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Abstract
The aim of this study was to assess the accuracy of the Convolution Kernel Compensation (CKC)
method in decomposing high-definition surface EMG (HDsEMG) signals from the pennate biceps
femoris long-head muscle. Although the CKC method has already been thoroughly assessed in
parallel-fibered muscles, there are several factors that could hinder its performance in pennate
muscles. Namely, HDsEMG signals from pennate and parallel-fibered muscles differ considerably
in terms of the number of detectable motor units (MUs) and the spatial distribution of the motor-
unit action potentials (MUAPs). In this study, monopolar surface EMG signals were recorded
from 5 normal subjects during low-force voluntary isometric contractions using a 92-channel
electrode grid with 8 mm inter-electrode distances. Intramuscular EMG (iEMG) signals were
recorded concurrently using monopolar needles. The HDsEMG and iEMG signals were
independently decomposed into MUAP trains, and the iEMG results were verified using a
rigorous a-posteriori statistical analysis. HDsEMG decomposition identified from 2 to 30 MUAP
trains per contraction. 3±2 of these trains were also reliably detected by iEMG decomposition. The
measured CKC decomposition accuracy of these common trains over a selected 10 second interval
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was 91.5±5.8 %. The other trains were not assessed. The significant factors that affected CKC
decomposition accuracy were the number of HDsEMG channels that were free of technical artifact
and the distinguishability of the MUAPs in the HDsEMG signal (P<0.05). These results show that
the CKC method reliably identifies at least a subset of MUAP trains in HDsEMG signals from low
force contractions in pennate muscles.

Keywords
Accuracy assessment; electromyography (EMG); EMG decomposition; high-density surface
EMG; intramuscular EMG; motor unit; pennate muscles

1. Introduction
The intramuscular EMG (iEMG) signal recorded by a needle or fine-wire electrode has been
used for over 80 years (Adrian and Bronk 1929) to investigate the behavior of individual
motor units (MUs). Although muscular activity can easily be recorded by a pair of
electrodes on the skin surface, individual MU discharges cannot be easily distinguished in
surface EMG (sEMG) signal. As result, sEMG signals have typically been analyzed as
interference signals, from which the properties of individual MUs can be inferred only
indirectly (Merletti and Parker 2004, Merletti et al 2008). This interpretation, however, is
difficult and often prone to erroneous conclusions (Farina et al 2004, Zhou and Rymer
2004).

The recently developed technique of high-density surface EMG (HDsEMG) uses multiple
electrodes on the skin surface to obtain a more detailed picture of the sEMG activity (see the
following reviews: Drost et al 2006, Merletti et al 2008). Several methods have been
developed to make use of the more detailed information provided by the HDsEMG signal to
identify individual MU discharge trains (Rau and Disselhorst-Klug 1997, Kleine et al 2000,
Hogrel 2003, Holobar and Zazula 2004, Gazzoni et al 2004, Zazula and Holobar 2005, De
Luca et al 2006, Holobar and Zazula 2007, Kleine et al 2007, Kleine et al 2008). Since
HDsEMG is non-invasive, these methods offer great promise for investigations of MU
behavior. However, because they are quite complex it is important to thoroughly verify their
accuracy.

In this paper, we assess the accuracy of the Convolution Kernel Compensation (CKC)
decomposition method (Holobar and Zazula 2004, 2007) on HDsEMG signals from the
biceps femoris long head muscle (BFlh). BFlh, along with biceps femoris short head,
semimembranosus, and semitendinosus, constitute the “hamstring” muscles of the posterior
compartment of the thigh. BFlh is the strongest and most commonly injured of the hamstring
muscle group (Garrett et al 1989, Garrett 1996, Slavotinek et al 2002, Woods et al 2004,
Hoskins and Pollard 2005), although multiple injury locations are also possible (De Smet
and Best 2000).

