, respectively, for 361D and 1Z43). We thus anticipate
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that using the pseudo-torsional fragment libraries in crystallographic or de novo modeling
applications could improve the quality of the modeled backbone.

Finally, we note that the quality of the filtered fragment libraries we present here are
dependent on the quality of the initial dataset, RNA05, from which they were generated.
Thus as the quality of the dataset gets better, the quality of the fragment libraries will likely
also improve. A new dataset of high quality RNA structures, RNA09, has recently been
made available (http://kinemage.biochem.duke.edu/databases/rnadb.php) and it would be of
interest to compare fragment libraries generated from this dataset with those published here
using RNA05. Preliminary results suggest that libraries generated from the newer RNA09
dataset would be slightly larger, but largely overlap with the RNA05 libraries (Suppl. Fig 6).

COMPARISON OF PSEUDO-TORSION FRAGMENT LIBRARIES TO SEMI-AUTOMATED
MODEL BUILDING WITH CONSENSUS CONFORMERS

Importantly, the libraries we have presented are not the only approach to incorporating the
structural diversity of the consensus conformers into model building. For building RNA
folds de novo, the discrete sets presented in this work can be easily assembled and do not
require coordinate minimization. However, if a backbone trace has been already been
generated, the semi-automated approach of Keating and Pyle can use the consensus suites
and coordinate minimization to build an all-atom model23. For the one test case that
overlapped between the two methodologies (the guanine riboswitch), the accuracy between
the two methods appeared to be comparable (1.1Å backbone RMSD for the 5º library, as
reported in this work; most backbone atoms to within 0.9Å of their crystallographic
coordinates, as reported in 23). Thus both approaches appear suitable for rebuilding known
backbones, including rebuilding those backbones with increased rotamericity.

CONCLUSIONS
To summarize, we have presented six filtered libraries of pseudo-torsional fragments and
validated their ability to reproduce the structural features of RNA at the level of individual
nucleotides, dinucleotides, and in the building of entire RNA folds. Importantly, the
fragments are easy to assemble and can be classified, using their pseudo-torsions, into
helical and non-helical RNA conformations. Because we have shown the filtered fragment
libraries are capable of building high quality, all-atom models, we anticipate they should be
useful for a variety of modeling applications including de novo RNA structure prediction
and design, as well as in RNA structure analysis and refinement.

MATERIALS AND METHODS
Selection of RNA Structural Dataset

Filtered fragment libraries were generated by taking coordinates directly from the RNA
Database 2005 (RNA05, http://Kinemage.biochem.duke.edu/databases/rnadb.phb) 7. The
RNA05 dataset is hand-curated and consists of 171 RNA coordinate files (9482 nucleotides
total) of resolution ≤ 3.0 Ångstroms.

Application of Quality Filters
Prior to selection of fragments, quality filters were applied to each coordinate file in RNA05
on a nucleotide-by-nucleotide basis as follows. First, the tool PROBE 43 was used to check
each RNA structure for steric clashes by flagging nucleotides containing any single atom
with greater than 0.4 Ångstroms van der Waals radii overlap with any other atom. In order
to be as strict as possible, both intra- and inter- chain overlaps of >0.4Å were taken into
account. Nucleotides passing the steric clash quality filter were then subjected to a second
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round of quality filtering and excluded from consideration if any heavy-atom (backbone or
base) within the nucleotide contained a b-factor> 60. Finally, nucleotides containing
alternative conformations were excluded. Quality filtering removed 6018 nucleotides from
the starting dataset, leaving a total of 3464.

Preparation of RNA Structural Dataset
Only nucleotides containing a 2' hydroxyl and base identity of A, C, G, or U were
considered and modified bases were not used for this analysis. All non-RNA molecules,
waters, heteroatoms and duplicate copies of RNA had been already removed within the
previously published dataset. Hydrogens, which had previously been added to each
structure, were removed from the RNA05 dataset.

