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ABSTRACT
Objective Pharmacogenomics evaluations of variability in
drug metabolic processes may be useful for making
individual drug response predictions. We present an
approach to deriving ‘phenotype scores’ based on
existing pharmacogenomics knowledge and a patient’s
genomics data. Pharmacogenomics plays an important
role in the bioactivation of tamoxifen, a prodrug
administered to patients for breast cancer treatment.
Tamoxifen is therefore considered a model for many
drugs requiring bioactivation. We investigate whether
this knowledge-based approach can be applied to
produce a phenotype score that is predictive of the
endoxifen/N-desmethyltamoxifen (NDM) plasma
concentration ratio in patients taking tamoxifen.
Materials and methods We implement a knowledge-
based model for calculating phenotype scores from
patient-specific genotype data. These data include allelic
variants of genes encoding enzymes involved in the
bioactivation of tamoxifen. We performed quantile linear
regression to evaluate whether six phenotype scoring
algorithms are predictive of patient endoxifen/NDM
plasma concentration ratio, and validate our scoring
methods.
Results Our model illustrates a knowledge-based
approach to predict drug metabolism efficacy given
patient genomics data. Results showed that for one
phenotype scoring algorithm, scores were weakly
correlated with patient endoxifen/NDM plasma
concentration ratios. This algorithm performed better
than simple metrics for variation in individual and multiple
genes.
Discussion We discuss advantages of the model,
challenges to its implementation in a personalized
medicine context, and provide example future directions.
Conclusions We demonstrate the utility of our model in
a tamoxifen case study context. We also provide
evidence that more complicated polygenic models are
needed to represent heterogeneity in clinical outcomes.

INTRODUCTION
Pharmacogenomics evaluations are concerned with
the effects of several genes on drug disposition and
drug response. Drug disposition, or pharmacoki-
netics (PK), is the process by which drugs are
handled within the body following administration.
PK processes include drug absorption, distribution,
metabolism, and excretion. Drug response, or
pharmacodynamics (PD), is the effect of drugs on
the body and also describes patient response. Genes
encoding enzymes involved in drug metabolism,

such as cytochrome P450 enzymes (CYPs), have
been investigated in previous studies to determine
the impact of genetic variation on enzyme activity.
Differences in the enzyme activity of CYPs can
affect the rate of drug metabolism and in turn may
contribute to the duration and intensity of the
pharmacological action of drugs. In theory,
knowledge of genetic variation in genes encoding
CYPs can allow physicians to prescribe drugs and
doses in a way that is better tailored to expected
patient responses and to identify individuals at risk
for adverse drug reactions (ADRs) or disease reoc-
currence. We present a general approach to calcu-
lating ‘phenotype scores’ (numeric scores
representing an individual’s genetic variation in
genes encoding enzymes involved in a drug’s
metabolic pathway) based on existing pharmaco-
genomics knowledge and a patient’s genomics data.
Using tamoxifen as a case study, patient genomics
data utilized in phenotype score calculations
include the allelic variant status of genes encoding
CYPs involved in the bioactivation of tamoxifen
(eg, CYP2D6*1/*10, *1 and *10 are allelic variants
of the cytochrome P450 2D6 gene). Existing phar-
macogenomics knowledge includes: (1) curated
findings from the primary literature where associ-
ations between gene allelic variant and enzyme
activity (‘allelic variant’e‘enzyme activity ’ associ-
ations) are reported (eg, CYP2D6*1/*10, *1 allele is
associated with normal enzyme activity and *10
allele is associated with decreased enzyme activity);
(2) evidence of associations between genotype and
metabolizer activity, or ‘genotype’e‘metabolizer
activity ’ associations (eg, CYP2D6*1/*10, an allele
associated with normal enzyme activity and an
allele associated with decreased enzyme activity is
associated with overall extensive metabolizer
activity); and (3) curated evidence of drug meta-
bolic properties (eg, CYP2D6 is a major enzyme
involved in the metabolism of tamoxifen). The
primary sources of evidence (evidence sources)
utilized in this work include SuperCYP (http://
bioinformatics.charite.de/supercyp/),1 a review
article that reports ‘genotype’e‘metabolizer
activity ’ associations based on studies involving
tamoxifen,2 and the Pharmacogenomics Knowledge
Base (PharmGKB, http://pharmgkb.org).3

SuperCYP is a database that contains information
on drugs, CYPedrug interactions, and alleles.
Curated evidence of ‘allelic variant’e‘enzyme
activity ’ associations is made available within
SuperCYP. PharmGKB is a comprehensive resource
for pharmacogenomics that provides curated
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knowledge about the impact of genetic variation on drug
response. Curated drug metabolic pathway evidence is made
available within PharmGKB and is utilized in this work.
PharmGKB is also utilized as a source to supplement informa-
tion on ‘allelic variant’e‘enzyme activity’ associations found in
SuperCYP.

We propose a model for reasoning with pharmacogenomics
knowledge and clinical (genomics) data, and build a prototype
model implementation. Our model incorporates an evidential
approach to determine with what pharmacogenomics knowledge
reasoning should be performed (involves specifying some belief
criteria or minimal evidence requirement). Six phenotype scoring
algorithms are investigated in total (see the ‘Reasoning rules and
objects’ section).

Pharmacogenomics plays an important role in the bioactiva-
tion of tamoxifen, an anti-estrogen agent administered to
patients for breast cancer treatment and prevention. Tamoxifen
can therefore be considered a model for many drugs requiring
bioactivation. Previous work has demonstrated that tamoxifen
is a prodrug and CYPs play a role in catalyzing the formation of
the anti-estrogenic metabolite endoxifen, with N-desmethylta-
moxifen (NDM) as the prominent intermediate metabolite.
Here, we explore tamoxifen as a case study for our prototype
model implementation and evaluate how well phenotype scores
generated by the reasoning system predict the patient endox-
ifen/NDM plasma concentration ratio (as a marker for drug
metabolism efficacy).

In general, anticancer drugs such as tamoxifen provide an
interesting test bed for investigating personalized healthcare,
specifically pharmacogenomics. Despite the recent increase in
existing anticancer drugs, benefits achieved have been less than
desired.4 Anticancer drugs are also frequently associated with
suspected ADRs.5 6 Lack of efficacy and occurrences of toxicity
due to anticancer drugs may be partially due to inter-individual
variability in drug metabolism.

