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Abstract
We analyze a closed loop neuromechanical model of locomotor rhythm generation. The model is
composed of a spinal central pattern generator (CPG) and a single-joint limb, with CPG outputs
projecting via motoneurons to muscles that control the limb and afferent signals from the muscles
feeding back to the CPG. In a preceding companion paper, we analyzed how the model generates
oscillations in the presence or absence of feedback, identified curves in a phase plane associated
with the limb that signify where feedback levels induce phase transitions within the CPG, and
explained how increasing feedback strength restores oscillations in a model representation of
spinal cord injury; from these steps, we derived insights about features of locomotor rhythms in
several scenarios and made predictions about rhythm responses to various perturbations. In this
paper, we exploit our analytical observations to construct a reduced model that retains important
characteristics from the original system. We prove the existence of an oscillatory solution to the
reduced model using a novel version of a Melnikov function, adapted for discontinuous systems
and also comment on the uniqueness and stability of this solution. Our analysis yields a deeper
understanding of how the model must be tuned to generate oscillations and how the details of the
limb dynamics shape overall model behavior. In particular, we explain how, due to the feedback
signals in the model, changes in the strength of a tonic supra-spinal drive to the CPG yield
asymmetric alterations in the durations of different locomotor phases, despite symmetry within the
CPG itself.

1. Introduction
Animals’ interactions with the environment include various repetitive movements, such as
breathing, walking, swimming, and many others, that are produced by the coordinated
rhythmic activities of neuronal networks called central pattern generators (CPGs). Brown’s
bipartite, or half-center, model of the spinal locomotor CPG [1, 2], refined by Lundberg [3,
4], provided an important conceptual basis for the neural control of locomotion. According
to this concept, a rhythmic pattern of alternating flexor and extensor activity is produced by
two excitatory neural populations that drive flexor and extensor motoneurons, respectively,
and inhibit each other via inhibitory interneurons. Experimental studies of fictive
locomotion using decerbrate, immobilized cat preparations [5, 6] and recent investigations
of deletions, or spontaneous errors, during fictive locomotion [5, 7, 8, 9] have provided
evidence for a symmetrical, half-center organization of the spinal locomotor CPG. The
intrinsic neural mechanisms involved in the generation of locomotor oscillations remain
unknown, however.
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A recent neuromechanical locomotor model developed by Markin et al. [10] includes a
relatively simple, symmetric two-level spinal central pattern generator that drives the
activity of a single-joint limb. Given a sufficiently strong, constant drive, the CPG oscillates
and controls two antagonistic muscles, whose anti-phase contractions control the limb and
provide excitatory feedback to the CPG. This closed-loop system exhibits several important
features of mammalian locomotion, including the ability to change oscillation frequency
with changes in drive. Importantly, the resulting speed increase occurs through a decrease in
the duration of the stance phase, when the limb is in contact with the ground, and is
independent of the swing phase, when the limb moves without ground contact [11, 12]. This
asymmetric response contrasts with fictive locomotion results, which can involve either a
dominance of the flexor or extensor phase or neither [6], and indeed, the speed of model
oscillations when feedback is removed changes symmetrically, with equal changes in
extensor and flexor components with changes in drive [10, 7, 13]. A major goal of this paper
is to analyze how the feedback components of the closed-loop neuromechanical model lead
to an asymmetric frequency response.

In the companion article to this one, we investigated the mechanisms underlying oscillatory
behavior within the model CPG both in the presence and in the absence of feedback [13].
Without feedback, a slow-fast decomposition analysis revealed that the intrinsic structure of
a set of rhythm generator (RG) neurons within the CPG allows oscillations to occur through
RG escape for a sufficiently large supra-spinal drive. When feedback is present, however,
oscillations occur through a different mechanism, namely the escape of CPG inhibitory
interneurons (In) from the silent phase, which happens when feedback drives In voltage
above a certain threshold. We showed that this threshold condition is met when a particular
relationship between limb angle and velocity, which is independent of drive, is realized, and
this observation allowed us to identify transition curves in limb phase space that indicate
where switches between the extensor and flexor activities produced by the CPG will occur.
In addition, we explained how oscillations fail in a simulation of spinal cord injury (SCI)
achieved by removal of supra-spinal drive and how increasing the feedback strength restores
oscillations.

Equipped with insights from this analysis, in this paper we propose a reduced model that
maintains key model features and study conditions for the existence of stable periodic orbits
in the reduced model setting (Sections 2, 3). To complete our existence argument, we use a
novel version of the Melnikov function, adapted for discontinuous systems. Our analytical
steps highlight the mechanism by which the oscillation can be lost if drive is reduced too far
and also reveal the presence of a strong contraction in the phase space associated with the
limb segment, which occurs during a particular phase of each locomotor oscillation. We go
on to explain how this contraction plays a key role in the asymmetric response to drive in the
closed-loop system and why other phases do not significantly contribute to this response
(Section 4).

2. Reduced model preserves phase asymmetry and exhibits a (unique)
periodic solution
2.1. Overview of original model features

In the neuromechanical locomotion model proposed by Markin et al. [10], given sufficient
supra-spinal drive, a collection of neurons (collectively termed the central pattern generator,
or CPG) coordinate their activity to send alternating signals to corresponding antagonistic
muscles, which control a single-joint limb and provide afferent feedback signals to the CPG.
In this CPG, flexor and extensor rhythm generator neurons RG - F and RG - E indirectly
inhibit one another by exciting partner interneurons In - F and In - E, respectively. The
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alternating outputs from the rhythm generator are shaped by pattern formation neurons PF -
F and PF - E, which project to a set of motoneurons Mn - F and Mn - E. The motoneurons
activate flexor and extensor muscles, controlling the limb activity. These neurons are
modeled either by a two dimensional simplified conductance-based system of differential
equations in Vi and hi, where Vi denotes the voltage drop across the membrane (voltage) and
hi represents the slow inactivation of the persistent sodium current of neuron i, or by a one
dimensional conductance-based differential equation in Vi alone. Inputs to each neuron are
synaptic, consisting of inhibitory and excitatory interactions between neurons, a constant
excitatory supra-spinal drive d that projects to the RGs and PFs, and continuously time-
varying excitatory muscle feedback signals to the RGs, Ins, and PFs. We use the notation
FBk to refer to the time-dependent total summed feedback to neuron k. For each neuron, we
transform the voltage V into an output between 0 and 1, using the nonlinear transformation

where we use V1/2 = −30, mV, k = 3 mV for Mn and k = 8 mV for all other neurons, and Vth
= −50 mV. See [13] for additional function and parameter value specifications.

The limb motion can be described by a second order ordinary differential equation or
equivalently by a system of two first order equations

(1)

where q is the angle the limb makes with the horizontal and v is its angular velocity. The
forces driving the limb depend on gravity, muscle length and velocity, ground contact, and
the output of flexor and extensor motoneurons Mn - F and Mn - E. To model the interaction
with the ground, MGR(q) = MGRmaxcos(q) is applied only during the stance phase, when the
limb is swinging counterclockwise (v > 0), and is set to zero during the swing phase, when
the limb swings in the clockwise direction (v < 0).

Length- and force-dependent feedback from the muscles modify the CPG output to
reproduce the experimental result that an increase in locomotor speed occurs through a
decrease in stance duration, at a relatively constant swing phase duration (see [13], Figure
3). The companion paper to this one [13] provides a thorough description of the model.

As we showed previously [13], depending on whether or not feedback is present, the model
CPG can exhibit half-center oscillations through different escape mechanisms that can be
understood in terms of a separation of timescales and the consideration of nullclines for
components of the CPG. We would now like to characterize the conditions under which
stable periodic oscillations can occur in the presence of feedback as well as the dynamic
mechanisms that shape these oscillations, which will be critical in understanding the
asymmetric response to drive.

2.2. Rapid transitions can be used to define four locomotor phases
We can visualize behavior of the model limb, governed by equation (1), in a phase space
where limb velocity is plotted against angle. A locomotor cycle corresponds to a trajectory
moving clockwise in (q, q̇ = v) phase space. Positive velocity, leading to an increase in q,
corresponds to periods when the ground contact force is present, which is denoted as the
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stance phase. A rapid change in which side of the CPG is dominant, and hence in Mn
activity, translates to a rapid change in the right hand side of equation (1), based on the force
terms that depend on the motoneuron outputs. Eventually, such a change can cause the
velocity of the limb to change sign, and in the model the ground reaction force
instantaneously activates/deactivates when this happens, to simulate the onset/offset of
ground contact.