Measurement of Nucleotide Sugar Pucker and Pseudo-Torsions
Sugar pucker was determined for each RNA05 nucleotide by using a combination of two
separate criteria. First, the standard backbone torsion delta (C5’, C4’, C3’, O3’] was
calculated for each nucleotide using DANGLE 43. Next, the perpendicular distance between
the glycosidic bond of each nucleotide and the following phosphate was calculated using a
perl script (e.g. the base-phosphate perpendicular distance) 23; 44. Nucleotides were then
defined as having a C3’-endo sugar pucker if their delta values were 84º ± 30º and their
base-phosphate perpendicular values > 2.9 Ångstroms. Likewise, nucleotides were defined
to have C2’-endo sugar pucker if their delta values were 147º ± 30º and their base-phosphate
perpendicular distances were ≤ 2.9 Ångstroms. 838 RNA05 nucleotides had delta values or
base-phosphate perpendicular distances outside of these ranges and were discarded.

The backbone pseudo-torsions eta [η: C4’i-1, Pi, C4’i, Pi+1] and theta [θ: Pi, C4’i, Pi+1,
C4’i+1] were measured for each quality-filtered RNA05 nucleotide determined to have a
well-defined sugar pucker using the program DANGLE 43. Nucleotides at the beginning or
end of a structure, as well as nucleotides directly preceding or following a chain break, were
excluded from analysis because both pseudo-torsions could not be measured. Nucleotides
were also excluded from analysis if the nucleotide immediately preceding (used in defining
η) or following (used in defining θ) failed to meet all filtering criteria. In all, pseudo-
torsions were recorded for 1780 nucleotides (1562 and 218 for C3’-endo and C2’-endo,
respectively).

In developing a semi-automated approach for crystallographic model building23, a new
pseudo-torsional notation of C1’ -P and η’ /θ’ was introduced. While this new notation has
some advantages in generating all-atom detail from backbone traces of electron density,
defined structural motifs have not yet been correlated with η’ /θ’ values. In contrast,
structural motifs have been well characterized using the original η/ θ notation, allowing for
the possibility to bias library sampling towards desired motifs (see “Focused library
sampling” section above). Thus, in this work we have chosen to generate discrete fragment
sets using the original C4’-P and η/ θ notation.

Selection of Filtered Fragments
To create filtered fragment libraries, individual RNA05 nucleotides were selected based on
their measured pseudo-torsions as follows. First, 2-dimensional pseudo-torsional space was
partitioned uniformly at six varying degrees, 60º, 30º, 20º, 15º, 10º and 5º. The partitioning
was repeated independently for each C2’ and C3’-endo sugar pucker. Next, for each
partitioning, we calculated the η-θ values for the center of each (ηbin_center and θbin_center).
Finally, a perl script was used to search the list of quality-filtered RNA05 nucleotides for the
single instance of correct sugar pucker with pseudo-torsional values closest (as measured by
Euclidean distance, d) to the bin center. If the bin was empty and did not contain a quality
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filtered nucleotide, no fragment was added to the library. The Euclidean distance (d)
between the pseudo-torsion values of the bin center (ηbin_center, θbin_center) and the pseudo-
torsion values of every nucleotide within the bin (η, θ) was calculated as follows:

.

The crystallographic coordinates of each RNA05 nucleotide that best represented a pseudo-
torsional bin were recorded and included in the appropriate filtered fragment library. The
backbone coordinates defining the η and θ of the selected RNA05 nucleotides (grey atoms,
Fig. 1A) were also recorded and added to the library. Fragment bond lengths and angles
were assumed rigid and neither the backbone nor the glycosidic bond lengths or angles were
modified from those found in the original RNA05 nucleotide. The distribution of standard
torsions (α, β, γ, δ, ε, ζ and χ) for each of the six libraries mimicked that of the entire
RNA05 dataset (Suppl. Fig. 5).