BFlh is a pennate muscle, whereas the muscles studied in a previous CKC validation
(Holobar et al 2010), which included biceps brachii, tibialis anterior, and abductor digiti
minimi, were parallel-fibered. CKC decomposition results from BFlh differ from the results
from the other muscles in several respects. Many more distinct MUs are detected in BFlh
than in the other muscles, and the spatial distribution of the motor-unit action potentials
(MUAPs) is quite different, resulting in more complex interference patterns on the surface
of the skin. Moreover, the MUAPs in BFlh do not exhibit clear signs of action-potential
propagation. Thus it is not possible, as it is in parallel-fibered muscles, to use evidence of
appropriate propagation as an indication of a MUAP’s physiological consistency. For these
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reasons, it was of interest to perform a separate assessment of decomposition accuracy in
BFlh.

We assessed the decomposition accuracy using the so-called “two-source” approach (De
Luca et al 2006, Holobar et al 2009, Holobar et al 2010), which is widely accepted as
reliable. This involved comparing the HDsEMG decompositions with decompositions of
simultaneously recorded iEMG signals. Because the characteristics of the surface and
intramuscular signals are so different, it is very unlikely that exactly the same errors will
arise in both decompositions. Therefore the rate of agreement between the two
decompositions provides a lower bound on the accuracy of the HDsEMG decomposition.

The analysis was limited to MUs that were seen reliably enough in the iEMG signal to be
highly confident about their precise discharge times. In this way it was possible to obtain a
firm estimate of the accuracy of the HDsEMG decomposition of these MUs, not just a lower
bound. Limiting the analysis in this way should not have biased the results since the
discriminability of MUs in the HDsEMG and iEMG signals are not directly related. The
discriminability of a MU in the surface signal depends on the global architectural properties
of the MU, including the total number of fibers and their spatial distribution. The
discriminability of the same MU in the intramuscular signal depends on how close the
intramuscular electrode happens to be to one of the fibers, and is a more-or-less random
function of the precise electrode location. The intramuscular electrode essentially selects a
random sample of MUs which are representative of the entire set.

Part of this material was presented previously in abstract form (Marateb et al 2010).

2. Materials and methods
Five healthy male subjects participated in this experiment (mean ± SD, age: 35 ± 5.2 years;
stature: 1.79 ± 0.05 m; body mass: 80 ± 7.5 kg). Subjects did not have any history of
neuromuscular disorders, pain, or regular training of the lower limb. All subjects gave
informed consent to the experimental procedure. The experimental protocol was approved
by the Stanford University Panel on Medical Human Subjects and conformed to the
Declaration of Helsinki.

2.1 General setup
Each subject lay prone on a bed with the knee of the left leg flexed at 45° and the thigh in
slight lateral rotation (following the SENIAM recommendations, Hermens et al 1999). A
cuff was placed around the ankle to measure isometric knee flexion torque. The skin of the
left thigh was shaved, then gently abraded using abrasive paste (Meditec–Every, Parma,
Italy), and then cleaned with water in accordance with the SENIAM recommendations for
skin preparation (Hermens et al 2000). Two adhesive two-dimensional grids of 64 electrodes
(1-mm diameter, 8-mm inter-electrode distance (IED), 13 rows and 5 columns with the first
corner electrode missing, SpesMedica, Italy) were concatenated to form a 5 column by 25
row array. This composite electrode was centered along the line between the ischial
tuberosity and the lateral side of the popliteus cavity with its long axis parallel to that line
(Rainoldi et al 2004). Prior to placement, the alignment of the electrode was verified by
palpating the BFlh during flexion and lateral rotation of the knee against resistance at the
ankle (Kendal et al 1993). The electrode was then attached to the skin using double adhesive
foam and adhesive tape. The electrode holes were filled with Ag/AgCl gel (SpesMedica,
Italy) except for row 13, which was unavailable because of the concatenation, and row 10
and column 3, which were used for needle insertions. Three monopolar needle electrodes
(27 gauge, 37 mm) were inserted into the muscle through three of the unfilled holes.
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2.2 Data acquisition
The HDsEMG signal was recorded in monopolar configuration (EMG-USB-128 channels,
sampling frequency of 2048 Hz, 3dB bandwidth 10–750 Hz, 12 bit AD conversion, LISiN-
OT Bioelettronica, Italy). Power line interference was reduced by using a driven right leg
(DRL) circuit. The DRL-IN and the patient reference straps were connected to the left hand
wrist, while the DRL-OUT electrode was connected to the right hand wrist. The monopolar
iEMG signals were amplified with filter settings of 5 Hz-5 kHz (Nicolet Viking, US),
sampled at 10 kHz and 12 bit resolution, and stored on a Macintosh computer, with the
monopolar reference located proximal to the surface electrode and the ground electrode
located on the medial knee. The iEMG and HDsEMG signal recordings were synchronized
by trigger pulses generated from the iEMG recording system. The knee flexion force was
measured using a load cell and custom made amplifier, and recorded concurrently with the
EMG signals though an auxiliary input of the EMG-USB system with a sampling frequency
of 2048 Hz. The force value was also provided as a feedback to the subject on a circular bar
graph display. The iEMG signals were also high-pass filtered at 1 kHz and displayed in real
time to enable the investigators to visualize the signal complexity and quality during the
experiment.