BACKGROUND AND SIGNIFICANCE
We present a model that takes an evidential approach to
reasoning across assertions about pharmacogenomics and
assigns phenotype scores to breast cancer patients taking
tamoxifen. Related work includes creation of the Drug Interac-
tion Knowledge Base (DIKB)7 8 and use of activity scores to
predict phenotype in other studies.9e11

Evidential approach to knowledge representation
This work derives assertions about ‘allelic variant’e‘enzyme
activity ’ and ‘genotype’e‘metabolizer activity ’ associations

from the published literature. A similar approach was taken to
curate and reason across assertions about drug metabolism
knowledge. The DIKB7 uses a model for predicting metabolic
inhibition interactions that incorporates an evidence base (EB)
and a knowledge base (KB). The EB contains assertions (or facts)
about a drug’s mechanistic properties, while the KB contains
assertions included in the EB that meet some belief criteria (the
minimal evidence requirement).
This paper investigates whether a similar approach might be

taken with patient genotype data and pharmacogenomics
knowledge. We link ‘allelic variant’e‘enzyme activity ’ and
‘genotype’e‘metabolizer activity’ assertions to evidence for and
against these assertions. Similar to the DIKB approach, our EB
contains the full set of assertions and our KB contains a subset of
assertions based on a belief criterion. In this case, the EB
contains all publication-related assertions including ‘allelic
variant’e‘enzyme activity ’ association assertions (extracted
from SuperCYP, and in some cases PharmGKB). The KB contains
a subset of the publication-related assertions, assertions about
drug metabolic pathway properties (extracted from PharmGKB),
and assertions about patient genomics data (from a clinical data
source). An overview of our adapted architecture is shown in
figure 1.

DIKB evidence taxonomy
We utilize the DIKB evidence taxonomy8 to classify evidence
that a given gene allelic variant has an effect on enzyme activity.
The taxonomy contains 36 evidence types; types relevant to this
work are shown in box 1. For our prototype system we utilize
a subset of evidence types including in vitro experiment, retro-
spective study, and clinical trial study.

Activity scores for phenotype prediction: tamoxifen case study
There are several studies where gene or enzyme activity scores
were assigned to patients for the purpose of predicting their
response to drug therapy.9e11 None of these studies take the
evidential approach we propose here, but they did provide us
with some lessons. The work of Borges et al9 compares the ability
of three CYP2D6 gene scoring systems10e12 to predict their
CYP2D6 phenotype, where the CYP2D6 phenotype is the
endoxifen/NDM plasma ratio in tamoxifen pharmacogenetics
trial women participants. Similarly, we evaluate the ability of our
scoring system to predict tamoxifen drug metabolism efficacy
(via the endoxifen/NDM plasma ratio) in women. We also use
a scoring convention similar to those proposed to predict
CYP2D6 activity, where zero corresponds to the least amount of
activity. In previous work, the endoxifen/NDM plasma ratio was

Figure 1 Prototype reasoning system
architecture: a prototype
implementation of the PEMRIC model.
SuperCYP is our primary source for
genotypeephenotype association
knowledge. PharmGKB is our primary
source for pharmacokinetic pathway
knowledge. The clinical data source
contains patient data. The dashed line
linking PharmGKB to the evidence base
represents the inclusion of PharmGKB
curated publications into the evidence
base only for the drug-oriented
approach. The user interface element is
included for illustrative purposes.
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identified as the best predictor of CYP2D6 activity.13 We believe
the endoxifen/NDMplasma ratio also serves as a good marker for
drug metabolism efficacy in our tamoxifen case study.

In Fuhr ’s discussion of pharmacogenetic-based clinical
scores,14 he outlines reasons why the medical community is
reluctant to apply genetic information on drug metabolizing
enzymes for treatment personalization. Ambiguous and
complex algorithms for interpreting genetic information are
unlikely to be utilized. We aim to present a transparent approach
to provide a score that characterizes the activity of enzymes
involved in the metabolism of a drug.

METHODS
The Pharmacogenomics Evidence Mapping for Reasoning with
Individualized Clinical Data (PEMRIC) model incorporates an
evidential approach to calculating phenotype scores from
patient-specific genotype data, in the context of making
prescribing decisions. Six different approaches to calculating
phenotype scores are described in this manuscript that use the
following methods:
< Method of selecting evidence: enzyme-oriented or drug-

oriented (ie, KB contains all ‘allelic variant’e‘enzyme activity’
association facts reported in the literature, or KB contains only
drug-specific ‘allelic variant’e‘enzyme activity’ facts)

< Method of calculating phenotype score: enzyme activity or
metabolizer activity (ie, calculations incorporate ‘allelic
variant’e‘enzyme activity ’ facts or ‘genotype’e‘metabolizer
activity ’ facts, respectively)

< Method of calculating phenotype score: unweighted or
weighted (ie, weights assigned to enzymes according to
their level of involvement in metabolic activities).
Below, we provide an overview of PEMRIC model methods

for selecting and reasoning with evidence to provide phenotype
scores.

A model for reasoning with pharmacogenomic evidence and
patient clinical data
The PEMRIC model builds on the approach used to develop the
DIKB that incorporates an EB, a KB, and use of the DIKB
evidence taxonomy. The PEMRIC model extends the DIKB
model to include evidence sources and clinical data sources (see
figure 1). Evidence sources utilized in this study are SuperCYP,
PharmGKB, and a review article that reports ‘genotype’e
‘metabolizer activity ’ associations for CYP enzymes involved
in tamoxifen metabolism.2 The clinical data source used in this
study was produced by the Specific Estrogen Receptor
Modulator Pharmacogenetics (SERM) group (now called the
Consortium on Breast Cancer Pharmacogenomics, or COBRA)15

and made publically available through the PharmGKB website.
The DIKB model and the PEMRIC model both represent
knowledge as frames and take a rule-based strategy for
reasoning. With a frame-based approach, objects are represented
as classes, classes have attributes (or slots), and slots have
assigned values.
We represent the following objects for the EB and KB: patient