Fragment Attachment
Two fragments (i and j) can be attached at a single phosphate using pseudo-torsions as
follows. First, the last three atoms involved in defining the θ pseudo-torsion of fragment i,
(C4’i, Pi+1, C4’i+1, Fig. 4A) are aligned to the first three atoms defining the η pseudo-torsion
of fragment j (C4’j-1, Pj, C4’j, Fig. 4A). This alignment will bring the phosphates Pi+1and Pj
into very close proximity. In order to ensure direct connectivity between the two fragments,
the coordinates of the phosphate atom of fragment j were then translated, if necessary, to
overlap exactly the coordinates of the phosphate of fragment i. To form a dinucleotide, all
overlapping and non-overlapping atoms involved in defining the pseudo-torsions of both
fragments can be removed (Fig. 4A). If attachment of additional fragments is desired, as is
the case when building an entire RNA fold, the atoms involved in defining the θ pseudo-
torsion of fragment j can be retained and used to guide the attachment of an additional
fragment to the end of a growing RNA chain. All alignments and translations were
performed using the Biopython SVDSuperimposer and all fragment backbone and base bond
lengths and angles remained fixed during fragment attachment (see also “RMSD
Calculations”).

Steric Exclusion Calculations
In order to build physically realistic dinucleotides and folds, excluded volume calculations
were performed after attaching one fragment to another. Attachments that resulted in steric
overlaps were rejected. For generation of dinucleotides, excluded volume calculations were
computed pair-wise over all atoms (backbone and base) between the two joined nucleotides
except the atoms directly connected by the intervening phosphate (e.g. the O3’ of the first
nucleotide with the O1P, O2P, and O5’ atoms of the 2nd nucleotide). For building of RNA
folds, excluded volume calculation were also performed pair-wise over all the atoms
(backbone and base) of nucleotides that “neighbored” the added fragment, where
neighboring nucleotides were defined to be those having a phosphate-phosphate distance to
the added fragment of less than 20Å.

For each set of atom pairs, the distance between the two atoms, in Ångstroms, was
compared to the sum of the van der Walls radii of the same two atoms. If the distance
between any two atoms was found to be less than their summed van der Waals radii, scaled
by 60%, then a steric overlap was considered to occur. The scaling of radii by 60% was used
to allow for the discrete nature of the fragments being assembled. The van der Waals radii
used for calculations were as follows: carbon, 1.7Å, oxygen, 1.52Å, phosphorous, 1.8Å and
nitrogen, 1.55Å.
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For building of dinucleotides, if a steric clash occurred due to the presence of a purine base,
the purine base was mutated in silico to a pyrimidine and the excluded volume calculations
were repeated to check whether the clash had been resolved. During the mutation process,
the glyscosidic bond angle of the base was left unchanged (see “Sequence Mutation
Protocol”) For rebuilding target RNA folds, the base of each fragment was computationally
mutated, if needed, to the sequence identical to the target fold being modeled prior to
excluded volume calculations.

Sequence Mutation Protocol
A reference file, consisting of a single representative set of atomic coordinates for each
RNA base type (1ET4.pdb: A203, G207, C211 and U215), was used to mutate a fragment
base to match any arbitrary target sequence. The mutation protocol left all fragment sugar
atoms fixed, but replaced the original fragment base coordinates with the desired mutant
base coordinates within the reference file as follows. First, BioPython’s SVD based
Superimposer (see “RMSD Calculations”) was used to align the reference base with the
fragment base using three of the four atoms involved in the chi torsion of each base: purine
[C1’, N9, C4] or pyrimidine [C1’,N1,C2]. Next, the reference base coordinates were
translated, if needed, such that the reference base N1/N9 atom coordinates exactly matched
those of the original fragment base N1/N9 atom coordinates. The old base coordinates were
then replaced with the reference base coordinates. The chi angles of reference bases attached
via the above method of superposition followed by translation were typically within 1
degree of those measured for the original fragment base.