2.3 Experimental protocol
The maximum voluntary contraction (MVC) force was estimated as the greatest of the force
levels expressed in two maximal contractions of 5-s duration, which were separated by 2
min of rest. After an additional 5 min of rest, the subjects performed isometric constant-
force knee flexion contractions, each lasting 20 s. Three isometric contraction levels were
used: a very low level in which the subject maintained the limb against gravity (a.g.), and
5%, and 10% MVC. Audio feedback of the iEMG signals was provided to help the subjects
maintain steady contractions (Hockensmith et al 2005, Moritz et al. 2005). Visual feedback
of force was also provided for the 5% and 10% MVC contractions. One or more of the
needle electrodes was moved to a new location after each set of contractions.

2.4 Data analysis
The HDsEMG signals were decomposed using the CKC technique (Holobar and Zazula
2007). Prior to the decomposition, the quality of HDsEMG signals was manually assessed
and “bad” channels (either due to the bad electrode-skin contact or short circuit between two
or more surface electrodes) were discarded. Only “good” channels were used for CKC
decomposition. Although the CKC technique is fully automated, a quick visual inspection
and editing of the decomposition results was performed by an experienced operator (20 ± 10
minutes of editing time per contraction).

The iEMG signals were decomposed by an experienced investigator using the EMGlab
computer-aided decomposition tool (http://www.emglab.net, McGill et al 2005). The
investigator checked and edited the results to make sure that the identified firing patterns
were smooth and regular and that all the activity in the signal was accounted for. On
average, 10 hours were spent on editing the three iEMG signals in each contraction.

The accuracy of the iEMG decompositions was assessed using a rigorous a-posteriori
statistical analysis (McGill and Marateb 2011). This analysis used statistical decision theory
in a Bayesian framework to integrate all the shape- and firing-time-related information in the
signal in order to compute an objective a-posteriori measure of confidence in the accuracy of
each discharge in the decomposition. Each discharge was then rated as highly confident if it
was found to be accurate to within ±0.5 ms with a confidence level of > 99%, as
approximate if it was found to be accurate to within ±5.0 ms with a confidence level of >
95%, and as uncertain otherwise. In cases in which the same MU was detected in more than
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one channel, the channel in which the MUAP had the highest signal-to-noise ratio was used.
Only MUs that had no uncertain discharges were used for the CKC accuracy assessment.

The mean discharge rate (MDR) and coefficient of inter-spike interval variation (CoV) of
each MUAP train were estimated using the algorithm described in (McGill 1984), which is
robust against missing and erroneous discharges. Monopolar surface MUAP shapes as
detected by the electrode grid were estimated by spike-triggered averaging on a 20 ms time
window using the MU discharge times detected by iEMG or HDsEMG decomposition. The
mean of the RMS amplitude of the surface MUAP shapes was also calculated over all
HDsEMG channels. For each identified MU in the HDsEMG signal, the composite
decomposability index (CDI) was computed as described in Holobar et al. (2010). This is an
index of how distinguishable the MU was from all the other MUs in the HDsEMG signal.
The overall quality of the HDsEMG decomposition was assessed in terms of the signal-to-
interference ratio (SIR) (Holobar et al. 2010), which is an estimate of the percentage of the
variance of the signal’s energy in the single-differential HDsEMG signal that was explained
by the decomposition.