(patient class), patient genotype data (patient-enz-genotype
class), evidence of medication PK mechanism (med-metabolite
class), evidence of ‘allelic variant’e‘enzyme activity ’ association
(enz-allele-activity-publication class), evidence of ‘genotype’e
‘metabolizer activity ’ association (metabolizer-activity-publica-
tion class), and evidence of enzyme contribution in a medication
metabolic pathway (enz-contribution class). Table 1 lists
examples of each class and describes components of the frame-
based representation. Each object has a class name and one or
more ‘slots,’ where each slot represents an important attribute
of the object. In the PEMRIC model, each object represents an
assertion (or fact).
The PEMRIC model also incorporates rule-based reasoning

using forward chaining inference. Rules are ifethen statements,
where a given set of conditions will lead to a set of results.
Assertions are used to determine whether conditions defined in
a rule are true. Given the conditions defined in a rule are true, an
action will take place. Forward chaining inference specifically
starts with a collection of assertions used to infer new assertions
until a goal is reached or until nothing new can be inferred.
Therefore, the action is often to infer a new assertion, which is
then added to the EB or KB. Reasoning concludes when all rele-
vant assertions are considered in calculating a phenotype score.
Rules included in the PEMRIC EB and KB are described in table 2.
The PEMRIC model incorporates a subset of DIKB taxonomy

evidence types to specify the belief criteria for including
evidence of ‘allelic variant’e‘enzyme activity ’ associations in
the KB. Evidence types specified for publications include in vitro
(in vitro experiment evidence type in box 1) and in vivo
(retrospective and clinical trial study evidence types in box 1)
evidence. A belief criterion distinct from the DIKB evidence
taxonomy was specification of the drug of focus in a published
study. We took two approaches to implementing the PEMRIC
model to facilitate comparison of the predictability of pheno-
type scores calculated using an enzyme-oriented approach
(without the criterion) and using a drug-oriented approach
(with the criterion). Taking an enzyme-oriented approach, any
publication reporting an ‘allelic variant’e‘enzyme activity ’
association for a gene is included in the KB. For the enzyme-
oriented approach, the following was one of three rules
(a rule for each evidence type) included in the EB specifying
whether an ‘allelic variant’-‘enzyme activity ’ association is
believed to be sufficient evidence for inclusion in the KB: IF

Box 1 A subset of the Drug Interaction Knowledge Base
(DIKB) evidence taxonomy

Evidence types
Clinical trial types
< A pharmacokinetic clinical trial

e A genotyped pharmacokinetic clinical trial
e A phenotyped pharmacokinetic clinical trial

Retrospective study types
< A retrospective population pharmacokinetic study

In vitro experiment types
< A drug metabolism identification experiment

e A CYP450, recombinant, drug metabolism identification
experiment with possibly NO probe enzyme inhibitor(s)

e A CYP450, human microsome, drug metabolism identifi-
cation experiment using chemical inhibitors

Observation-based report
< An observation-based adverse drug event (ADE) report (eg,

FDA Adverse Event Reporting System)
< A published observation-based ADE report

Non-traceable statement types
< A non-traceable, but possibly authoritative, statement
< A non-traceable drug-label statement
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publication q reports that allelic variant d has-allele-activity f
AND publication q has-evidence-type ‘in vitro experiment’
THEN allelic variant d has-sufficient-evidence-of-allele-activity
f. With the drug-oriented approach, evidence provided by
a publication is included in the KB if the drug of focus in
the study is a drug being taken by the patient. For the drug-
oriented approach, the following rule was one of three rules
included in the EB: IF publication q reports that allelic variant
d has-allele-activity f AND patient p is taking medication m
AND publication q has-drug-studied m AND publication q
has-evidence-type ‘in vitro experiment’ THEN allelic variant
d has-sufficient-evidence-of-allele-activity f.

The model also has flexibility to incorporate other evidence
types. A new evidence type can be incorporated into the system
by adding a rule to the EB, for example, by adding a rule spec-
ifying that an ‘allelic variant’e‘enzyme activity’ assertion of
a non-traceable drug-label statement evidence type is believed to be
sufficient evidence to be included in the KB: IF publication q
reports that allelic variant d has-allele-activity f AND publica-
tion q has-evidence-type ‘a non-traceable drug-label statement’
THEN allelic variant d has-sufficient-evidence-of-allele-activity f,
where a non-traceable drug-label statement is an assertional
statement found in a drug label that does not provide any
traceable citations for its evidence support.8

Prototype reasoning system design in a tamoxifen case study
context
Our reasoning system is a prototype implementation of the
PEMRIC model for reasoning with pharmacogenomics knowl-
edge and clinical data. The initial trigger for the system is
retrieval of a medical record number of a patient who is
prescribed tamoxifen. Given the patient is being prescribed
tamoxifen, the patient’s genomics data (clinical source data),
and KB facts, our reasoning system calculates a phenotype score.
System components are summarized in figure 1.

Pharmacogenomics evidence sources and tamoxifen case study
data
Data and knowledge sources from which we derive assertions
include two evidence sources, one review article, and one clinical
data source. The clinical data source produced by COBRA
includes data for 30 subjects who received 20 mg/day tamoxifen.
Genotype information utilized in this work includes the results
from CYP3A5, CYP2D6, CYP2C9, and CYP2C19 genetic tests.
The mode of ascertaining genotypes is specified in the
PharmGKB dataset.16

Supplementary phenotypic information was obtained
directly from the COBRA group. Specific phenotypic infor-
mation that was utilized in this work includes measured

Table 1 Example Java Expert System Shell (JESS) facts derived from the clinical data source, PharmGKB, SuperCYP, and review article sources

Unformatted slots were utilized in all approaches. Bolded slots were only utilized in the drug-oriented approach.
Italicized slots were only utilized with the ‘genotype’e’metabolizer activity’ scoring system. Underlined slots were captured, but not utilized in any approach. IM, intermediate metabolizer.
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amounts of endoxifen and NDM at 4 months after initiation of
tamoxifen. Two patients were excluded from analyses because
they did not have recorded values for endoxifen and NDM
plasma levels. We considered metabolite plasma levels at
4 months because tamoxifen serum concentrations reach
a steady state by 4 months.17 The primary phenotype we
wished to predict using our scoring algorithms was the
endoxifen/NDM plasma concentration ratio (as a marker for
drug metabolism efficacy).

