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ABSTRACT
Because breast tissue composition partially predicts
breast cancer risk, classification of mammography
reports by breast tissue composition is important from
both a scientific and clinical perspective. A method is
presented for using the unstructured text of
mammography reports to classify them into BI-RADS
breast tissue composition categories. An algorithm that
uses regular expressions to automatically determine BI-
RADS breast tissue composition classes for unstructured
mammography reports was developed. The algorithm
assigns each report to a single BI-RADS composition
class: ‘fatty’, ‘fibroglandular’, ‘heterogeneously dense’,
‘dense’, or ‘unspecified’. We evaluated its performance
on mammography reports from two different institutions.
The method achieves >99% classification accuracy on
a test set of reports from the Marshfield Clinic
(Wisconsin) and Stanford University. Since large-scale
studies of breast cancer rely heavily on breast tissue
composition information, this method could facilitate this
research by helping mine large datasets to correlate
breast composition with other covariates.

BACKGROUND
Tissue composition and breast cancer
Breast tissue composition is an important compo-
nent of the radiological evaluation of the breast for
two reasons. First, dense fibroglandular tissue is a risk
factor for breast cancer.1e3 Second, this dense tissue
decreases mammographic sensitivity in detecting
breast cancer.4 For these reasons, mammography
reports typically contain a description of the overall
tissue composition of the breast.

The BI-RADS system
The American College of Radiology Breast Imaging
Reporting and Data System (BI-RADS) divides
breast composition into four categories: 1 (predom-
inantly fatty), 2 (scattered fibroglandular densities),
3 (heterogeneously dense), and 4 (extremely dense).5

These standardized categories help to minimize
ambiguity in mammography reporting. They also
enable radiologists to qualify their observations by
discussing how a patient’s breast composition may
limit mammographic sensitivity. Finally, they help
stratify patients at the time of imaging, with addi-
tional screening recommended for women with
dense, fibroglandular breast tissue, which can
obscure small masses. Reliable, standardized infor-
mation on breast composition can facilitate large-
scale studies of breast cancer, and may also play an
important role in the development of classification
systems for the early detection of malignancy.

Limitations of the current system
One limitation of applying the BI-RADS system is
that breast composition information is typically not
reported in coded form; descriptions of breast
composition occur as narrative text within the
surrounding text of a mammography report.
Although the corresponding BI-RADS category may
be obvious to a radiologist reading the report, such
inference would prove challenging for a computer.
For example, radiologists use characteristic phrases
like ‘scattered fibroglandular ’, ‘mostly fatty’, and
‘focally dense’ when describing breast composition,
but no one textual pattern could be used to obtain
this information with 100% sensitivity and speci-
ficity. This fact thwarts large research studies,
which often require breast tissue composition
information from thousands of reports. Manual
curation of this information is not feasible, being
both time-consuming and error-prone.

An automated classification method
These limitations led us to explore automated
approaches for obtaining breast composition infor-
mation based on principles from natural language
processing. The use of natural language processing
is not new to radiology or clinical medicine in
general; for a comprehensive review of its impor-
tant role in radiology, see Lacson and Khorasani.6 7

Informatics researchers have already explored ways
to extract meaningful textual features from radi-
ology reports,8 classify reports automatically by
body location or disease,9 10 automatically produce
structured reports from free text reports,11 12 and
assess variability in and deficiencies of radiology
reporting using text mining.13

We present here the first automated method for
addressing one classification problem that has not
yet been solved: classifying mammography reports
automatically by breast composition. Previous
authors have investigated the use of BI-RADS
descriptors in mammography reports,14 15 but have
not addressed the extraction of breast composition
data. Our method classifies each report according to
its BI-RADS tissue composition category accurately,
efficiently, and automatically, which we hope will
aid researchers, clinicians, and policy analysts who
need access to large-scale mammography data.

METHODS
Data
We used mammography corpora from three
different institutions to develop and test our algo-
rithm. Our data included 34 489 reports from
Stanford’s RADTF (RADiology Teaching File)
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database,16 and a further 146 972 reports from the University of
California, San Francisco (UCSF) Medical Center, which we used
to construct a set of textual patterns indicative of each breast
composition class. We also built an independent test set
comprised of 500 reports from the Stanford corpus (which were
held out during the rule-construction phase) and 100 reports
from the Marshfield Clinic in Wisconsin.