Changes in CPG dominance and in ground reaction force partition limb motion into four
distinct phases, such that within each phase, the limb behaves in a continuous manner, and at
each transition, the limb acceleration is discontinuous. We denote each of the four phases by
their dominant muscle (flexor or extensor), and the presence/absence of the ground reaction
force (stance/swing) to obtain the notation eStance, fStance, fSwing, and eSwing. The
eStance phase is characterized by an active Mn - E and positive limb velocity, hence the
additional force from ground contact is present. This phase begins when the limb trajectory
crosses from below to above the q-axis and is terminated when RG - F turns on. As
described in [13], Section 3.3, we can define a curve in the limb phase plane such that when
the limb trajectory hits this curve, the extensor component of the CPG becomes inactive and
the flexor component activates. This definition can be made because the transition within the
CPG occurs through an escape of In - F from its silent phase, causing it to shut down RG - E
and In - E and hence allowing RG - F to activate. This escape occurs when the feedback to
In - F reaches a critical value FBcrit. Because the feedback signals to In - F while it is silent
depend only on the (q, v) coordinates of the limb, the equation FBIn–F = FBcrit defines a
transition curve, which we call the TTC for sTance Transition Curve, in the (q, v) phase
plane. Thus, the duration of the eStance phase depends on how quickly the feedback to In -
F reaches FBcrit, or how quickly the TTC is reached. The fStance phase is characterized by
an active Mn - F and positive limb velocity, so again, the ground reaction force is present
here. This phase begins when RG - F becomes active at the TTC and ends when the limb
trajectory crosses the q-axis from above to below. The fSwing phase is characterized by an
active Mn - F and negative limb velocity, so the ground reaction force is absent. This phase
begins when the limb trajectory crosses from above to below the q-axis and ends when RG -
E turns on. This transition occurs at another curve in the (q, v) plane, the sWing Transition
Curve or WTC, which is defined analogously to the TTC, using the feedback to In - E. Thus,
the duration of fSwing depends simply on how long it takes the feedback to In - E to reach
FBcrit. The final phase, eSwing, is characterized by an active Mn - E and negative limb
velocity, again with no ground strike force present. This phase begins when RG - E becomes
active at the WTC and ends when the trajectory crosses from below to above the q-axis.

In Figure 1, we vary the drive and mark the onset of each of the phases in (q, v) space.
Green circles mark the onset of fStance, magenta plus signs the onset of fSwing, black dots
the onset of eSwing, and red stars the onset of eStance. The onset of fStance and eSwing are
slightly delayed relative to the transition curves, as explained in the Appendix of the
previous paper [13]. Note that the amplitude of the orbit increases as drive is increased,
despite the fact that the step duration decreases.

2.3. Reduced model
Now that we have described the phases involved in each oscillation cycle, we would like to
establish conditions under which such oscillations occur and are stable. Indeed, model
simulations suggest that the limb quickly settles to a pattern that appears stable under
perturbations. We next undertake a mathematical analysis of the existence of this solution,
with additional comments on its uniqueness and stability. Constructing a mathematical proof
of the existence of the solution, while somewhat technically involved, can provide a
practical understanding of what dynamic features contribute to the emergence of the rhythm,
while considering the uniqueness and stability of the solution gives information about
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whether other rhythms might co-exist with expected locomotor oscillations and how the
oscillation will respond to perturbations, including variations in drive strength. In fact, the
complicated dynamics present in the full model equation (1) prohibits us from using
dynamical systems techniques to analytically establish such results about this system, so we
first implement certain simplifications to the model based on our earlier observations in
[13]. We are able to construct an existence argument, which is mostly analytical but also
relies on a few numerical observations, for a periodic oscillatory solution of the resulting
reduced model. This argument is itself of mathematical interest, in that it requires the
adaptation of Melnikov theory for a discontinuous system.

First, we replace all inhibitory output terms in the model with a multiple of a Heaviside step
function,

(2)

The factor 0.3944 was determined numerically from the original system by computing the
time-average of the f(V) values over all inhibitory neurons and using the obtained value for
f(V) in the equations for inhibitory synaptic currents. Second, we include sensory feedback
only to In. Under these changes, the input to RG is completely determined; drive, as always,
is a constant, and each RG neuron either receives inhibition or does not, depending on the
state of the opposing In. Thus, unlike the full model in which the time-dependent inputs
move the nullclines of each RG around in its two-dimensional phase space, the nullclines for
each RG are now fixed in phase space except for abrupt jumps that occur when inhibition
turns on or off. Maintaining the feedback to the In preserves the escape transition
mechanism discussed in [13], provided that the parameter that scales the drive to PF is
slightly reduced (to prevent these neurons from becoming active independently from RG for
large drives). Finally, we alter the outputs of the motoneurons so that for a fixed drive, they
are of a constant value, namely the time-averaged motoneuron output from the full model
oscillation, within each phase. We denote these constant values by meSt, mfSt, mfSw, and
meSw, respectively. Although we do not explicitly include it in our notation, these values
increase with drive strength, reflecting the fact that in the full model, RG activation
increases with drive, leading to a larger motoneuron output.

By fixing the motoneuron outputs, the right hand side of equation (1) is completely
determined, and thus, from an initial condition, the position of the limb can be obtained at
any time. Figure 2 shows a comparison of motoneuron output for the original and reduced
models for drive strength d = 1.4.

We call the model that results from these alterations the reduced model and note that it
preserves the important phase asymmetry feature seen in the original model (Figure 3). For
each fixed drive, the limb dynamics of the reduced model is governed by four continuous
subsystems, one per phase,

(3)

where we recall that MGRmax denotes the amplitude of the moment of the ground reaction
force, MGR(q).
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We now introduce notation to encode the discontinuities in system (3). Define

(4)

(5)

and

(6)

With these definitions, we will use the shorthand

(7)

to denote the drive-dependent system of equations in (3). The brackets indicate that the
function/constant within takes a value that depends on the limb’s location in phase space.
When we work within a certain phase, however, we will specify those terms explicitly for
clarity.

A significant amount of notation has now been introduced, and to help minimize confusion,
we conclude this section by providing a summary of terms that are used in this paper, in
Table 1.

3. Oscillations in the reduced model
3.1. Oscillations in the CPG component

In our previous paper, we showed that in the absence of feedback, switching between flexor
and extensor activation within the CPG occurs through the escape of the suppressed RG. In
contrast, when feedback is present, each dominance switch is initiated when excitatory
feedback sufficiently increases the voltage of the silent In so that it can activate by escape
and shut down the active RG on the opposite side of the CPG [13]. For our reduced model to
be consistent with the assumptions made in defining it, it is important that the transitions
still occur through In escape, so we next verify that this is the case. Given that the system is
in a state with one side active and the other suppressed, we first determine whether or not
the silent RG could escape and initiate a phase transition. We can apply the approach used
without feedback in [13], Section 3.2; however, in the reduced model, inhibition from the
active In takes the same value regardless of drive. Thus, in this case, there exists a unique
drive value that causes the V and h-nullclines for the inhibited RG to intersect precisely at
the left knee of the V -nullcline. For drive values smaller than this value, the intersection
point lies on the left branch, and an escape transition initiated by the RG is not possible.
Therefore, if we restrict our drive set to drives below this level, the transitions for the
reduced system cannot occur through an RG mechanism, and are guaranteed to occur via In
escape. As we did in [13], we find an explicit equation hc(V, d) for the RG V -nullcline
inhibited with the strength indicated in equation (2), and we solve hc(V, d) = h∞(V) to find a
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drive-dependent expression for the voltage of the silent critical point, Vip(d). Separately, we

calculate the drive-dependent voltage of the left knee, which satisfies ,
where ′ denotes differentiation with respect to V. We will denote this voltage as Vlk(d).
Then, the drive that satisfies Vip(d) = Vlk(d) is the unique value where the left knee
intersects the sigmoid. This value exceeds the largest drive value considered for the original
model, which is the range of drives that we also use for our reduced model.

Next, it is easy to see that the transition cannot occur via RG release, in which the active RG
reaches the right knee of its V-nullcline. Indeed, in the reduced model, the active RG
receives no inhibition or feedback, and these conditions cause it to have a stable critical
point on the right branch of its V-nullcline, preventing release. In theory, the active In could
release the silent neurons and cause a transition, but this mechanism was never observed in
the full model, and the input from RG to In and feedback strength are similar in the reduced
model, again preventing this mechanism from arising. Thus, in the reduced model, the CPG
switch always occurs through the In escape mechanism.