Evidence sources include PharmGKB and SuperCYP. We
derived computable assertions from evidence of the drug PK
pathway reported in PharmGKB. Also, with a focus on CYPs, we
derive ‘allelic variant’e’enzyme activity ’ association assertions
from SuperCYP (and in some cases PharmGKB). Since our
evaluation is focused on patient genotype in the context of
a drug metabolism, we assume all PK pathway knowledge from
PharmGKB to be true. In our evaluation, in vitro experiments,
and retrospective and clinical trial (referred to as ‘in vivo’ studies
in the SuperCYP database) evidence types are considered
acceptable evidence to support a given ‘allelic variant’e‘enzyme
activity ’ association assertion.

Currently, information needed to define ‘genotype’e
‘metabolizer activity’ associations are not captured in
PharmGKB or SuperCYP (ie, metabolizer activity levels associ-
ated with various genotypes). CYP metabolizer activity levels in
patients taking tamoxifen that result from CYP2C9, CYP2C19,
and CYP2D6 genotypes are described in a single review article,2

but CYP3A5 is not covered. Therefore, we derived assertions for
CYP2C9, -2C19, and -2D6 from the review article, and a conser-
vative approach was taken to define ‘genotype’e
‘metabolizer activity ’ associations for CYP3A5 (ie, designation as
‘extensive metabolizer ’ with at least one wild-type allele, and
‘intermediate metabolizer ’ otherwise). Similar to metabolic
properties reported in PharmGKB, these assertions are assumed
to be true.

Collecting pharmacogenomics evidence for tamoxifen case
study
Using tamoxifen as an example, we performed the following
manual steps:
Step 1. Define assertions for tamoxifen metabolism properties
according to tamoxifen PK pathway details available on the

Table 2 Pseudocode description of evidence base (EB) and knowledge base (KB) rules

Rule Condition (data/knowledge source) Action

EB R1 < Publication q reports that allelic variant d has allele activity f (SuperCYP)
< Publication q has-evidence-type ‘drug metabolism identification

experiment’ (in vitro)

< Allelic variant d has-sufficient-evidence-of-allele-activity f

R2 < Publication q reports that allelic variant d has allele activity f (SuperCYP)
< Publication q has-evidence-type ‘retrospective population PK study’ (in vivo)

< Allelic variant d has-sufficient-evidence-of-allele-activity f

R3 < Publication q reports that allelic variant d has allele activity f (SuperCYP)
< Publication q has-evidence-type ‘pharmacokinetic clinical trial experiment’

(in vivo)

< Allelic variant d has-sufficient-evidence-of-allele-activity f

KB R4 < Patient p is taking medication m (clinical data source)
< There is pathway information on medication m (PharmGKB)

< Add medication m to list-of-active-metabolites for patient p

R5 < Patient p is taking medication m (clinical data source)
< Medication m has downstream pathway metabolite n (PharmGKB)

< Add metabolite n to list-of-active-metabolites for patient p

R6 < Patient p has test results for enzyme c (clinical data source)
< Enzyme c is involved in upstream activity associated with metabolite n

(PharmGKB)
< Patient p has metabolite/medication n in their list-of-active-metabolites

< Add enzyme c to list-of-active-enzymes-with-test-results for patient p

R7 < Patient p has allelic variant d for allele 1 of gene encoding enzyme c
(clinical data source)

< There is not sufficient evidence associated with allele activity for allelic
variant d (EB)

< Allelic variant d has-sufficient-evidence-of-allele-activity ‘wild type’

R8 < Patient p has allelic variant d for allele 2 of gene encoding enzyme c
(clinical data source)

< There is not sufficient evidence associated with allele activity for allelic
variant d (EB)

< Allelic variant d has-sufficient-evidence-of-allele-activity ‘wild type’

R9 < Patient p has enzyme c in their list-of-active-enzymes-with-test-results
< Patient p has allelic variant d for allele 1 of gene encoding enzyme c

(clinical data source)
< Allelic variant d has-sufficient-evidence-of-allele-activity f (EB)

< Patient p has-allele-activity f for allele 1 of gene encoding enzyme c

R10 < Patient p has enzyme c in their list-of-active-enzymes-with-test-results
< Patient p has allelic variant d for allele 2 of gene encoding enzyme c

(clinical data source)
< Allelic variant d has-sufficient-evidence-of-allele-activity f (EB)

< Patient p has-allele-activity f for allele 2 of gene encoding enzyme c

R11 < Patient p has allelic variant d with activity f for allele 1 of gene
encoding enzyme c (clinical data source)

< Patient p does not have a genotype-activity object defined

< Patient p has-genotype-activity f for allele 1 of gene encoding enzyme c
(values nil for allele 2)

R12 < Patient p has allelic variant d with activity f for allele 2 of gene
encoding enzyme c (clinical data source)

< Patient p has a genotype-activity object with nil values for allele 2

< Patient p has-genotype-activity f for allele 2 of gene encoding enzyme c
(values already assigned for allele 1)

R13 < Patient p has a genotype-activity object with non-nil values for allele 1
and allele 2 for gene encoding enzyme c

< Patient p does not have a phenotype-score object defined

< Patient p has-phenotype-score g (where g is the score calculated from the
activity for gene encoding enzyme c)

< Add enzyme c to list-of-enzymes accounted for in phenotype score for
patient p

R14 < Patient p has a genotype-activity object with non-nil values for allele 1
and allele 2 for gene encoding enzyme c

< Patient p has a phenotype-score object defined
< No activity values for enzyme c have been added to phenotype-score

for patient p

< Patient p has-phenotype-score g+h (where g is the previous score, and
h is the score calculated from the activity for gene encoding enzyme c)

< Add enzyme c to list-of-enzymes accounted for in phenotype score for
patient p

For each rule (column 2), the bulleted conditions (column 3) are AND statements. The bulleted actions (column 4) are new facts that would be added to the EB or KB if all of the conditions of
a rule are satisfied. Rules R1, R2, and R3 specify that EB facts from three evidence types (‘drug metabolism identification experiment,’ ‘retrospective population PK study,’ and ‘pharmacokinetic
clinical trial experiment’) would be included in the KB. The order in which rules are fired is undefined and they are thus fired sequentially. Note: pseudocode describes only the enzyme-oriented
approach. EB, evidence base; KB, knowledge base; PK, pharmacokinetics.
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PharmGKB website.3 18 As mentioned previously, these asser-
tions are assumed to be true. Therefore, they are directly
included in our KB.
Step 2. Perform a SuperCYP polymorphism search for each
enzyme involved in the tamoxifen PK pathway. Results include
reports of ‘allelic variant’e‘enzyme activity ’ associations and
references the PubMed ID of publications containing evidence of
each relationship.
Step 3. Define gene ‘allelic variant’e‘enzyme activity ’ association
assertions and classify evidence types for each publication using
the DIKB evidence taxonomy.
Step 4. Enter evidence items into the EB.
Step 5. Define ‘genotype’e‘metabolizer activity ’ association
assertions according to reports summarized in the review
article2 (see table 3). These assertions are assumed to be true
and are directly included in our KB.