2.5 CKC accuracy assessment
In accordance with CKC recommendations (Holobar et al., 2010), HDsEMG MUAP trains
that were incomplete (having fewer than 30% of the number of discharges expected on the
basis of estimated MDR) or excessively irregular (CoV > 0.3) were rejected as potentially
unreliable. The remaining HDsEMG MUAP trains were compared with the confidently
decomposed iEMG MUAP trains. A pair of trains was considered to match if at least 30% of
the discharges were time-locked to within ± 0.5 ms (after correcting for a possible fixed
offset due to the different registration points in the two signals).

For each pair of matching MUAP trains, a 10-s analysis window was selected within the 20-
s recorded signal for assessing the CKC accuracy. This window was selected so that it only
contained iEMG discharges that had been rated as highly confident or approximate, and so
that it did not begin or end within 100 ms of the edges of the overall recording window (in
order to avoid the possibility that the corresponding HDsEMG discharge might lie outside
the recording window). If no such window could be found, then this pair was not assessed.

The following parameters were calculated for the iEMG MUAP train:

nI, the total number of discharges that fell within the analysis window.

nIC, the number of those discharges that were rated as highly confident.

The accuracy of the iEMG MUAP train was then calculated as follows: n

(1)

The following parameters were calculated for the HDsEMG MUAP train:

nSC, the number of discharges in the analysis window that matched a highly confident
iEMG discharge within ± 0.5 ms. These were considered to be correct.

nSF, the number of discharges that did not match any iEMG discharge to within ± 5.0
ms. These were considered to be false positives.

The accuracy of the HDsEMG MUAP train was then calculated as follows:
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(2)

This formula assigned an accuracy of 100% if the HDsEMG train matched all the highly
confident iEMG discharges to within ± 0.5 ms. The accuracy was decreased for each missed
HDsEMG discharge and each false positive. HDsEMG discharges that matched approximate
iEMG discharges were not counted one way or the other.

2.6 Statistical Analysis
Statistical analysis for comparing two independent samples involved parametric (t-test) and
non-parametric (Mann-Whitney) tests at the 95% confidence level. Univariate regression
analysis including type II sum of square was used to test for significant differences between
unbalanced study groups (Langsrud 2003). The stepwise method of Multiple Linear
Regression (Hosmer and Lemeshow 2000, Kutner et al 2004) was used to determine the
significance of the relationship between the CKC accuracy (dependent variable) and the
number of “good” channels in the HDsEMG signal, CDI, SIR, and force level (independent
variables). Normality and homoscedasticity, two standard assumptions of regression
diagnostics and model evaluation, were verified by Saphiro-Wilk’s test and Leven’s test,
respectively. The goodness of fit of the regression was evaluated using adjusted multiple
coefficient of determination (adj R2) as the most appropriate measure of R2 for small
samples. Data was analyzed using STATA 10, a statistical software package (StataCorp
2007).

3. Results
A total of 50 simultaneous HDsEMG and iEMG recordings were analyzed. 644 MUAP
trains were identified in the HDsEMG signals, of which 1 was rejected due to an incomplete
firing pattern. 1054 MUAP trains were identified in the iEMG signals, of which 60 were
rejected because of incomplete firing patterns (mostly MUs that were recruited or de-
recruited during the recording epoch). Thus 643 and 994 MUAP trains were analyzed from
the HDsEMG and iEMG signals respectively. A total of 163 MUAP trains were found to
have been identified in common (3 ± 2 per contraction). Of these, 148 had confident iEMG
decompositions and were used in the accuracy assessment.

3.1 MU characteristics
The discharge characteristics of the identified MUs are shown in Table 1. The discharge
characteristics of the MUs identified by HDsEMG and iEMG at the different levels of
contraction were very similar. In particular, the MUs used in the accuracy assessment did
not differ significantly from the entire set of HDsEMG MUs (Mann-Whitney Test; P >
0.05).