3.2. Existence and stability of a periodic solution for the reduced model
In this subsection, we give a dynamical systems argument to explain the mechanisms
through which the existence of a periodic solution comes about in the reduced model, if the
supra-spinal drive is sufficiently large. We will consider what happens for smaller drives in
Section 4. From a mathematical point of view, rigorously establishing existence and stability
of physically observed solutions is an important check of the validity of a model and may
contribute to an understanding of the constraints on model parameters needed to maintain
this validity. Moreover, as discussed earlier, these steps will allow us to better understand
how oscillations may be altered or even lost under perturbations such as changes in drive
strength and will also yield insights that will help us to explain the asymmetric phase
response to changes in drive, as presented in Section 4.

Our existence argument is based on finding certain constant moments of the muscle forces
for which the reduced model equation supports a certain special closed orbit, then perturbing
the muscle moments away from these values, back toward their time courses in the true
reduced model (7), and showing that the closed orbit breaks in a way that generates a
periodic solution. The latter step uses a dynamical systems technique known as Melnikov
theory. We must adapt this theory in a novel way, however, to handle the discontinuity
present in model system (7). The use of Melnikov theory requires that certain assumptions
hold. We will first review these assumptions and then show that system (7) can be molded to
fit them.

Let us assume that x = (q, v) satisfies a system of equations of the form ẋ = f(x) + εg(x, t),
where f, g are continuous functions and g is θ-periodic, such that when ε = 0, a homoclinic
orbit γ0 of this system originates from a saddle point x0 = (q0, v0). Denote the unstable
manifold of x0 as Wu(x0) = {p ∈ D| limt⃗ −∞ p·t = x0} and the stable manifold as Ws(x0) = {p
∈ D| limt⃗ +∞ p·t = x0}, where D = {(q, v)|q ≥ q0}. By this choice of D, we select the
manifold branches that lie in a particular half-plane relative to the critical point (later, it will
become clear that this half-plane is the domain we care about for our system). Assume that
γ0 = Wu(x0) ∩ Ws(x0). Fix a point p* ∈ γ0 and consider a transversal Σ to the q-equation
that passes through this point, at time t0. Suppose that x0 perturbs to a saddle point xε for ε
sufficiently small, and let hu(ε) = Wu(xε) ∩ Σ and hs(ε) = Ws(xε) ∩ Σ, where xε denotes the
critical point of the system for a fixed value of ε. Although hu(0) = hs(0) = p*, we do not
expect this intersection to persist as ε is increased. See Figure 4 for an illustration.

The Melnikov function
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(8)

provides an expression that indicates how hu(ε) and hs(ε) perturb for ε sufficiently small;
traditionally, T = ∞, but we will discuss T for our model below. If this expression is
negative, then as ε is increased from 0, the homoclinic orbit splits such that Wu(xε) lies on
the inside of Ws(xε), as shown in Figure 4. If the expression is positive, then the opposite
holds. Ultimately, we would like to prove that the flow for our reduced system (7) from an
appropriate set of initial conditions is trapped in a compact region in phase space in forward
time and hence, with some additional arguments, yields a periodic orbit. We intend to verify
this by showing that an appropriate Melnikov function (8) is negative, but first, we need to
cast our reduced system in the form described above and adapt some of the definitions
involved to apply to our discontinuous system.

We introduce the new system

(9)

where {A}, {M}, and {m} were previously defined when we introduced the reduced system
(7), and

(10)

is another piecewise constant function that is chosen to approximate {M}(q, v, {m}) in each
of the four phases. System (10) is equivalent to system (7) for ε = 1. The following
arguments will require drive d to be sufficiently large, as we shall discuss. For associated
numerical illustrations, we chose the {m} values corresponding to d=1.4.

System (9) is of the form ẋ = f(x) + εg(x), where f(x) = [v, {A} cos(q) + {M*} − bv/I] and
g(x) = [0, {M}(q, v, {m}) − {M*}]. While the reduced system is recovered when ε = 1, for ε
= 0, we have a system where the entire muscle moment is replaced by a fixed value in each
phase. However, the functions f and g in system (9) are not continuous, whereas the
Melnikov function is defined for continuous systems. Fortunately, the construction and
interpretation of the Melnikov function generalize immediately to the piecewise continuous
system (8) that we consider, once we adapt the definition of the Melnikov function
accordingly, as we now explain.

Let x0 be the saddle critical point where the v-nullcline corresponding to the eStance phase
intersects the q-nullcline (q-axis) in the ε = 0 system. Note that x0 is not a critical point for
the other phases. By choosing an appropriate {M*}, we can construct a closed orbit of
system (9) that begins with the unstable manifold Wu(x0), which is of interest because the
limb trajectory of the full model is in close proximity to this manifold in the eStance phase
for small drives (see Section 4).

Once we choose , and , the value of  is fully determined as the unique value
that returns the orbit to x0. Interestingly, because x0 is not a critical point of system (9) in the
eSwing phase, the orbit that we are following reaches x0 in finite time, at a time that we
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denote by T. We will assume that values of {M*} can be found such that this closed loop
orbit exists, and this is the major assumption of our argument. In practice, this value can be
found if drive is not too small. The violation of this assumption for smaller drive is
discussed in Section 4.

Denote the orbit formed from this choice of {M*} as γ0 and choose a vertical segment near
the WTC, which we call Σ, to which the flow of (9) is transverse (i.e., a local transversal). In
this case, since our argument will depend on very small changes in the right hand side of
equation (9), we do not ignore the transient between the time the trajectory hits the WTC
and the time when the eSwing phase actually begins, in contrast to [13]. We account for this
transient by marking the place on γ0 where the eSwing phase begins and using the vertical
line through this point as our transversal Σ. For ε = 0, we can refer to the segment of γ0
from Σ to x0 as W̃s(x0), although it does not fit the definition of a stable manifold.

To establish results for system (7), which is recovered for ε = 1, we next wish to check how
γ0 perturbs as ε is increased from 0. First, we verify that for each ε ∈ (0, 1], system (9) has
a critical point xε = (qε, 0) that is a saddle, converging to x0 as ε → 0+, in the eStance phase.
We provide the details of this verification in the Appendix.

Now, fix ε > 0 small. Since xε is a saddle point, it has an unstable manifold, defined with
respect to the eStance component of the flow of (9). Since the v-component of xε is zero, we
can define W̃s(xε) as the trajectory of the eSwing component of (9), taken in backwards
time, connecting from xε to Σ. We aim to show that Wu(xε) perturbs to the inside of W̃s
(xε)when ε is increased from zero, similarly to what is shown for Wu(xε) and Ws(xε) in the
schematic illustration in Figure 4. If we denote the intersections of Wu(xε), W̃s(xε) with the

transversal Σ by , then this means that we require ,
since Σ is vertical. In our notation, this relationship occurs if the function (t0) in (8) is
negative, where T − t0 denotes the time of passage of W˜s(xε) from Σ to xε.

For system (9), . This expression splits into
four integrals, and since the limb trajectory γ0 actually reaches x0 at a finite forward time T
due to the discontinuous nature of the system, only the eStance integral is evaluated over an
infinite time interval. Until this point, we have assumed that we have chosen {M*} such that
a closed orbit γ0 exists with ε = 0. We now place an additional constraint on our choice of
{M*}: we wish to choose {M*} such that the integrand in each of these integrals is strictly
negative. The existence of such a choice is a sufficient, although not necessary, condition for
the splitting to occur as desired. In the Appendix, we show that we can select values of

, and  that achieves this condition, such that (t0) < 0 indeed holds.
Figure 5 shows the homoclinic for the ε = 0 case along with Wu(xε) and W̃s(xε) for ε = 0.01.

While this alignment of manifolds holds for small ε, recall that our reduced model is
equivalent to system (9) with ε=1. As ε grows, higher order terms not accounted for in the
Melnikov function could become significant. Thus, we use an alternative comparison
approach to consider the effect of increasing ε and show that the direction of splitting is
maintained for all ε up to 1. To do so, we show that the distance between  and 
monotonically increases with ε; see the Appendix.

The results of this analysis show that for the reduced model, namely system (9) with ε = 1,
there exists a compact region in phase space in which limb trajectories emerging from initial
conditions at the onset of the eStance phase will be trapped in forward time. Indeed, the
eStance critical point x1 = (q1, 0) of the reduced system has an unstable manifold Wu(x1),
which evolves away from x1 in forward time, crosses through the q-axis from the positive v
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half-plane to the negative v half-plane, and then returns to the q-axis again, say at xu = (qu,
0). From the analysis above, we know that drive can be chosen such that γ0 exists, and we
have q1 < qu for such drive. Let R denote the compact region bounded by the segment of the
q-axis with q values between q1 and qu, x1 itself, and Wu(x1). Any trajectory starting from
an eStance initial condition between x1 and xu in eStance is trapped in the interior of R for
all time. There are no true critical points in the interior of R, nor could the flow of any of the
continuous subsystems in the reduced model (3) reach any critical points inside R without
first causing a phase transition that causes the point to become nonsingular. Thus, a stable
periodic orbit must exist in R by a generalization of the Poincaré-Benixson Theorem applied
to discontinuous systems [14, 15].