RMSD Calculations
All superpositions and root mean squared deviation (RMSD) calculations were calculated
using the Bio.SVDSuperimposer module of BioPython, which implements a singular value
decomposition superposition algorithm based on 45. Backbone RMSD values were
calculated over all heavy-atoms in the sugar phosphate backbone (e.g. P, O1P, O2P, O5’,
C5’, C4’, O4’, C3’, O3’, C2’, O2’, C1’). All-atom RMSD values were calculated (after
mutation of fragment bases to match target structure, as necessary) over all non-heavy
atoms.

Model Building Protocol
We developed a model building protocol that aims to rebuild a “target” RNA fold with the
lowest possible backbone root mean squared deviation (RMSD). The protocol uses filtered
library fragments and builds a model of a target fold in a step-wise fashion. The first
fragment in the model is the single fragment within a library having the smallest heavy-atom
backbone RMSD to the first nucleotide in the target fold. The base of this first fragment is
computationally mutated to match the target sequence (see “Sequence Mutation Protocol”)
and all atoms defining the fragment’s η pseudo-torsion are then removed (grey atoms in
Figure 1A). To grow the chain by one nucleotide, every fragment in the library is attached to
the first, one at a time in a randomly selected order. After attachment, the backbone RMSD
of the entire chain built thus far to the target fold is calculated and compared with the chain
backbone RMSD calculated for the last attached fragment. If the backbone RMSD of the
most recently attached fragment is lower than previously observed, or if the score passes the
Metropolis criterion (Paccept = min (1,e−ΔRMSD/KT), the fragment nucleotide base was
mutated to match the target sequence (see “Sequence Mutation Protocol) and checked for
steric clashes with other atoms of growing chain (see “Steric Exclusion Calculations”). If the
fragment is found to be clash-free, its chain RMSD value is recorded as the new best
observed so far and used for comparison with later fragments.
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Chain growth continued in this manner until all but the last nucleotide in the target RNA
fold had been modeled. The last fragment, as with the first fragment, is selected without the
Monte Carlo criterion (e.g. the single clash-free fragment with lowest backbone RMSD was
chosen), and the atoms defining the θ pseudo-torsion of the last added central nucleotide
(grey atoms, Figure 1A) are removed. Occasionally, after attempting to attach all fragments
in a library to the end of a growing chain, no clash-free fragment was found. In such cases,
chain growth was stopped, and a new Monte Carlo chain building simulation was begun.
This phenomenon was initially observed when we attempted to build models without using
the Monte Carlo criterion (e.g. at each chain growth step, the clash-free fragment with best
score was selected deterministically). For each target fold, we used this protocol to build 500
model folds using a KT=0.001 and to build 500 model folds using a KT=0.005. Each Monte
Carlo simulation was performed on a single computing node of the Yale computing cluster,
which had eight 2.66 GHz Intel Xenon cores and 16 GB RAM. The computational time
required to build each target fold depended on the size of the target, as well as the size of the
library (Suppl. Fig. 7). Small folds (<40 NTs) were typically built in less than fifteen
minutes while medium folds (40–80 NTs) were built in fifteen to forty-five minutes. In
contrast, large structures (>80 NTs) were built in one to three hours (Suppl. Fig. 7).

Model building test set
To test model building accuracy using each filtered fragment library, twenty RNA
crystallographic structures were selected (Figures 6-7). Each of the twenty structures was
contiguous over its entire length (e.g. structures with chain breaks were not considered) and
the mean structural resolution over all structures was 2.3Å (resolutions varied from 1.0 to
3.0Å). Each fold was classified based on its chain length as either small (19 to 35
nucleotides), medium (46-78 nucleotides) or large (100 nucleotides or more).