The surface RMS amplitudes and the CDIs of the identified MUs are shown in Figure 1 and
Table 2. As can be seen in Figure 1, the characteristics of the MUs used for assessment
(filled circles) were representative of the entire set of HDsEMG MUs (all symbols). The 15
common MUs that were rejected because of unreliable iEMG decomposition (crosses) were
not noticeably biased toward lower RMS or CDI values. The surface RMS amplitudes of the
MUs identified only in the iEMG signal were slightly, but not significantly, smaller than
those of the MUs detected in the HDsEMG signal (independent two-sample t-test; P > 0.05).
Figure 2 shows the HDsEMG and iEMG MUAPs of three of the MUs used for the accuracy
assessment. The HDsEMG MUAPs can be seen to be standing waves with no visible
propagation.
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3.2 CKC Accuracy
The average number of MUs identified per contraction and the accuracy of the
decompositions of the assessed MUs are listed in Table 3. On average, 95 ± 6% of the
discharges of the assessed MUs were confidently seen in the iEMG signal and so were
included in the analysis. The accuracy of the CKC decompositions was 91.5 ± 5.8%. No
significant differences were found in the CKC accuracy between the different contraction
levels (univariate regression analysis; P>0.05).

Figure 3 shows an example of the MUAP trains identified during a contraction of 10%
MVC. In this case, 7 common MUs were assessed out of 14 and 26 MUs identified by
iEMG and HDsEMG decomposition, respectively. Figure 4 shows the spatial distribution of
three HDsEMG MUAPs with different CKC accuracies.

3.3 Factors affecting the CKC Accuracy
Multiple Linear Regression models produced adequate fits (adj R2=0.97) on the transformed
CKC accuracy and the Mean Square Error (MSE) value was 0.05. Preserving the regression
assumption of homoscedasticity, arcsine square-root transformation was used on the CKC
accuracy as proposed for the proportional data in the literature (Draper and Smith 1998,
Montgomery et al 2001). Absence of multicollinearity was verified after analyzing the
correlations among the different independent variables and the variance inflation factor
collinearity diagnostic. The regression results showed that, in the BFlh muscle, only CDI
and the number of “good” HDsEMG channels were significant (p < 0.05) in our model
(Table 4).

4. Discussion and Conclusions
This study assessed the accuracy of the CKC algorithm in decomposing HDsEMG signals
from the pennate BFlh. The assessment was performed by comparing the CKC results with
decomposition results from simultaneously recorded iEMG signals. Only highly reliable
iEMG results were used in order to provide an objective reference against which to assess
the accuracy of the CKC results. This should not have biased the results, because the
discriminability of a MUAP in the iEMG signal depends on the location of the intramuscular
electrode and is not directly related to the discriminability of the same MUAP in the surface
signal. The analysis was limited to a 10-s segment of the overall signal that contained only
highly confident iEMG discharges. The choice of a selected segment might have led to an
accuracy greater than that that would have been obtained from the entire 20s signal. The
assessment was also limited to low level, constant force isometric contractions, which made
it possible to verify the accuracy of the iEMG decompositions using a rigorous statistical
approach (McGill and Marateb, 2011).

Only MUs for which all the iEMG discharges could be verified to be accurate to within ± 5
ms at a 95% level of confidence were included in the analysis. For these MUs, only those
discharges that could be verified to be accurate to within ± 0.5 ms at a 99% level of
confidence were included in the HDsEMG assessment. To receive this “highly confident”
rating, the MUAP template had to match the iEMG signal to within the level of the
background noise, the discharge time had to fit consistently into the MU’s firing pattern, and
there had to be no other MUAP or MUAP combination for which this was the case. Some
iEMG discharges could only be verified to be accurate to within ± 5 ms. It was assumed that
the uncertainty of these discharges in the iEMG signal was due to noise in the iEMG signal
that would not necessarily affect the detection of the discharge in the HDsEMG signal.
Therefore these discharges were not included in the HDsEMG assessment.
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The criterion for assessing the accuracy of the HDsEMG MUAP trains was fairly stringent.
To be considered correct, an HDsEMG discharge had to agree with the iEMG discharge to
within ± 0.5 ms. If the sEMG discharge only agreed within ± 5 ms it was counted as a single
error (imprecise detection), and if it disagreed by more than 5 ms it was counted as two
errors (a miss and a false positive).