While this argument establishes that there exists at least one stable periodic orbit in region
R, it does not prove uniqueness. In theory, other solutions could co-exist with the periodic
one that we have analyzed, which could either compromise the relevance of the model or
point to some unexpected locomotor phenomenon. A strong contraction exhibited in the
eStance phase, however, indicates numerically that this periodic orbit is unique. Figure 6
shows that trajectories starting from a range of initial conditions on the q-axis are quickly
attracted to the unstable manifold of the eStance saddle point, which is tangent to the
unstable eigenvector of the eStance critical point x1 on the q-axis. In Section 4, we will see
that the locations of this manifold and eStance v-nullcline are centrally important to the step
phase asymmetry.

3.3. Duration of eStance but not of other phases depends on initial condition and
motoneuron strength in reduced model

Unlike the full model, the durations of the reduced model limb trajectories in each phase can
be precisely determined because the motoneuron output to the limb in each phase is fixed.
Given an initial condition located on a starting manifold for a phase (either the TTC, the
WTC, or a segment on the q-axis), system (7) can be integrated up to the time when the
solution reaches that phase’s ending manifold. For instance, the duration of the eSwing
trajectory for a fixed drive can be found by setting the output of Mn - E equal to meSw and
forward integrating from an initial condition lying on the WTC up until the time when the
solution hits the q-axis.

This approach allows us to easily vary the initial entrance conditions to each phase, to see
how phase duration is affected by strength of motoneuron output and position in phase
space. We choose a wide range of initial conditions on the starting manifold for each phase
in a neighborhood of where we see these transitions occurring in the original model (see
Figure 1). Then, we increase the drive strength (in our reduced model, this means we update
the value of {m}) and record the duration that a trajectory with given initial condition took
from beginning to end of that phase. The difference in duration over the range of initial
conditions and input strengths in fStance, fSwing, and eSwing is relatively small, with
durations ranging over at most a few hundreds of milliseconds, compared to the eStance
durations, which varied from roughly 200 ms to 2200 ms.

In particular, the eStance trajectories with the longest durations occurred for small drive
values, where the initial conditions chosen lie close to the eStance critical point. In some
cases, trajectories starting from certain initial conditions failed to enter the region of positive
velocity entirely. The results of these simulations show that eStance phase duration depends
strongly on drive. In the next section, we will return to the full model to analyze the source
of this asymmetric dependence of phase duration on drive.
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4. Fast transitions in segment dynamics reveal source of phase asymmetry
4.1. Limb nullclines are oriented differently in each phase

As noted in subsection 2.2, four important transitions occur in each step cycle that
drastically change the limb dynamics. The mathematical analysis in the previous section
adds to the evidence from [13] that the onset of eStance plays a particularly critical role in
shaping the locomotor oscillations in the model. Building on this observation, we can now
characterize the source of the phase asymmetry, which the reduced model indicates occurs
in the eStance phase.

Consider the location of the q-nullcline, defined by the set of all (q, v) such that q̇ = v = 0,
and the v-nullcline, the set of all (q, v) satisfying v̇ = 0, of equation (1), in the (q, v) plane.
Figure 7 shows a segment of the limb trajectory selected within each of the four phases. In
each phase, sample points on the trajectory are chosen and the corresponding v-nullclines at
the associated timepoints are plotted, with colors used to indicate which points and
nullclines go together. The eStance phase, illustrated in Figure 7A, features positively sloped
v-nullclines, such that the trajectory is in close proximity to the nullcline at the onset of this
phase. After the CPG changes dominance from E to F, the segment trajectory enters fStance
(Figure 7B). Notice that the position of the v-nullcline is significantly altered due to the
drastic change in motoneuron outputs, and hence in the right hand side of equation (7) at the
transition from eStance to fStance. When the trajectory crosses the q-axis, the velocity of the
segment changes sign and the segment enters the swing phase. The ground reaction force
terminates at this transition, and the nullcline position in fSwing (Figure 7C) reflects this
loss of force; the slope of the v-nullcline switches from positive to negative between these
two phases. The final plot in Figure 7D exhibits the trajectory and nullclines in the eSwing
phase. When the CPG changes dominance between these phases, the extensor motoneuron
force term is activated (and the flexor motoneuron force term is deactivated), which is
reflected in the altered nullcline position. In the following sections, we discuss in further
detail the different dynamics in each phase and use these observations to explain how limb
feedback creates the phase asymmetry evident in [13], Figure 3.

4.2. eStance Dynamics
At the start of eStance, the ground reaction force initiates, which causes the v-nullcline to
assume the orientation seen in Figure 7A. This configuration has a crucial effect on the
activity of the system. We note that increased drive corresponds to larger Mn - E output,
which raises the v-nullcline. For smaller drives, and hence smaller Mn - E output, the v-
nullcline is lower, and the critical point it forms with the q-nullcline lies extremely close to
where the trajectory enters this phase. What is more, initially v̇ > 0 and the v-nullcline
moves down because Mn - E output decreases over the course of eStance.

This relationship is important for three reasons. The first involves the ability of the model to
produce oscillations. If a trajectory enters the eStance phase to the left of the v-nullcline, the
dynamics in that region will prevent it from completing the eStance phase. Indeed, to the left
of the v-nullcline, the eStance direction field points down towards the q-axis, and the
eSwing direction field points up towards it. Thus, the limb remains pinned at the q-axis,
which interrupts oscillations. This effect is the reason why both the original and reduced
models fail to produce oscillations for small drives. If we track a limb trajectory generated
by the full model with sufficiently small drive and corresponding small Mn - E output, from
an initial condition on the q-axis to the right of the v-nullcline at the start of eStance, the
trajectory will progress through eStance, fStance, fSwing and eSwing and then will leave
eSwing and return to eStance to the left of the v-nullcline. In terms of the calculations in the
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previous section, the Melnikov function would be positive for such drive values. A
schematic illustration of this oscillation failure mechanism is shown in Figure 8.

The second reason that this positioning is important is that it is the key feature in
establishing the phase asymmetry. The time of passage for a trajectory to exit the
neighborhood of a saddle point from an initial condition within that neighborhood becomes
arbitrarily large as the initial condition approaches the saddle point. Furthermore, the
position of the v-nullcline bounds the growth in v even when the trajectory moves away
from the critical point, slowing the rate at which the limb can access higher velocities, reach
the TTC, and exit the eStance phase. As drive is increased, however, the nullcline is lifted
away from the location of eStance onset, and thus the influence it has on the timing of this
phase will be minimal. Therefore, the duration of eStance can vary significantly with
changes in drive. This crucial relationship of the orientations of the trajectory and the v-
nullcline does not exist in the other phases (Figure 7B-D). The presence of ground reaction
force creates a unique trajectory/nullcline alignment that opposes an increase of
acceleration, which is essential to the asymmetric phase response to changes in drive. We
note that changing the strength of the feedback in the model, particularly the Ib - E feedback
term, can also scale the extent of the asymmetry in phase durations, again by altering the
trajectory/nullcline alignment as discussed in [13].

The third role played by the configuration of the trajectory relative to the v-nullcline at the
onset of the eStance phase is that this configuration yields the strong contraction of
trajectories from different initial conditions on the q-axis observed in eStance in Section 3.2;
see Figure 6. This contraction results because near eStance onset, but away from the v-
nullcline, dv/dq = v̇/q̇ = v̇/v is very large, since v is near 0 and v̇ is not. Thus, trajectories
entering eStance away from the eStance critical point are all funneled strongly upward,
toward the v-nullcline, until v̇ and v become closer in size.