The reports were independently annotated by a board-certified
radiologist with 1 year of fellowship training in breast imaging.
Our radiologist annotator was blinded to the automatically
assigned breast composition classes when assessing the reports.

Rule construction
Using unstructured mammography reports as its input, our
algorithm classifies each report into one of five classes:
predominantly fat (class 1), scattered fibroglandular densities
(class 2), heterogeneously dense (class 3), extremely dense (class
4), or ‘unspecified’. These classes correspond to the four BI-
RADS breast composition classes and one additional category for
reports that do not include breast composition information.

We constructed our classifier by modifying the BI-RADS
feature extraction approach presented in Nassif et al17 to retrieve
breast composition information. We began by mapping all of the
key terms and phrases from the full BI-RADS lexicon5 to specific
breast composition classes. For example, the key phrase
‘extremely dense’ was mapped to breast composition class 4. We
then augmented this lexicon using expert knowledge, adding
other breast composition class descriptors frequently used in
clinical practice, such as ‘breast is dense’. We worked with
multiple radiologists throughout this process to develop an
understanding of the different ways radiologists describe
different breast composition classes.

Once we had established which BI-RADS key terms/phrases
corresponded to each BI- RADS breast composition class, we
mined the UCSF and Stanford datasets for all words occurring
in close proximity to the key terms. We then established how
far (and in what direction) these ‘neighbor ’ words could be
from the keywords before they ceased to be informative. This
was accomplished via an iterative process in which we exam-
ined the number of incorrect classifications obtained as the key
term and neighbor were moved further and further apart. We
then chose the maximum value of separation that corresponded
to the lowest overall classification error. For example, the stem
scatter could occur up to three words before the key term
fibroglandular before the number of false positive class 2 errors
began to increase (see figure 1). This process established a set of
rules for automatically classifying reports into BI-RADS breast
composition classes.

Algorithm development
Figure 1 shows the final set of rules used to assign reports to
each BI-RADS breast composition class. A report was classified
as BI-RADS composition class 1 if it contained the word fat or
fatty preceded (within two words) by a modifier from the
following set: predomin*, primar*, largely, relative*, entire*, mostly,
completely. The symbol * means that we specified the word stem
but not its ending, so any word containing the given stem was
accepted. If a report contained the phrase is fatty or are fatty
preceded (within two words) by the term breast(s) or tissue, it
was also assigned to class 1 provided that fatty was not followed
by the stem fibrogland* or fibronodul*. A report was assigned to
class 2 if it contained the word fibrogland* or fibronodul*,
preceded (within three words) by a modifier of the form scatter*.
It was assigned to class 3 if it contained one of the terms dens*,

Figure 1 A diagrammatic explanation
of the rules used to assign reports to
different BI-RADS tissue composition
classes. Each row represents a pattern
unique to the class shown at the left.
White rectangles represent sets of
words or word stems that must be
present at a given location to fulfill the
rule. Gray rectangles represent words/
stems that cannot be present at
a location for the rule to be fulfilled. The
small gray boxes represent unspecified
words. The asterisk (*) is used to
denote multiple possible word endings.
So, for example, a report would be
assigned to class 2 if it contained the
stem scatter followed by 0, 1, or 2 other
words, and then the stem fibrogland or
fibronodul. Similarly, a report would be
assigned to class 1 if it contained the
word breast(s) or tissue followed
immediately by the phrase is/are fatty,
but the stem fibrogland or fibronodul did
not occur immediately after fatty.
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breast, tissue, or parenchyma, preceded (within two words) by
a modifier from the set: mildly, moderat*, heterogen*. Reports
containing the specific phrase focally dense were also assigned to
class 3. Finally, a report was assigned to class 4 if it contained the
stem dens* immediately preceded by a modifier from the list
extrem*, homogen*, very, significant*, or if it contained the phrase
is dense or are dense preceded (within two words) by the term
breast or breasts.

Evaluation
Using our algorithm, we classified each mammography report in
the test set as BI-RADS breast composition class 1e4, or
‘unspecified’. We then compared the algorithm’s results to our
radiologist annotator ’s classifications of the same reports.

RESULTS
Table 1 contains a list of the descriptors found in the three
datasets, along with their associated frequencies. A greater
variety of descriptors were used to describe class 1 (predomi-
nantly fat) mammograms than any other class; class 2 (scattered
fibroglandular) mammography reports were the most consis-
tent, always using the phrase scattered fibroglandular or scattered
fibronodular.