The structures within the test-set were diverse and included the tRNA fold, aptamers,
riboswitches, and the P4-P6 domain of the group I intron. The majority of test-set were
either solved post-2005 and had no comparable representative within the RNA05 dataset
(Suppl. Table 1; 3DIL, 2GDI, 3E5C, 2QWY, 3GCA, 2ANN, 1ZCI, and 361D) or did not
contribute fragments to any of the six libraries (Suppl. Table 1; 1OOA, 1XJR, and 1KXK).
During analysis of the test-set (Figures 5-7), no significant differences were found between
the modeling accuracy of the structures that had originally been contained within RNA05
and those that were unique.

Evaluation of modeled suite conformations
We examined twenty targets that contained a total of 1207 suites. For each target, the
percentage of suites that were modeled correctly was determined as follows. First, the
program Suitename8 was used to classify all conformers within a target and model. The
classifications were then compared on a suite-by-suite basis. If a corresponding nucleotide
position was classified as having the same suite in both the target and model, then it was
labeled as “identical”. Corresponding nucleotide positions classified as having helical (1a)
or helical-like (1m, 1L, &a, 1c or 1f) conformers in both the target and model were labeled
as “near-identical”. Nucleotides that Suitename triaged (106 suites over all twenty targets) or
determined to be outliers (135 suites over all twenty targets) were disregarded.

Evaluation of Base Pairing
The RNA interaction network fidelity between models and target folds was calculated using
two freely available annotation tools from MC-Pipeline
http://www.major.iric.ca/MC-Pipeline/): RNAView and MC-SYM 37; 38. For both the model
and the target structure, the network fidelity calculation was calculated by determining the
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intersection of the base pairing types detailed in 9. Stacking was not considered in the
network fidelity calculation.

Availability
All six filtered fragment libraries, as well as code to build dinucleotides, are freely available
at http://www.pylelab.org/software/index.html.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We validate six libraries of conformations for use in RNA modeling

• Each library models individual RNA nucleotides to within 1Å

• Library fragments can be assembled into dinucleotides that are rotameric

• Some libraries can model RNA structure with atomic-level accuracy (<1.5Å)