One final observation, which we exhibited for the reduced system in Section 3.2, involves
the presence of an unstable manifold that lies in the eStance domain. Linearizing around the
critical point of system 1 at fixed values of Mn - E indicates that the critical point in eStance
is a saddle. The unstable eigenvector has a positive slope and lies between the q-axis and the
v-nullcline, and near the critical point, it lies tangent to the unstable manifold. For
simplicity, and because we saw how the unstable eigenvector remains a good approximation
of the manifold throughout the eStance phase in the reduced case, we use the unstable
eigenvector, rather than the actual unstable manifold, in the following figures. As Mn - E
changes, the v-nullcline and critical point shift, and hence, so does the location of the
unstable eigenvector. Figure 9 exhibits a family of eigenvector and limb trajectory locations
in (q, v) space with corresponding colors for various timepoints throughout this phase. For
small drives, since the trajectory enters the eStance phase close to the critical point, the
trajectory quickly converges to the unstable eigenvector, as discussed above. For larger
drives, the eigenvector, like the nullcline, is lifted away from the trajectory at eStance onset.
The trajectory flows toward this manifold as it travels through eStance, until it crosses the
TTC at higher velocities than were reached in the small drive case. Thus the location of
intersection between the unstable eigenvector and the TTC plays a role in where the limb
will begin the fStance phase. We will see in the next subsection that this entry location plays
a important role in phase completion.

4.3. fStance Dynamics
As in the eStance phase, critical points computed at specific time points in fStance are
saddle points. In fStance, however, the critical point is on the exit manifold (the q-axis) of
the phase, not the entrance manifold (the TTC), and thus there is no risk that the trajectory
will be delayed at the onset of the fStance phase. The stable eigenvector corresponding to
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the fStance saddle point for each Mn - F output slices through the fStance region of (q, v)
phase space. Figure 10 shows a collection of these eigenvectors, signifying their movement
over time as changing Mn - F output alters the position of the critical point and v-nullcline.
If a trajectory entered fStance above the stable manifold, it would continue to travel above
and along the manifold toward the q-axis. Before it could reach the axis, however, it would
have to cross the fStance v-nullcline, and v̇ would change from negative to positive. Thus,
the trajectory would move in a direction of increasing v and increasing q, remaining forever
bounded away from the q-axis and hence unable to complete a transition to the fSwing
phase. In addition, if the trajectory entered the fStance below, but sufficiently close to the
stable manifold, that trajectory could still complete the fStance phase, but be significantly
slowed before reaching the q-axis, yielding a very long fStance duration.

However, as discussed in the previous subsection, the limb trajectory travels throughout the
eStance phase tracking close to, but below, the unstable manifold, which lies well below the
fStance stable manifold. Indeed, although the eStance unstable eigenvector crosses the TTC
with larger v for larger drives, the stable eigenvectors in fStance in the large drive case
(Figure 10B) are also shifted farther upward than the eigenvectors in the small drive case
(Figure 10A), allowing completion of the fStance phase despite larger initial velocities.
Thus, the limb is bounded away from the fStance stable manifold, and hence is able to
complete the fStance phase with timing that is not influenced by the saddle point.

In subsection 4.6, we shall verify numerically that the fStance initial conditions, influenced
by the contraction in the eStance phase, keeps the fStance phase durations relatively
independent of drive strength despite these possible complications.

4.4. fSwing Dynamics
Unlike the stance phases, the critical point for the fSwing vector field is a stable spiral. In
this case, v-nullcline proximity to the trajectory does not greatly impact the trajectory of the
limb. Indeed, if Mn - F output is sufficiently weak, the trajectory could cross through the v-
nullcline, which would change the dynamics from decreasing to increasing velocity. Even
with such a change, however, the trajectory would continue to approach the WTC and make
the transition to the eSwing phase, and oscillatory activity would not be compromised.

To investigate why the duration of the fSwing phase remains independent of drive changes,
we evaluated v̇ over a range of q and v values for two choices of Mn - F, shown in Figure
11. Figure 1 exhibits the range of initial conditions for this phase obtained by model
simulations as drive is increased, which lie on the q-axis between 1.8 and 1.95. As exhibited
in that figure, we have argued that as drive increases, the oscillation trajectory enters fSwing
at a larger q, and thus larger Mn - F corresponds to oscillations with larger amplitudes than
those resulting from small drive simulations. Thus, the trajectory must travel a farther
distance to the WTC than would a smaller drive trajectory. But, since the larger drive
trajectory initial condition has a larger q-component and hence yields a larger value of K
cos(q), as well as a larger Mn - F, |v̇| becomes larger as drive is increased, and the necessary
distance in q can be covered more quickly. On the other hand, the velocity that a large drive
trajectory can achieve cannot become extremely large relative to the velocity of a small
drive trajectory. Suppose that the muscle force is relatively constant, say with a value M̂,
and consider the function L ̂ = v2/2 − K/I sin(q) − M̂/Iq. The level curves of this function (L̂
= constant) are curves in phase space that have a curvature that is similar to the shape of the
trajectories in this phase (see Figure 11). As this constant decreases, the level curves lie
closer to the q-axis. Notice that the function L has a time derivative dL̂/dt = vv̇ − K/I cos(q)q̇
− M̂q̇ = −bv2/I. Since dL̂/dt is negative, solutions to system (1) travel in the direction of
lower L̂, i.e. toward the q-axis. Thus, the level curve on which a trajectory begins the fSwing
phase provides a lower bound for the path of that trajectory in phase space, under the
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assumption that MF remains relatively constant during fStance, which holds as long as the
right branch of the Mn - F voltage nullcline is not strongly sloped. Even for a very negative
M̂, corresponding to a large drive and Mn - F output, the trajectory enters fSwing on a level
set that crosses the WTC with velocity larger than −0.005, and thus is bounded away from
very negative velocities (Figure 11). Hence, large drive trajectories cannot move
significantly faster than slowly driven trajectories.

4.5. eSwing Dynamics
As in fSwing, the critical point in the eSwing system is a stable spiral. We did a similar
investigation of the strength of v̇ over the eSwing domain. Figure 1 exhibits the initial
entrance conditions to this phase, which are shifted slightly from the WTC. The vector field
varies very little as Mn - E is increased, and again, the larger amplitude oscillations that
occur for larger drives need to travel a larger distance to complete the phase (from a more
negative v up to v = 0) but do so faster because they travel through regions with larger v̇; see
Figure 12. Recall that the relationship between where the trajectory exits eSwing and the
location of the eStance critical point is crucial for the allowing limb motion to continue.
There are two factors that ensure that these points maintain the necessary relationship for
oscillatory behavior to be continued as drive is increased. The first is that for larger drives,
the motoneuron output is larger, and thus the eStance v-nullcline is higher, with a critical
point whose angle is much smaller. In addition, for larger drives, the eSwing trajectory
travels on level sets of a function that have a steeper slope than in the small drive case.
Again, if the muscle force is relatively constant, corresponding to little change in Mn - E
output while it is active, say with a value M̄, then the function L̄= v2/2 − K/I sin(q) − M̄/Iq,
has time derivative dL̄/dt = −bv2/I. So limb trajectories travel in the direction of lower L̄,
which occurs closer to the q-axis. For larger M̄, the slope of these levels sets is much
steeper, so although trajectories start farther from the q-axis (and hence, could travel to very
low q values since q̇ = v), they are constrained by steeper level sets of L̄, which ensures that
trajectories exit the eSwing phase to the right of the eStance critical point.

4.6. eStance is the sole contributor to the phase asymmetry, due to the presence of
ground reaction force

Now that we have fully described the dynamics in each phase, we verify that the asymmetry
is almost completely confined to the eStance phase, not to the stance phase in its entirety, as
shown numerically in Figure 13.

In Figure 14 we investigate the influence of ground force magnitude to further emphasize
the role that the ground strike force plays in the asymmetric response to drive variation. We
simulated the dynamics of the system with full, half, and no ground reaction force over a
range of drives and recorded the durations of the swing and stance phases. As the magnitude
of the ground reaction force term is decreased, the v-nullcline in the eStance phase loses its
positive slope and becomes oriented similarly to the eSwing v-nullcline. Thus by reducing
the size of the ground reaction force, we eliminate the nullcline-trajectory alignment at the
start of eStance. This alteration removes the drive-dependence of the stance duration, with
no effect on swing, and verifies our claim that the presence of ground reaction force opposes
an increase in acceleration at the onset of stance, and is essential to set up conditions under
which the presence of feedback can generate the asymmetric phase response to changes in
drive. The results of this simulation match up well with data from experimental studies
where human locomotion with reduced weight was investigated using body unloading. The
duty cycle, that is, the ratio of stance duration to cycle duration, decreased as body weight
support was increased [16, 17], and in air stepping, when the body was 100% supported, the
stance duration did not change significantly with increases in speed [16].
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5. Discussion
The main goal of this work was to explain the details underlying the asymmetric response of
oscillatory solutions of a neuromechanical model of locomotion [10] to changes in drive
strength, which agrees with biological observations [11, 12]. The mathematical analysis of
the existence of these solutions served as a very useful step in achieving this aim. The
relatively complicated nature of the model led us to reduce the model into a qualitatively
consistent form more amenable to dynamical systems analysis (2), which required us to
determine which model features could be simplified, and in what way, without
compromising model dynamics (see also [13]). Given the reduced model, the construction of
an existence proof required a detailed exploration of how various model components affect
its dynamics. In particular, this investigation led us to an appreciation of the central
importance of the limb phase plane, and especially of the differences in nullcline structure
within this phase plane across different locomotor phases, for understanding solution
behavior. More generally, mathematical analysis of existence, stability, and uniqueness for a
biologically observed solution helps verify the relevance of the model that generates this
solution, establish the constraints on parameters under which the model is valid, and identify
other solutions or changes in solution features that may be expected under certain
conditions. Our particular existence and stability argument relied on Melnikov’s method and
the Poincaré-Bendixson theorem, adapted for the discontinuities occurring at phase
transitions in the model, combined with a few numerical calculations.