To illustrate these points, consider MUs 8 and 11 in Figure 2. The iEMG decomposition
identified 85 discharges of MU 8, 81 of them with high confidence and 4 only to within ± 5
ms. The HDsEMG decomposition identified all of the 81 highly confident discharges to
within ± 0.5 ms, and was thus assessed to be 100% accurate. The iEMG decomposition
identified 82 discharges of MU 11, all of them with high confidence. The HDsEMG
decomposition identified all but 3 of the discharges to within ± 0.5 ms. For the other 3 it was
off by amounts ranging from 10 to 20 ms. These discrepancies were counted as 6 errors,
resulting in an accuracy of 93%.

Overall, the accuracy of the HDsEMG decompositions was quite good (92 ± 6%) for the 148
common MUs selected for assessment. 30% of the errors were misses, 21% were false
positives, and 49% were imprecise detections. Of course the accuracy that can be achieved
for a given MU in a given signal depends on the signal and noise characteristics of that
particular MU and that particular signal. In our tests, the two factors that had the greatest
effect on CKC accuracy were the CDI decomposability index, which is an index of how
distinguishable the different MUs in the signal are compared to the overall intensity of the
signal, and the number of channels that were free of technical artifact and thus provided
information about the signal. It is noteworthy to stress that these results cannot easily be
generalized to non-pennate muscles, as discussed in the sequel. It also remains to be seen
whether comparable accuracy can be achieved in more forceful contractions.

One limitation of the two-source method is that it only allowed assessment of a subset of the
MUAP trains identified by the CKC algorithm. The iEMG electrodes, because of their
smaller pickup volumes, detected only 148 of the total 643 CKC MUAP trains (23%). The
fact that these MUs were typical of the overall set in terms of HDsEMG amplitude and
firing characteristics suggests that they may have constituted a more-or-less random
sampling of the overall set. Therefore it is not unreasonable to think that many of the non-
assessed trains probably also had accuracies comparable to those of the assessed trains. It
should be pointed out, however, that the low SIR values and the fact that some iEMG MUs
with large HDsEMG amplitudes were not detected by the CKC algorithm show that the
CKC algorithm did not identify all of the MUAP trains in the HDsEMG signal.

The results of the current study differed in several respects from those reported in a previous
study of HDsEMG decomposition accuracy in the biceps brachii, tibialis anterior, and
abductor digiti minimi muscles (Holobar et al 2010). The number of MUs detected in the
HDsEMG signal was considerably higher in BFlh than in the other muscles (2–30 compared
to 1–12). Moreover, the surface MUAPs of the MUs that were detected in the iEMG signal
but not in the HDsEMG signal were comparable in RMS amplitude to the ones that were
detected in the HDsEMG signal. In the other muscles, the surface MUAPs of the MUs
detected only in the iEMG signal were much smaller than the ones detected in the HDsEMG
signal. As a result, the MUAPs detected in the HDsEMG signal in BFlh accounted for a
considerably smaller part of the overall HDsEMG signal variance than in the other muscles
(the mean SIR value was 16% in BFlh compared to 38% reported in (Holobar et al., 2010)).
This indicates that not all the MUs that made a significant contribution to the HDsEMG
signal in BFlh were identified by CKC. Finally, the surface MUAPs in BFlh were standing
waves with no clear sign of propagation (e.g., Figure 3), and they had quite different
longitudinal distributions than the MUAPs reported in (Holobar et al., 2010).