• Libraries are made available for RNA structural modeling, analysis, or
refinement
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Figure 1. Using pseudo-torsions to reduce RNA backbone dimensionality
(A) A nucleotide, with its six standard backbone torsions labeled, is depicted in black stick
atoms. A suite, which spans from sugar to sugar and comprises 7 torsions is also denoted.
Atoms defined to be part of a filtered fragment, which include the O3’ , C3’ and C4’ atoms
of the preceding nucleotide and the P, O5’, C5’ and C4’ atoms of the following nucleotide,
are also shown in stick. (B) Two pseudo-torsions (black arrows) per filtered fragment are
created by forming pseudo-bonds between consecutive C4' and phosphorus atoms along the
RNA backbone (black lines and spheres, respectively). The two resulting pseudo-torsions
are named eta, η [C4'i-1,Pi,C4'i,Pi+1] and theta, θ, [Pi,C4'i,Pi+1,C4'i+1].
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Figure 2. Using pseudo-torsions to generate filtered fragment libraries
(A) Pseudo-torsions were measured for a dataset of quality filtered RNA nucleotides (see
Methods) and plotted in a Ramachandran-like manner. Pseudo-torsions are shown for C3’-
endo (A, top) and C2-endo (A, bottom) nucleotides separately. Horizontal and vertical grey
bars depict ranges of eta (150<η<190) and theta (190<θ<260) associated with nucleotides in
a helical conformation. Clusters of nucleotides previously associated with kink-turn and π-
turn motifs, asymmetrical internal loops, or S1 and S2 motifs are denoted by I, II, and III,
respectively (A, bottom)29. The cluster of nucleotides denoted as IV includes the 5’-halves
of adenosine platforms as well as the second position of π-turns and Ω-turns (A, bottom)29.
(B-D) Filtered fragment libraries were generated by binning pseudo-torsional space,
separated by sugar pucker, at varying degrees and selecting the single RNA extended
nucleotide with pseudo-torsions closest to the center of each bin. Construction of the 60º (B,
blue dots), 30º (C, green dots) and 10º (D, brown dots) libraries are shown. (E) Example
C3’-endo fragment representatives, taken from the 10º library. All fragments have a helical
η torsion, but differ in whether their θ torsion is helical or non-helical. Note the base
placement of the central nucleotide is often similar for all fragments shown, regardless of
pseudo-torsions. All atoms required to define each fragment’s pseudo-torsions, are depicted
in grey stick form and the C4’ and P atoms defining the fragment pseudo-bonds are shown
as spheres. (F) The total size of each of the six libraries created by pseudo-torsional binning,
as well as the relative number of fragments helical in ηor θ are given. For reference, the
number of pseudo-torsional bins created by each grid is also given.
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Figure 3. Coverage of individual RNA05 nucleotides by pseudo-torsional fragment libraries
(A) The backbone atoms of 8,466 individual RNA05 nucleotides were aligned with the
backbone atoms of every filtered fragment within a library and the fragment with the lowest
backbone RMSD was noted. The histograms show the distribution of backbone RMSD
values determined between the library fragments and each of the 8,466 nucleotides and the
insets show the number of RNA05 nucleotides that had a filtered library fragment with
backbone RMSD of 0.5 Å or less. RNA05 nucleotides that were themselves members of the
fragment library, and thus had 0 Å backbone RMSD, are shown in the inset in black. Results
for each of six libraries are color coded as follows: 60º (blue), 30º (green), 20º (yellow), 15º
(orange), 10º (brown) and 5º (magenta) (B) All heavy atoms of 8,466 individual RNA05
nucleotides were aligned with all heavy atoms of every fragment within a library and the
filtered fragment with the lowest all-atom RMSD was noted. If needed, the base of each
filtered fragment was computationally mutated to match that of the RNA05 nucleotide prior
to the all-atom alignment. The histograms show the distribution of all-atom RMSD values
determined between the library of filtered fragments and each of the 8,466 nucleotides. The
insets show the number of RNA05 nucleotides that had a library fragment with an all-atom
RMSD of 0.5 Å or less. RNA05 nucleotides that were themselves members of the fragment
library, and thus had 0 Å backbone RMSD, are shown in the inset in black. Libraries are
color-coded as in (A).
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Figure 4. Assembly of pseudo-torsional fragments into dinucleotides
(A) The nucleotides (black atoms) of any two filtered fragments can be connected into
dinucleotides by using the extended pseudo-torsional atoms (grey atoms) to guide assembly
by orienting one nucleotide relative to another (A, top). The last three atoms involved in the
θ torsion of the first fragment [C4 i, Pi+1, C4 i+1] are aligned with the first three atoms
involved in the torsion of the second fragment [C4’ j-1, Pj, C4 j] (A, middle). To connect the
two fragments at the adjoining phosphate, a small translation was performed such that the
overlapping phosphate atoms of the two fragments had identical coordinates. After
attachment, the overlapping atoms used in the alignment (grey atoms) are removed and
discarded. The connectivity of a dinucleotide can be represented in shorthand by the