Reasoning rules and objects
Our prototype system performs reasoning over PK pathway
knowledge, and ‘allelic variant’e‘enzyme activity ’ or
‘genotype’e‘metabolizer activity ’ association knowledge to
calculate a phenotype score. EB ‘allelic variant’e‘enzyme
activity ’ association facts are included in the KB if there is at
least one primary research article classified as having drug
metabolism identification experiment results to support the
fact and according to whether an enzyme-oriented or drug-
oriented approach is being taken. All PK pathway knowledge
facts are included in the KB. We define both facts and rules
using the Java Expert System Shell (JESS),19 a Java-based rule
engine and scripting environment. When contradictory
evidence was observed (eg, CYP2D6*10 has reports indicating
non-functional and decreased enzyme activity), we included
the most commonly reported value in the KB (eg, CYP2D6*10
leading to decreased enzyme activity). If there was a tie, facts
were included in the KB according to the following pri-
ority: increased>wild-type>decreased>non-functional. Once

reasoning concludes, the system assigns a patient their
phenotype score.
We will describe the main approaches taken to select evidence

for phenotype score calculations (enzyme-oriented and drug-
oriented approaches), to define facts used for calculations (‘allelic
variant’e‘enzyme activity’ and ‘genotype’e‘metabolizer
activity ’ association assertions), and to incorporate into
phenotype score calculations weighting values indicating the
involvement of enzymes in metabolic activities (weighted and un-
weighted approaches).
Six phenotype scoring algorithms are investigated in total: (1)

enzyme-oriented, un-weighted, ‘allelic variant’e‘enzyme
activity ’ scoring algorithm; (2) drug-oriented, un-weighted,
‘allelic variant’e‘enzyme activity ’ scoring algorithm; (3)
drug-oriented, un-weighted, ‘genotype’e‘metabolizer activity ’
scoring algorithm; (4) enzyme-oriented, weighted, ‘allelic
variant’e‘enzyme activity ’ scoring algorithm; (5) drug-oriented,
weighted, ‘allelic variant’e‘enzyme activity ’ scoring algorithm;
and (6) drug-oriented, un-weighted, ‘genotype’e‘metabolizer
activity ’ scoring algorithm. An ‘enzyme-oriented, un-weighted,
‘genotype’e‘metabolizer activity’ scoring algorithm’ and
a ‘enzyme-oriented, weighted, ‘genotype’e‘metabolizer activity ’
scoring algorithm’ are not investigated because the review
article2 utilized to determine metabolizer activity is specific to
studies involving tamoxifen.

Evidence selection: enzyme-oriented approach
As described above in Step 3, in our evidence collection methods,
we derive gene ‘allelic variant’-’enzyme activity’ assertions from
publications. Using the enzyme-oriented approach to reasoning,
the following objects were captured for each ‘allelic
variant’e‘enzyme activity ’ fact: the PubMed ID of the publi-
cation containing the evidence; gene allelic variant (eg,
CYP2C9*2); allele activity (eg, decreased); and evidence type (eg,
in vitro) (see pubmed-id, enz-allele, enz-activity, and evidence-
type slots for enz-allele-activity-publication object in table 1).

Table 3 Genotypes and their associated metabolizer phenotypes

Metabolizer activity Gene Allele activity Enzyme-oriented approach Drug-oriented approach

Ultrarapid metabolizer CYP2C9 Unknown e e

CYP2C19 Increased/increased e e

CYP2D6 Wild-type/increased;
increased/increased

e e

CYP3A5 Unknown e e

Extensive metabolizer CYP2C9 Wild-type/wild-type *1/*1,*1/*2,*1/*3 (*1¼wild-type, *2¼decreased,
*3¼wild-type)

*1/*1,*1/*2 (*1¼wild-type, *2¼decreased)

CYP2C19 Wild-type/wild-type *1/*1,*1/*2 (*1¼wild-type, *2¼decreased) *1/*1 (*1¼wild-type)

CYP2D6 Wild-type/wild-type;
wild-type/decreased;
wild-type/non-functional

*1/*1,*1/*4, *1/*6,*1/*10 (*1¼wild-type,
*4¼decreased, *6¼wild-type, *10¼decreased)

*1/*1,*1/*4,*1/*6,*1/*10 (*1¼wild-type,
*4¼non-functional, *6¼non-functional,
*10¼non-functional)

CYP3A5 Unknown *1/*1,*1/*3 (*1¼wild-type, *3¼decreased) *1/*1,*1/*3 (*1¼wild-type, *3¼non-functional)

Intermediate metabolizer CYP2C9 Wild-type/non-functional *2/*2 (*2¼decreased) *1/*3,*2/*2 (*1¼wild-type, *2¼decreased,
*3¼non-functional)

CYP2C19 Wild-type/non-functional e *1/*2 (*1¼wild-type, *2¼non-functional)

CYP2D6 Decreased/decreased;
decreased/non-functional

*4/*4 (*4¼decreased) e

CYP3A5 Unknown *3/*3 (*3¼decreased) *3/*3 (*3¼non-functional)

Poor metabolizer CYP2C9 Non-functional/non-functional e e

CYP2C19 Non-functional/non-functional e e

CYP2D6 Non-functional/non-functional e *4/*4 (*4¼non-functional)

CYP3A5 Unknown e e

The ‘Allele activity’ column of this table is adapted from Sheffield and Pillimore2 (review article). ‘increased,’ ‘wild-type,’ ‘decreased,’ and ‘non-functional’ refer to associated allelic activity.