Marateb et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2012 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



These differences can be explained in terms of differences in muscle architecture (Mesin et
al., 2011). In the previous study, the HDsEMG recordings were all made over sections of
muscle in which the muscle fibers were parallel to the skin surface, In this case, the MUAP
reflects the propagating action potential volley in the muscle fibers. In BFlh, on the other
hand, the muscle fibers are inclined to the skin surface, inserting obliquely onto a superficial
aponeurosis (Kumakura, 1989). In this case, the main contribution to the MUAP comes from
the terminal wave produced when the action potential volley reaches the aponeurosis, rather
than from the propagating wave. The MUAPs have different longitudinal distributions
because the MUs insert at different proximodistal locations along the aponeurosis. The
pennation brings a large cross-section of the muscle into the view of the surface electrode,
making it possible to detect a larger number of MUs than in parallel-fibered muscles, in
which the superficial MUs are detected preferentially (Holobar et al., 2010).

BFlh is only one of many human muscles that have a pennate architecture in which the
muscle fibers are not parallel to the skin surface (Aagaard et al 2001) and in which action
potential propagation is not clearly seen in the sEMG signal (Masuda and Sadoyama 1987).
Other pennate muscles in the leg include the other hamstring muscles (semimembranosus
and semitendinosus), gastrocnemius, soleus, and the proximal part of tibialis anterior.
HDsEMG techniques may provide a useful noninvasive way to study neural strategies and
subject specific architecture in these muscles. For example, subject-specific information
about the architecture of the hamstring muscles is important to examine the effects of
stretching (Halbertsma et al 1999), to facilitate planning for surgical lengthening in children
with cerebral palsy (Delp et al 1996), and to determine the precise site of strain injuries
(Koulouris and Connell 2005, 2006).

In conclusion, this study provides a strong measure of confidence for users of the CKC
algorithm that decompositions of HDsEMG signals from low force contractions of pennate
muscles that yield MUAP trains with full, regular firing patterns and regularly distributed
MUAPs can be considered trustworthy. Moreover, the results suggest that pennate muscles
with superficial aponeuroses may have an advantage over parallel-fibered muscles in terms
of the number of MUs that can be individually detected using HDsEMG techniques.
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Figure 1.
Amplitude and decomposability of the HDsEMG MUAPs. The MUs that were reliably
detected in the iEMG signal (filled circles), unreliably detected in the iEMG signal
(pentagrams), and not detected in the iEMG signal (open circles) all had roughly similar
distributions.
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Figure 2.
HDsEMG and iEMG MUAP waveforms of three MUs averaged from a 10% MVC
contraction. The top traces show the unfiltered monopolar HDsEMG waveforms from ten
rows (R2–R11) and three columns (C1, C2, C4) of the 2-D array electrode. The bottom
traces show the corresponding iEMG waveforms from three needle electrodes, high-pass
filtered at 1 kHz. Two “bad” HDsEMG channels (R2C4, R7C1) were excluded from the
CKC decomposition analysis. R10 and C3 were not available since they were reserved for
needle insertion. For each MU, the iEMG channel used in the accuracy assessment
procedure is shown with a star.
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Figure 3.
MUAP trains identified from the HDsEMG signal (gray) and iEMG signal (black) from an
isometric, constant force contraction at 10% MVC (the same contraction as in Figure 2).
Each vertical line indicates a MU discharge at a given time instant. MUs 8–14 were
identified in common in both the HDsEMG and iEMG signals. For these MUs, the highly
confident and approximate firings in the iEMG signal are shown by vertical and horizontal
lines, respectively. The force trace is shown at the top and the CKC accuracy of the common
MUs is also shown.
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Figure 4.
Monopolar HDsEMG MUAP waveforms of three MUs from different signals that were
decomposed with very high (96%), moderate (85%), and low (70%) accuracy. “Bad”
channels are left blank and R10, R13 and C3 were not available since they were reserved for
needle insertion.
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Table 4

Multiple linear regression model

adj R2 = 0.97, F=1158, p < 10−3

Dependent variable = transformed CKC accuracy

Predictor variable Unstandardized Coefficients p-value

Beta SE

CDI 2.80 0.350 0.000a

Force level 0.010 0.005 0.065

Number of “good” channels 0.033 0.001 0.000a

SIR 0.003 0.005 0.529

a
Significant independent variables (p < 0.05)
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