Our existence result required the assumption that a certain closed orbit could be constructed
when the motoneuron output function was assumed to be piecewise constant, with values
satisfying certain constraints that are discussed in detail within the paper, and we observed
that this assumption holds as long as the supra-spinal drive in the model is not too small. We
also found a strong contraction among trajectories within the eStance phase, which appears
to yield uniqueness of the periodic solution. In Section 4, we elucidate the crucial role of the
limb dynamics in generating the phase asymmetry exhibited by the full model and used an
array of arguments to explain why only the eStance phase of the step cycle has a duration
that depends on the value of the supra-spinal drive to the CPG. More specifically, we find
that the inclusion of the ground reaction force in the model is essential for allowing the
phase asymmetry to develop, while the strength of the feedback (particularly the Ib - E
feedback term) in the model scales the intensity of this asymmetry (see also [13]).
Interestingly, the same mechanisms that yield contraction in the eStance phase were
identified as being responsible for the sensitivity of the phase duration to the drive strength
there.

Many other theoretical works have considered coupled CPG and mechanical limb
components in the context of locomotion, including the roles of feedforward CPG outputs
and movement-related feedback to the CPG (see e.g. [18] and references therein). Several
studies have analyzed resonance and entrainment in relatively simple models, considering
the CPG and limb as having intrinsic frequencies (associated with damped oscillations to
rest in the latter case) and investigating how the two interact to set a frequency for
oscillations in the full network [19, 20, 21, 22]. Our analysis breaks the network oscillation
into four phases. Within stance or swing, transitions between extensor and flexor control
occur at the CPG level, depending on the time course of afferent feedback. These CPG
transitions cause jumps in the vector field for the limb dynamics, which in turn enable limb
velocity to switch sign and lead to transitions between stance and swing phases, with
associated alterations in feedback signals. Thus, we see that control of each phase transition
is directly impacted by one particular component of the model, the CPG or the muscle-
driven limb, yet that component is influenced by the activity of the other. This analysis
provides a more nuanced view that emphasizes phase transitions, perhaps somewhat
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reminiscent of Cruse’s behavioral rules for limb coordination [23], and yields insights into
why oscillations exist in the model, how they can be lost as parameters vary, and how phase
durations are determined.

Our results are consistent with past work in which a genetic algorithm was applied to evolve
a set of model CPG networks, each composed of three, four, or five recurrently-connected
neurons, controlling the activity of a simulated leg of an insect-like body [24, 25, 26]. The
passage of a solution trajectory close to a fold of a steady state input-output curve was found
to elongate the duration of the stance phase, resembling the dynamics exhibited at the onset
of the eStance phase in our model. Interestingly, the model correspondingly exhibited a high
sensitivity to perturbations near this region [25], similar to the dynamics exhibited at the
onset of the eStance phase in our model. Indeed, the dynamic mechanisms that we have
uncovered also predict such a sensitivity, along with several other expected outcomes
relating to step failure and responses to disturbances, especially at relatively low drive
levels. Specifically, a kick that slightly decreased limb angle late in the eSwing phase, when
the limb speed is small, could terminate oscillations if it caused the trajectory to enter the
eStance phase to the left of the eStance critical point. Similarly, a perturbation in the
direction of larger limb velocity arriving in the fStance phase might push the trajectory
above the stable manifold of the fStance critical point, which would prevent it from
completing that phase, or might lead to very long fStance durations, if it pushed the
trajectory very close to the stable manifold. Swing phase durations should be less sensitive
to perturbations, on the other hand. These ideas are also related to past numerical
simulations of a qualitatively similar but more simplified model, which showed that
combined feedforward and feedback signaling yields an overall improved robustness to
unexpected disturbances and imperfect sensory information, relative to pure feedback or
feedforward control, although differences across phases were not emphasized there [27].

The analysis that we have done stands apart from past mathematical work on related models
in that the model that we consider was generated to reproduce a variety of qualitative and
quantitative experimental observations, and as such was not tailored to provide ease in
analysis. Indeed, we saw that despite the relative simplicity of the model, its dynamic
inhibition, excitation, and nonlinear feedback components presented challenges that
complicated our analysis, and these features also prevented the application of additional
analytical techniques, such as phase response curves (e.g., [28]). However, we were able to
utilize variations of many familiar arguments from the realm of dynamical systems, in spite
of this complexity. In addition, this analysis provides the first explanation at the level of
dynamic mechanisms of how the presence of a biologically constrained feedback can alter
the output of a symmetric CPG to create an asymmetric variation in step phase durations as
the value of supra-spinal drive, and hence locomotor speed, is increased [12, 10].

Many past works support the hypothesis that the spinal locomotor CPG features a symmetric
organization [5, 6, 7, 29, 9], such that the asymmetric response would require other sources
such as feedback asymmetries. However, other authors argue that the CPG itself is a source
of asymmetry [30]. Asymmetry within a model CPG emerged from a numerical
optimization procedure tuned to fit parameters to the asymmetric phase response data [12,
31], and asymmetries allowed a model CPG to fit disordered limb coordination data from
Parkinson’s disease patient [32], but these results were inevitable, since the models involved
did not include possible sources of asymmetry outside of the CPG, such as feedback [32,
31]. An interesting future direction would be to repeat these studies in a neuromechanical
model, such that the relative capabilities of different possible asymmetry sources could be
compared. Biologically, sources of locomotor asymmetry may vary across species or even
across behavioral or environmental contexts, and in fact there may be multiple asymmetries
within a single locomotor network. Interestingly, the ground reaction force, which is present
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during stance but not during swing, imposes an intrinsic asymmetry on the mechanical
component of the system, which we find to be crucial in constraining the range of drives
over which oscillations can occur and in eliciting the phase response asymmetry. Additional
work on locomotion with afferent feedback intact, but without a ground reaction force, could
help tease apart relevant mechanical effects, and treadmill walking, in which the system’s
response to an imposed frequency is assessed, should also be considered.
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6. Appendix
In this Appendix, we provide details of certain steps in our proof of the existence of periodic
solutions to system (9) for ε ∈ (0, 1], and hence to our reduced system (7), corresponding to
the case of ε = 1. The values of certain parameters are relevant in our arguments, namely
K=441.45, b=18000, MGRmax=585, and I=9000000.

6.1. Existence of saddle points
First, we check that for each ε ∈ (0, 1], system (7) has a critical point xε = (qε, 0) that is a
saddle, converging to x0 as ε → 0+. For each ε, such a critical point exists if there is a
solution q to
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(11)

Since the critical point x0 = (q0, 0) exists with ε = 0, we can write .
Substituting this expression back into equation (11) and dividing on top and bottom by (K −
MGRmax), we obtain

(12)

for N(q) = ME(q, 0, meSt)/(K − MGRmax). The quantity in the denominator of (12) is positive
for ε = 0 and q = q0, but N (q0) is itself negative, since K − MGRmax is negative while ME is
positive. If we increase q from q0, which lies between 0 and π/2, then the numerator of (12)
grows from 0 while ME(q) is observed numerically to grow as well. Hence, the denominator
of the right side of equation (12) becomes less positive, and eventually it crosses through 0
for some q < π/2. Thus, the right hand side expression blows up to ∞ and in particular it
increases past 1, which implies that there is a solution qε to equation (11) for each ε ∈ (0, 1],
as desired.

Next, we check that xε = (qε, 0) is a saddle point for all ε ∈ (0, 1]. For a two dimensional
system of ordinary differential equations, a critical point is a saddle provided that the
determinant of the linearization at that point is negative. Linearizing system (9) yields a

matrix with determinant . The coefficient of the sine term is
always negative and, as we just used to establish the existence of the critical points,

numerical results show that  is positive for q ≤ π/2. Thus, the critical points xε are
indeed saddle points.