combination of θ-ηtorsions formed (A, bottom). If a longer stretch of RNA is desired, the
last three extended atoms of the end fragment can be retained and used to add an additional
fragment. (B-C) The frequency of θ- η torsions within two-nucleotides stretches of the
RNA05 dataset (B) and the frequency of θ- η torsions within in silico dinucleotides
assembled from the 10º library (C) are shown, color coded to the scales, in (B) and (C),
respectively. Dinucleotides from the 10º library determined to have steric clashes via
overlap of van der Waals radii (scaled by 60%, see Methods) are excluded from the plots in
D. (E) For each filtered fragment library (column 1), the total number of dinucleotides
generated (column 2), the percentage of dinucleotides determined to be free of serious
atomic overlaps (column 3) and the percentage of dinucleotides identified by Suitename as a
rotameric suite (column 4) are given. The total number, of out 54, of suites identified within
the dinucleotides generated from each library (column 5) and the most frequently identified
suites (column 6) are also given.
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Figure 5. Assembly of pseudo-torsional filtered fragments into RNA folds
(A) The distribution of backbone RMSD values observed for 1000 models assembled from
each of six filtered fragment libraries are shown the four RNA target folds. The folds shown
range in size from 27 to 158 nucleotides and the distributions are color coded as follows:
60º, blue, 30º, green, 20º, yellow, 15º, orange, 10º, brown, and 5º, magenta. (B-F) The native
fold for each of the four targets (B, rainbow coloring), as well as for the best model observed
for each target from the 60º (C, blue), 30º (D, green), 15º (E, orange) and 5º (F, magenta)
libraries, are shown in cartoon format. Backbone RMSD values for each model to the targets
are given in Figure 6 and all-atom RMSD values are given in Figure 7 and Supplementary
Table 3.
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Figure 6. Estimate of the backbone model quality for six pseudo-torsional filtered fragment
libraries
(A) Twenty RNA folds (column 1; PDB identifier column 4) of varying length (columns
2-3) were modeled using one of six filtered fragment libraries (columns 5-10). For each fold,
1000 models were generated from each filtered fragment library by an RMSD guided Monte
Carlo building protocol (see Methods) and the model with the best backbone RMSD is
reported in columns 5-10. The last four rows give the mean backbone RMSD for models
assembled by each filtered fragment library for the twenty targets grouped by size, as well as
averaged over all 20 targets independent of size. (B) The relationship between library size
and model quality as given in (A) is plotted. Average backbone RMSD values for models
generated from each library are plotted separately into small (B, circles), medium (B,
squares) and large (B, diamonds) folds. For consistency with other Figures, each of the six
libraries are also coded: 60º, blue, 30º, green, 20º, yellow, 15º, orange, 10º, brown, and 5º,
magenta. (C) The backbone quality of the best model generated from each library was
evaluated based on variety of other structural metrics, including the overall suiteness score,
as given by suitename (C, 1st row) and the total number of nucleotides identified by
suitename as helical (C, 2nd row). The comparable value of each structural metric is given
for the 20 crystallographic targets in the last column. The backbone RMSD of helical (suite
1a) and non-helical nucleotides is given in the 3rd and 4th rows, respectively.
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Figure 7. Estimate of the base model quality for six pseudo-torsional filtered fragment libraries:
All-atom RMSD and hydrogen bond network fidelity
(A) The average all-atom RMSD over the best twenty models generated from each library is
given in the 1st row. The average all-atom RMSD values, after finding the optimal alignment
between each model and target based on backbone atoms, is given separately for helical (2nd

row) and non-helical (4th row) nucleotides. The average all-atom RMSD values over only
base atoms is given in the 3rd and 5th rows for helical and non-helical nucleotides,
respectively. The last row gives the percent of all nucleotides within the models determined
to have chi torsions within 20º of their targets. (B) Interaction network fidelity (INF)
analysis was performed between each of the best 5º models of the twenty RNA test folds.
Results for specificity, PPV=tp/(tp+fp), and sensitivity, STY=tp/(tp+fn), are given in the 2nd

and 3rd columns, respectively. The last column reports the deformation index, or DI=RMSD/
INF. Interactions were calculated as the intersection of pairings detected by RNAView and
MC-annotate and results were averaged over all folds based on their size (e.g. small,
medium, or large). (C) The crystal structure of test fold 3DW5 (grey) is shown aligned with
the backbone of its best 5º model (magenta). All twenty-six nucleotides are shown within
the three panels. (D) The all-atom RMSD, as well as the RMSD of the helical and non-
helical base atoms, of 3DW5 aligned to its best 5º model are given in rows 1-3 of the table.
The box regions denote the interaction network fidelity (INF) analysis. Base pairs are
denoted using numbering identical to panel (C).
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