J Am Med Inform Assoc 2012;19:840e850. doi:10.1136/amiajnl-2011-000405 845

Research and applications



All evidence of gene ‘allelic variant’e’enzyme activity ’ was
included in the KB as long as the evidence criterion described in
the previous section was satisfied. With the drug-oriented
approach, information about the drug studied is also incorpo-
rated in our reasoning algorithms.

Evidence selection: drug-oriented approach
The drug-oriented approach to reasoning required adding a drug
slot to the enz-allele-activity-publication object for each ‘allelic
variant’e’enzyme activity ’ fact representing the drug studied
(see table 1). Evidence was then included in the KB if: (1) defined
evidence criteria are satisfied; and (2) the study involves the drug
of interest (ie, tamoxifen).

A subset of the phenotype scoring algorithms considered in
this work incorporate weighting enzymes in the calculation. A
weighted approach incorporates a numeric value indicating the
involvement of an enzyme in the metabolic activities of the drug
(ie, allelic variants in genes encoding major drug metabolizing
enzymes are weighted higher than minor enzymes). All enzymes
involved in the metabolism of the drug are considered equal
contributors in the un-weighted approach.

Phenotype score calculation: un-weighted approach

pscore ¼ +
g

i¼1

 
+
2

j¼1
aij

!
(1)

pscore ¼ +
g

i¼1
mi (2)

The phenotype score is calculated according to equations (1) or
(2). pscore is the phenotype score calculated as the sum of allele
activity levels (a) or metabolizer activity levels (m), across all
genes (g). The ‘allelic variant’e‘enzyme activity ’ scoring system
and ‘genotype’e‘metabolizer activity ’ scoring system are
described below. We implemented both un-weighted and
weighted approaches because we were interested in whether
accounting for the relative contribution of enzymes involved in
a drug metabolic pathway would affect our ability to predict
drug metabolism efficacy.

Phenotype score calculation: weighted approach

pscore ¼ +
g

i¼1

 
+
2

j¼1
aijwi

!
(3)

pscore ¼ +
g

i¼1
ðmiwiÞ (4)

With the weighted approach the phenotype score is calculated
according to equation (3) or (4). These differ from equations (1)
and (2) in the inclusion of a weight factor (w). Each allelic or
genotype activity value is multiplied by the weight factor
assigned to that gene. Genes encoding major and minor metabo-
lizing enzymes for a given drug are assigned different weight
factors. We added a new object to describe the enzyme contribu-
tion in the drug PK pathway (see enzyme-contribution object in
table 1). An enzymewas identified as major or minor according to
PharmGKB PK pathway evidence. In this case, enzymes CYP2D6
and CYP3A5 were described as major metabolizing enzymes, and
CYP2C9 and CYP2C19 as minor metabolizing enzymes. The
numeric major/minor values assigned are as follows:

< Gene encodes major metabolizing enzyme: 1.0
< Gene encodes minor metabolizing enzyme: 0.5

Phenotype scoring algorithms use one of two methods
leveraging existing pharmacogenomics knowledge to assigning
numeric values to patient genetic variant status. One method
assigns numeric values according to ‘allelic variant’e‘enzyme
activity’ associations, and the other method assigns numeric
values according to ‘genotype’e‘metabolizer activity’ associations.

Phenotype score: ‘allelic variant’e‘enzyme activity’ scoring
system
Allelic activities (a) utilized in the phenotype score calculations
are assigned according to a convention consistent with other
studies10e12:
< Increased allele activity: 1.5
< Wild-type allele activity: 1.0
< Decreased allele activity: 0.5
< Non-functional allele activity: 0.0

Phenotype score: ‘genotype’e‘metabolizer activity’ scoring system
Patient genotypes are assigned to metabolizer phenotypes as
described in table 3 (see enz-allele-activity-publication object in
table 1). Metabolizer activities (m) utilized in the phenotype
score calculations are assigned according to a convention similar
to the allele activity scoring system:
< Ultrarapid metabolizer (UM) metabolizer activity: 1.5
< Extensive metabolizer (EM) metabolizer activity: 1.0
< Intermediate metabolizer (IM) metabolizer activity: 0.5
< Poor metabolizer (PM) metabolizer activity: 0.0

PEMRIC model implementation: reasoning rules
Rules for reasoning with assertions defined in the KB are
summarized in table 2. Rules for including facts about ‘allelic
activity ’e‘enzyme activity ’ associations, taking an enzyme-
oriented approach, are described. Rules to assign metabolizer
activity values based on an individual’s genotype (two allelic
variant activity values), that is, ‘genotype’e’metabolizer
activity ’ associations, are not shown. Neither are the rules for
applying a drug-oriented approach shown.

PEMRIC model implementation: reasoning facts
We took two main approaches (enzyme-oriented and drug-
oriented) to encoding EB facts that were relevant to our
tamoxifen case study dataset.

EB facts
Taking the enzyme-oriented approach, our EB included 85 ‘allelic
variant’e‘enzyme activity ’ facts (from SuperCYP). However,
there is currently only one publication reporting results from
a tamoxifen study within SuperCYP. Therefore, in order to
facilitate our drug-oriented approach to reasoning, we supple-
mented ‘allelic variant’e‘enzyme activity ’ facts derived from
SuperCYP, with facts derived from curated publications in
PharmGKB. PharmGKB has curated drugegene relationships as
well as curated gene variant annotations. Two authors of this
manuscript reviewed publications curated by PharmGKB as
having evidence of geneetamoxifen relationships for CYP2D6,
CYP2C9, CYP2C19, and CYP3A5 genes (32 publications). This set
of publications was narrowed down to nine publications that are
vitro experiment, or retrospective or clinical trial study evidence
types, and define activity level for at least one gene allele.
For each PharmGKB publication, the authors read the

publication and manually recorded all slot values for enz-alle-
le-activity-publication object facts (example values are shown in
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table 1). Multiple enz-allele-activity-publication facts can be
derived from a single publication (ie, one publication can report
results on multiple populations and multiple allelic variants).