6.2. Constant muscle force moments to ensure that the Melnikov function
satisfies (t0) < 0

The Melnikov function that we consider is defined in equation (8). To guarantee that the
invariant manifolds of xε have the alignment that implies the existence of solutions for ε > 0
small, we aim to establish that (t0) < 0. As we described above, a sufficient condition is to
choose {M*} so that the integrand of  is negative in each phase. During the stance phase,

v is positive, so we wish to choose  larger than ME(q, v, meSt) in eStance and  larger
than MF(q, v, mfSt) in fStance. During eSwing and fSwing, we would like to make the

opposite choice, setting  smaller than ME(q, v, meSw) in eSwing and  smaller than
MF(q, v, mfSw) in fSwing, since v is negative during these phases.

To determine whether making such a choice is possible, we require knowledge of the values
that MF and ME take in phase space. Specifically, we need to find the maximum of ME in
eStance and MF in fStance, and the minimum of MF in fSwing and ME in eSwing. We could
run into a circular argument here, because the values of ME and MF for ε ∈ (0, 1) depend on
the system trajectory, which depends on {M*}. However, by differentiating the relevant
equations, one can show directly that dME/dv ≤ 0 in eStance and eSwing, and dMF/dv ≤ 0 in
fStance and fSwing. Thus, the maximum value of ME in eStance and MF in fStance, and the
minimum value of MF in fSwing and ME in eSwing, all occur when v = 0.
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Therefore, to obtain bounds on their possible values, we only need to evaluate ME and MF
over q values between 0 and π, which are constraints built into the model, with v = 0. The
maximum of ME for the eStance vector field occurs near π/2 and is equal to 58.11. The
maximum of MF for fStance occurs at the upper boundary at π and is equal to 0. The
minimum of MF for fSwing occurs near π/2 and is equal to −101.67. The minimum of ME
for eSwing occurs at 0 and is equal to 0.

In light of these results, we choose  and , and we restrict our possible

range of  to consist of negative values. The bound in fStance is poor since MF needs to
be sufficiently negative in order for the trajectory to reach the q-axis to complete the fStance

phase. That is, while  would be needed to satisfy , this choice
would prevent us from constructing the homoclinic we desire in system (9) with ε = 0. We
show in our analysis that any trajectory that completes the fStance phase and intersects the
q-axis must remain at angles below the angle associated with the critical point of system (9)
during its passage through fStance. Thus, we would like to use the angle of the fStance
critical point for system 9 to provide a better bound for MF. Note, however, that the fStance
critical point satisfies

(13)

a relationship that depends on the choice of .

To avoid circularity, we proceed in the following way. We fix an angle q̂ and determine MF

(q̂, 0, mfSt). We choose this value, call it M̂F, and use it in place of  in the fStance form
of system (9) to compute the q-value of the fStance critical point as ε varies between 0 and
1. We check that the angle associated with each of these critical points is less than q̂, and

thus we conclude that the trajectories of (9) with  maintain q < q̂ throughout
fStance. Since MF (q, v) attains its maximum at v = 0 for each fixed q, and since MF (q, 0) is
a increasing function of q, we can use M̂F as an upper bound for MF (q, q̇, mfSt) in system
(9) for all ε. The particular q̂ we chose satisfied MF (q̂, 0, mfSt) = −94.7, which allows us to

choose any  See Figure 15 for an illustration of these relationships.

6.3. Splitting of manifolds persists up to ε = 1
The Melnikov analysis in Section 3 establishes that for ε > 0 sufficiently small, the unstable
manifold Wu(xε) is trapped inside of the invariant curve W̃s(xε), as desired. This alignment
corresponds to the inequality , which refers to the relative positions of the
intersections of these manifolds with the transversal Σ. We would like to show that this
alignment is preserved as ε ↑ 1. A sufficient condition for this result is that that for ε1 ≤ ε2,

 and  both hold, so we now try to establish these inequalities.

We have already established that the q-coordinates of the critical points xε2 and xε1 satisfy
qε2 > qε1 for ε2 > ε1, so that Wu(xε2) lies to the right of Wu(xε1) in a neighborhood of xε1
and xε2 for ε2 > ε1. Moreover, we can see that this orientation is preserved for the duration
of the eStance phase. Indeed, if the two manifolds were ever to touch, as would have to
occur to allow qε2(t) < qε1(t) to result, then q̇2 = q̇1, and then 0 ≤ v̇2 ≤ v̇1, since

. Because we have chosen  to exceed the largest
possible value that ME(q, v, meSt) could take along a relevant trajectory of system (9) in
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eStance, we know that this expression is negative. Thus, v̇2 < v̇1 at the intersection point,
and Wu(xε2) remains on the inside of Wu(xε1).

Assuming that the trajectories do not cross during the brief transient between the crossing of
the TTC and the switch to the fStance phase, then Wu(xε1) is above Wu(xε2) at the onset of
fStance. This initial alignment in fact ensures that the manifolds do not cross in the fStance
phase. Again, if they were ever to touch, then q̇2 = q̇1, and thus v̇2 ≤ v̇1 ≤ 0, since

. Therefore, Wu(xε1) lies to the right of Wu(xε2) at
the end of fStance and, equivalently, at the start of the fSwing phase. Now, if the manifolds
were ever to touch in this phase, then 0 ≥ v̇2 ≥ v̇1 since

. Thus, Wu(xε1) remains outside of Wu(xε2) i.e.
, and we have obtained the first condition that we seek.

We next consider the backward flow in eSwing. W̃s(xε1) lies to the left of W̃s(xε2) in a
neighborhood of xε1 and xε2 for ε1, ε2. sufficiently close to each other with ε2 > ε1. If

W̃s(xε2) and W̃s(xε1) intersect, then q̇1 = q̇2 and ,

which is less than 0 since ε1 − ε2 is negative and  is positive by
construction. Thus, they move through each other and cannot cross each other again, and
therefore , as desired.

If they do not cross, then they still must traverse an interval of common q values to reach Σ.
For each fixed q obtained by both W̃s(xε2) and W̃s(xε1), in the absence of a crossing, 0 > v2
> v1. For system (9),

(14)

which is the sum of three negative terms over the range of q values traversed in eSwing and
hence is negative. Moreover, the only v-dependence in the right hand side of equation (14)
occurs in the denominators of the first and third terms and in MeSw. Thus, if we compare the
right hand side of equation (14) at (q, v2) with ε = ε2 versus a baseline of (q, v1) with ε = ε1,
we see that the first term becomes more negative, the second term does not change, and the
third term also becomes more negative (using a calculation based on the form of MeSw given
in the Appendix of [13], for which we omit details). Thus, while W̃s(xε2) lies above W̃s(xε1),
the distance between these curves shrinks over the entire range of q values that both
traverse, since the former exhibits a larger decrease in v for each such q.

In summary, for any ε1, ε2 ∈ (0, 1] with ε2 > ε1, we have . If ε1 is sufficiently
small, then , by our Melnikov calculation. Thus, we have shown analytically
that  stays above  for some range of small ε. We have also shown rigorously that
for any ε1, ε2 ∈ (0, 1] with ε2 > ε1,  if W̃s(ε2) and W̃(ε1) cross during the
backwards flow of eSwing. Finally, we have an argument indicating why 
ends up being small, even if no crossing occurs. While we do not have a rigorous bound on

, these arguments explain why the ordering of  and  is preserved as ε
increases up to 1, as desired.
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Figure 1.
Transitions between phases are marked over a range of drives. The solid arrows indicate the
direction of increasing drive. Green circles denote the onset of fStance, magenta plus signs
the onset of fSwing, black dots the onset of eSwing, and red stars the onset of eStance. The
right hand side of the limb equation (1) changes in a discontinuous manner at each of these
transitions. A sample trajectory (for drive=1.4), which evolves in the clockwise direction as
time advances, is plotted with a blue dashed line for reference, and the transition curves are
plotted in black. Notice that the CPG transitions lie close to the TTC and WTC, respectively,
though they are shifted due to the brief transient the model exhibits between phases (see
[13], Appendix).
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Figure 2.
Motoneuron output generated by the original model (A) and reduced model (B) for drive
strength d = 14. Red solid curves correspond to Mn - F, blue dashed to Mn - E. In the
reduced model, motoneuron output is fixed at a different value in each phase, for each drive.
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Figure 3.
Reduced model preserves phase asymmetry as drive is increased. Stance and swing phase
durations for the original model are shown in blue and red stars, respectively. Stance and
swing phase durations for the reduced model are plotted in analogous colors with plus signs.
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Figure 4.
A general schematic of the set-up for the existence argument. We wish to show that as ε is
increased from 0, the homoclinic perturbs as shown, so that trajectories are trapped in
forward time within the region bounded by the unstable and stable manifolds of xε. Arrows
indicate flow in the forward direction.
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Figure 5.
Key structures for the Melnikov argument for ε = 0.01 and 0.1 with