KB facts
The facts directly included in the KB are: seven PK pathway
facts (PharmGKB), 140 facts from the clinical data source (facts
representing the existence of 28 test patients, and facts for the
results of five genetic tests for each test patient), and 40 ‘geno-
type’e‘metabolizer activity ’ association facts (one for each
combination of increased, wild-type, decreased, and non-functional
for two alleles of each gene). Fifteen of the 40 were ‘genotype’e
‘metabolizer activity’ facts derived from the review article and
25 were assigned using a conservative approach (see ‘Activity
scores for phenotype prediction: tamoxifen case study ’ section).
Example facts are shown in table 1.

Tamoxifen case study evaluation: statistical methods
We evaluated whether phenotype scores (incorporating infor-
mation about multiple enzymes) are predictive of differences in
the endoxifen/NDM plasma ratio (as a marker for drug metab-
olism efficacy) for 28 patients. For each of six phenotype scoring
algorithms, we performed both linear and quantile linear
regression where the independent variable was the phenotype
score and the dependent variable was the endoxifen/NDM
plasma ratio. We report the more conservative of the two
approaches (the quantile regressions). In addition, based on
a suggestion from a reviewer, we performed quantile regression
with bootstrapped standard errors. The number of bootstrap
replicates was set at 2500. We found that one approach to
calculating a phenotype score passed tests for significance,
compared to three approaches without bootstrapping.

We also investigate how our knowledge-based approach to
calculating phenotype scores compares to a simple metric
representing the genotype of (1) a single gene, and (2) multiple
genes. For the simple metric, for each patient, the genotype of
each gene is designated as having two wild-type alleles (Wt/Wt),
two variant alleles (Vt/Vt), or one variant and one wild-type
allele (Wt/Vt). Simple metrics for individual genes were assigned
as follows: Wt/Wt¼0, Wt/Vt¼1, Vt/Vt¼2. Although not
discussed in detail in this manuscript, we also evaluated
a dominant model (Vt/Vt¼0, Wt/Vt¼1, Wt/Wt¼1) and
a recessive model (Vt/Vt¼1, Wt/Vt¼0, Wt/Wt¼0) for repre-
senting the genotypes of multiple genes. A simple metric for
multiple genes was the sum of these values across all genes. See
figure 2 for frequency counts. To evaluate the predictive power of
individual genes, quantile linear regression was performed where
the independent variable was the simple metric of an individual
gene and the dependent variable was the endoxifen/NDM

plasma ratio. To evaluate the predictive power of multiple genes,
quantile linear regression was performed where the independent
variable was the simple metric for multiple genes, and the
dependent variable was the endoxifen/NDM plasma ratio.
The predictive performances of the phenotype scores and of

the simple metrics on the endoxifen/NDM plasma ratio were
assessed with R2, and their significances are evaluated with p
values. All statistical analyses were performed using Stata V.11.2
(StataCorp LP).

RESULTS
Phenotype scores as a predictor of drug metabolism efficacy
Using tamoxifen as a case study, the predictive performance of
six phenotype scoring systems was evaluated. The regression
coefficient (difference in medians) for one scoring system was
significantly different from zero at the 0.05 level (see figure 3A).
This phenotype scoring system was the drug-oriented,
weighted, ‘allelic variant’e‘enzyme activity ’ scoring algorithm.
The scoring system showed a weak correlation with endoxifen/
NDM plasma ratio (R2¼0.10; p<0.05). There was no statisti-
cally significant difference from zero for the regression coeffi-
cient for five scoring systems (see figure 3A,B). These phenotype
scoring systems included: the drug-oriented, un-weighted,
‘allelic variant’e‘enzyme activity ’ scoring algorithm; the
enzyme-oriented, un-weighted, ‘allelic variant’e‘enzyme
activity ’ scoring algorithm; the enzyme-oriented, weighted,
‘allelic variant’e‘enzyme activity’ scoring algorithm; the drug-
oriented, un-weighted, ‘genotype’e‘metabolizer activity ’ scoring
algorithm; and the drug-oriented, weighted, ‘genotype’e
‘metabolizer activity ’ scoring algorithm. These findings suggest
that the phenotype scoring algorithms that assign numeric
values according to ‘allelic variant’e‘enzyme activity ’ associa-
tions are more predictive than those that assign numeric values
according to ‘genotype’e’metabolizer activity.’ In addition, drug-
oriented approaches to including knowledge about ‘allelic
variant’e’enzyme activity ’ associations in the KB may be
slightly better than enzyme-oriented approaches.

Validation of phenotype scoring systems
To validate our phenotype scoring system, we compared the
predictive performance of the phenotype scoring system to (1)
four simple metrics representing the genotypes (Vt/Vt¼2, Wt/
Vt¼1, or Wt/Wt¼0) for each gene (CYP3A5, CYP2D6, CYP2C9,
and CYP2C19) and (2) a simple metric representing the geno-
types of multiple genes (a sum across all genes). We also
compared the predictive performance of the phenotype scoring
system to a dominant model (Vt/Vt¼0, Wt/Vt¼1, Wt/Wt¼1)
and to a recessive model (Vt/Vt¼1, Wt/Vt¼0, Wt/Wt¼0) for
representing the genotypes of multiple genes. There was no
statistically significant difference from zero for the regression
coefficient for the simple metrics representing individual genes
(see figure 4A), for the simple metric representing the genotypes
of multiple genes (see figure 4B), or for dominant and recessive
models for representing the genotypes of multiple genes. Results
from investigating dominant and recessive models are not
shown in figure 4. The phenotype scoring system is therefore
more predictive of patient endoxifen/NDM plasma ratio levels
than the simple metrics for individual gene genotypes and the
simple metric for the genotypes of all genes.

DISCUSSION
Advantages of the PEMRIC model
We suggest an approach that might be incorporated in the
electronic health record (EHR) at the point of care. Patient-
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Figure 2 Distribution of genotypes: CYP3A5 Wt¼*1, Vt¼*3,*6;
CYP2D6 Wt¼*1, Vt¼*4,*6; CYP2C9 Wt¼*1, Vt¼*2,*3; and CYP2C19
Wt¼*1, Vt¼*2.

J Am Med Inform Assoc 2012;19:840e850. doi:10.1136/amiajnl-2011-000405 847

Research and applications



specific data that need to be captured to facilitate implementa-
tion of this model include: the medication being prescribed to
a patient, knowledge of what genotype data are currently
available for the patient, and the patient’s genotype for genes
that are involved in the medication drug metabolism pathway.
Given a patient’s genotype data, the PEMRIC model provides
a method for providing a single score that characterizes the
combined activity of enzymes involved in drug metabolism.