. (A) The closed orbit γ0 for system (9) with ε
= 0 is plotted with a blue dotted line, along with the manifolds Wu(xε) {red, black} and
W̃s(xε) {pink, green} for system (9) with ε ∈ {0.01, 0.1}. The transversal Σ is chosen as a
vertical line (blue) through the point where eSwing begins on γ0 (indicated with a blue star).
(B) Zoomed view of (A) near the intersection of γ0 and invariant manifolds with Σ, showing
that Wu(xε) perturbs to the inside of W̃s (xε) in both cases. For ε sufficiently close to 0,
W̃s(xε) remains close to γ0, and it perturbs below γ0 as ε increases. In (B), labeled
manifolds and points indicate the ε = 0.1 case.
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Figure 6.
Strong contraction to the unstable manifold of the eStance critical point suggests that the
periodic orbit resulting from the Melnikov calculation is unique. The eStance limb nullclines
are shown in red and the unstable eigenvector with a black dotted line. A set of eStance
initial conditions on the q-axis quickly converge toward the unstable eigenvector of the
critical point located where the v-nullcline intersects the q-axis.

Spardy et al. Page 27

J Neural Eng. Author manuscript; available in PMC 2012 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
The alignment of the limb trajectory relative to the v-nullcline depends on phase. (A), (B),
(C), and (D) display structures in (q, v) phase space in the eStance, fStance, fSwing, and
eSwing phase, respectively, with panel ordering selected to reflect the order in which the
phases occur, progressing clockwise. In each, the q-nullcline, which is the q-axis, is shown
in black. A portion of the trajectory is plotted in blue, with different colored time points
highlighted, and the same color is used for each corresponding v-nullcline, since the v-
nullcline changes position over time as the output of the active motoneuron changes. Note
that the v-nullcline positions differ drastically between phases, due to dominance switching
in the CPG and the influence of ground contact.
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Figure 8.
Schematic illustration of the possible relationships the eStance v-nullcline can have with the
limb trajectory at the onset of eStance. (A) The limb trajectory moves up and to the right
through phase space when it enters eStance to the right of the eStance v-nullcline. (B) To the
left of the v-nullcline, the vector field points down and to the right. Thus, the limb cannot
proceed if it tries to enter eStance to the left of the eStance v-nullcline.
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Figure 9.
The location of the unstable eStance eigenvector determines the position where the limb
trajectory crosses the TTC. Colored stars on the limb trajectory are plotted at various time
points with their corresponding unstable eigenvector. The TTC is shown in magenta. (A) For
a small drive value, hence, small Mn - E output, the unstable eigenvector lies at low
velocities, and the trajectory lies very close to these eigenvectors until it crosses through the
TTC. (B) For a large drive value, hence, large Mn - E output, the unstable eigenvector is far
from the initial position the trajectory takes in eStance. The trajectory is pulled upwards
toward the eigenvector and thus crosses the TTC at a higher velocity than in the small drive
case.
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Figure 10.
The positions of the stable eigenvectors and the limb trajectory change with drive strength.
(A) Small drive leads to small Mn - F output and stable eigenvectors that lie in a region of
small positive velocity, but the limb trajectory enters this phase far below them. (B) Large
drive, with large Mn - F output, yields stable eigenvectors shifted farther upward than in
(A), such that trajectories with larger initial fStance velocities still lie below them. Time
points on the limb trajectory are shown with stars, while the color-coordinated lines are the
corresponding stable eigenvectors.
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Figure 11.
v̇ values at sample (q, v) points and level sets of L in the fSwing phase for small Mn - F (A)
and large Mn - F (B). In both plots, black diamonds, green plus signs, magenta stars, blue
circles, and red arrows correspond to v̇ values within (+/−) 5e-6 of −5e-5, −4e-5, −3e-5,
−2e-5, and −1e-5, respectively. Level curves of L ̂ are plotted in black, with smaller L̂ values
closer to the q-axis, and the WTC is plotted in magenta. Initial conditions for this phase lie
on the q-axis with varying angle. For the drive shown in (A), the oscillation trajectory would
begin fStance closer to the WTC but travel more slowly than in (B), where the trajectory
would enter fStance at a larger angle but travel faster. For constant Mn - F output,
trajectories move in the direction of decreasing L ̂.
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Figure 12.
v̇ values for a sample of (q, v) points and level curves in the eSwing phase for small Mn - E
(A) and large Mn - E (B). Magenta plus signs, green stars, blue circles, and red diamonds
correspond to v̇ values within (+/−) 5e-6 of 1e-5, 2e-5, 3e-5, 4e-5, and 5e-5, respectively.
Level curves of L̄ are plotted in black and the WTC is plotted in magenta. Ignoring the
transient, trajectories enter this phase on the WTC. In (A), trajectories begin closer to the q-
axis but travel more slowly than in (B), where trajectories begin farther from the q axis, but
travel faster. The slope of the level curves becomes steeper as drive increases; thus, there is
a bound on how small the q values reached by large drive trajectories can be.
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Figure 13.
Durations of each of the four subphases are plotted against drive strength. The duration of
eStance is shown in blue, fStance in black, fSwing in green, and eSwing in red. The phase
asymmetry shown in [13] Figure 3 is almost entirely restricted to the eStance phase, due to
the unique nullcline/trajectory alignment that occurs for small drive values.
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Figure 14.
Stance and swing durations for various ground reaction force magnitudes (MGRmax) are
plotted against drive. The stance durations for full, half, and no GRF are plotted in blue,
green, and black, respectively. The swing durations are plotted in red, cyan, and magenta
and the resulting curves lie on top of each other. By reducing the impact of the ground strike
force, the dependence of stance duration on drive (upper curves) is lost. The swing durations
(lower curves) remain unaffected by this change.
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Figure 15.
Relationship between the critical points for system (9) and the angle upper bound, q̂. The
critical points are plotted as blue asterisks on {v = 0} with an arrow indicating the trend in
their location as ε increases, and the line {q = q̂} is indicated in red. The q and v-nullclines
are plotted as black solid lines, and the stable manifold is a green dashed line for the ε = 1
system; these intersect in the rightmost critical point. For reference, the limit cycle for the ε
= 1 system is plotted. In order to transition to the fSwing phase, the q-values on the limit
cycle in fStance must be bounded above by the q-coordinates of the fStance critical point. q̂
was chosen as an upper bound of these bounds, so that M̂F is an upper bound of MF (q, v,
mfSt).
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Table 1

Key Notation

Term Description

d constant supraspinal drive fed to CPG neurons

q limb angle with the horizontal

v limb angular velocity

Ia-F, II - F feedback terms to the flexor side

Ia - E, Ib - E feedback terms to the extensor side

FBk total summed feedback to neuron k

FBcrit feedback required to excite an inactive In above threshold; independent of drive

TTC Stance Transition Curve; location in limb phase space where flexor activates

WTC Swing Transition Curve; location in limb phase space where extensor activates

eStance portion of the locomotor phase where Mn - E is active and ground reaction is present

fStance portion of the locomotor phase where Mn - F is active and ground reaction is present

eSwing portion of the locomotor phase where Mn - E is active and ground reaction is absent

fSwing portion of the locomotor phase where Mn - F is active and ground reaction is absent

I moment of inertia of limb with respect to suspension point

K coefficient of gravitational moment

b angular viscosity in the hinge joint

MGRmax amplitude of moment of ground reaction force

ME, MF, MGR moment applied to limb from flexor, extensor, or ground reaction

f function that calculates the output activity of each neuron

H heaviside function that calculates inhibitory output in the reduced model

mphase fixed, drive-dependent motoneuron output during phase; obtained from time average of original model

{} notation indicating that the constant within is piecewise (phasewise) defined

xε; = (qε, vε) saddle point of system ẋ = f(x) + ε;g(x) for ε ∈ [0, 1]

Wu(xε), Ws(xε) unstable, stable manifold from xε

W̃s(xε) trajectory governed by the eSwing vector field that converges to xε as v ↑ 0

γ0 homoclinic orbit emanating from x0

Σ transversal to the flow

Melnikov function; sign indicates how the homoclinic perturbs with increasing ε

fixed muscle moment during phase; obtained to produce negative Melnikov sign

intersection of the stable and unstable manifolds with Σ; k ∈ {u, s}
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