Future directions
This work investigates how existing knowledge resources could
be utilized in a reasoning system. Steps to collect pharmacoge-
nomics evidence have the potential to be automated, although
improved download and data access capabilities are needed. For
example, with SuperCYP, much of the information needed could
be saved as an HTML file that can be parsed; however, a more

standardized format would better facilitate automation. Simi-
larly, pathway facts could be derived by parsing downloaded
PharmGKB pathway evidence Excel files. Automation of these
steps could occur by providing access to evidence file data via the
PharmGKB SOAP (Simple Object Access Protocol) interface.
Machine learning and artificial intelligence techniques might
also be applied to identify relevant passages and extract asser-
tions directly from publications.
The knowledge-based approach we take in this work might be

extended to include other forms of clinical data and additional
knowledge resources, and an evidential approach to other forms
of knowledge could be taken. For example, this approach
assumes PK pathway knowledge from PharmGKB to be true. In
future work, it could be beneficial to incorporate an evidential
approach to defining PK pathway knowledge. In addition, with
access to knowledge about allelic variant frequencies in various

Figure 3 Scatterplot and quantile
regression fit. The plots show scatter
plots of the endoxifen/N-
desmethyltamoxifen (NDM) ratio
versus phenotype scores.
Superimposed on the plots are the
median fit (solid line) and the least
squares estimate of the conditional
mean function (dashed line). (A)
Phenotype scoring systems that assign
numeric values according to ‘allelic
variant’e‘enzyme activity’ association
assertions. (B) Phenotype scoring
systems that assign numeric values
according to ‘genotype’e‘metabolizer
activity’ association assertions. aA p
value of #0.05 is considered
statistically significant, indicating
significant difference in the regression
coefficient medians.
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populations, it could be useful to incorporate patient race/
ethnicity into the phenotype score calculation.

Another area for future investigation would be validation of
our methods for calculating phenotype scores with a separate
dataset. This would facilitate checking for over-fitting and
further assessing the potential for the methods to be incorpo-
rated into a clinical setting. We were unable to find a separate
public dataset with endoxifen plasma concentrations at
4 months and NDM plasma concentrations at 4 months for
patients, in addition to genotype data.

Additionally, future work investigating the practical issues of
implementing this model in the EHR context would be benefi-
cial. Given the sensitivity of patient-specific data and the
evolving nature of evidence in this context, it is important to
consider approaches to providing access to, ensuring the security

of, connecting, and coordinating disparate data and knowledge
sources.

Challenges to PEMRIC model implementation
Using our proof of concept prototype reasoning system, we
present several approaches to provide a score that characterizes
the combined activity of enzymes involved in the metabolism of
a drug. The hope is that rather than evaluating each variable
individually, a clinician will be able to review a single score. Even
so, such a score would need to be presented in a format and with
supportive information that promotes its appropriate use in the
making of informed health decisions in a clinical context. There
are several technical- and content-related challenges inherent in
ensuring that phenotype scores are correct, are current for the
patient at hand, and are provided to clinicians in a useful way. In

Figure 4 (A) Simple metrics for
individual genes with genotype values
as Vt/Vt¼2, Wt/Vt¼1, and Wt/Wt¼0:
CYP3A5 Wt¼*1, Vt¼*3,*6; CYP2D6
Wt¼*1, Vt¼*4,*6; CYP2C9 Wt¼*1,
Vt¼*2,*3; and CYP2C19 Wt¼*1,
Vt¼*2. Wt/Wt¼0, Wt/Vt¼1, Vt/Vt¼2.
The plots show box-plots of the
endoxifen/N-desmethyltamoxifen
(NDM) ratio versus genotype values.
Superimposed on the plots are the
median fit (solid line) and the least
squares estimate of the conditional
mean function (dashed line). (B) Simple
metric for the sum of genotype values
for genes CYP3A5, CYP2D6, CYP2C9,
and CYP2C19. The lines indicate
median bands. The plots show scatter
plots of the endoxifen/NDM ratio versus
simple metrics. Superimposed on the
plots are the median fit (solid line) and
the least squares estimate of the
conditional mean function (dashed line).
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addition, the validity of such a score in the context of predicting
response to therapy should be tested in future work.

There are currently mixed results from studies investigating
associations between genotype-mediated variation in CYP2D6
enzyme activity and endoxifen concentrations and clinical
outcomes. While studies indicate significant associations
between CYP2D6 genotype and endoxifen levels,13 20 21 some
reports do not indicate an association with clinical outcomes (eg,
breast cancer recurrence, incidence of hot flashes).22 23 Therefore,
there are currently no recommendations to perform CYP2D6
testing to preferentially select tamoxifen in clinical care. This
disagreement in research findings highlights an inability to
directly relate CYP2D6 genotype to tamoxifen metabolite levels,
and metabolite levels to clinical outcomes. Therefore, before we
can facilitate the use of pharmacogenomics data in prescribing
decisions, the connection between patient-specific data and
clinical outcomes needs to be better understood. Methods
incorporating more reasoning steps and evidence have the
potential to provide a more complete view of the relationship
between patent-specific data (genotypic data and otherwise) and
clinical outcomes.

CONCLUSION
We provided a detailed description of a prototype PEMRIC
model implementation in a tamoxifen case study context. Case
study findings suggest that phenotype scoring algorithms that
assign numeric values according to ‘allelic variant’e‘enzyme
activity ’ associations have the potential to predict endoxifen/
NDM plasma levels (as a marker for drug metabolism efficacy).
One scoring system (the drug-oriented, weighted, ‘allelic
variant’e‘enzyme activity ’ scoring algorithm) showed a weak
correlation with endoxifen/NDM plasma ratio (R2¼0.10;
p<0.05). This approach performed better than simple metrics
for variation in individual and multiple genes. Given these
results, the PEMRIC model implementation and scoring
approaches investigated in this work warrant further investi-
gation. Results also suggest that monogenic models that are
classically applied to interpret variants in pharmacogenetic
studies may miss important (more complex) associations. More
complicated polygenic models, such as those explored in this
work, are needed to represent heterogeneity in clinical outcomes.
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