Our algorithm’s performance relative to the radiologist’s gold
standard is shown in table 2. Our algorithm correctly classified
499/500 (99.8%) reports from the Stanford dataset and 99/100
(99%) reports from the Marshfield Clinic dataset. On the Stan-
ford data, the only incorrectly classified report contained the
description ‘bilateral breasts redemonstrate dense glandular
tissue’, which the radiologist assigned to class 4 and the algo-
rithm assigned to the ‘unspecified’ class. On the Marshfield Clinic
test set, the radiologist assigned the description ‘the right breast
shows fibroglandular tissue which is finely nodular and strand-
like’ to class 2, but the algorithm assigned it to ‘unspecified’.

DISCUSSION
Breast tissue composition has consistently been associated with
breast cancer and other proliferative breast lesions.1 18e22 For
example, breast cancer risk increases by 4e5 times in women
with very dense breasts relative to women with little or no
dense breast tissue.1e3 It is difficult to diagnose early-stage
breast cancer in women with dense breasts, which contributes
to the increased risk of breast cancer for these women; rates of
interval breast cancers (cancers discovered between yearly
screening mammograms) are much higher in women with
dense breast tissue than in those with predominantly fatty
breasts.23e25

Automated classification of free-text radiology reports into
tissue composition classes therefore has important clinical,
research, and policy implications. In the clinical arena, the
algorithm may enable hospital systems and other healthcare
delivery organizations to predict and prepare for potential
increases in referrals for and utilization of screening breast
ultrasound and breast MRI. For example, the Connecticut state
legislature recently passed a bill requiring that women under-
going mammography be counseled about their breast composi-
tion and that insurance companies pay for additional screening
for women with dense breast tissue.26 Similar bills are currently
up for discussion in the Texas and California state legislatures.

Table 1 A summary of the descriptors used to report the different breast composition classes

Class Rule

Number of occurrences

Stanford (training) UCSF (training) Stanford (test) Marshfield (test)

1 predomin* fat(ty) 163 79 1 0

entire* fat(ty) 52 16 953 3 0

primar* fat(ty) 7 219 0 0

mostly fat(ty) 846 422 1 0

largely fat(ty) 5149 3 112 1

completely fat(ty) 0 5 0 0

relative* fat(ty) 0 8 0 0

breast(s)/tissue
is/are fat(ty)

180 39 8 0

2 scatter* fibro
(gland/nodul)*

13 947 51 358 123 35

3 mildly (dens/breast/
tissue/parenchyma)*

1 14 0 6

moderat* (dens/breast/
tissue/parenchyma)*

3 282 0 9

heterogen* (dens/breast/
tissue/parenchym)*

11 006 49 106 128 19

focally dense 2 123 0 0

4 extrem* dens* 1220 11 080 9 2

homogen* dens* 5 16 0 0

very dens* 2041 40 45 1

significant* dense 0 0 0 1

breast(s) is/are dense 17 60 66 0

The asterisk (*) is used to denote multiple possible word endings. Note that a single mammography report may contain multiple rule
occurrences.

Table 2 System performance results on the Stanford and Marshfield
testing sets

Dataset
Records with
descriptors present

Records with
no descriptors

Correctly classified
records Total

Stanford 497 3 499 500

Marshfield 73 27 99 100

The first two columns contain the number of records that were classifiable and the number
that were not (some did not include any BI-RADS tissue composition descriptors
whatsoever). The third column contains the number of records that were classified correctly
(either assigned to the correct BI- RADS composition class or classified as ‘no descriptors’
when that assessment was correct).
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We might expect such legislation to lead to an increase in the use
of these alternative screening methods.

In the research and policy arenas, our algorithm may facilitate
large-scale population-based studies of breast tissue composition
and other covariates of breast cancer risk, and enable improve-
ment in risk prediction models by allowing them to better
incorporate information on breast composition. Breast compo-
sition has a strong genetic component,3 27e31 so population-
based studies of breast cancer, especially those investigating
patterns of occurrence within families and non-genetic causes of
breast cancer, must control for it. The difficulty associated with
manually extracting breast composition information from
thousands of unstructured mammography reports for research
purposes was what originally led us to develop an automated
method for performing this task. To our knowledge, our
methods are the first attempt at automated classification of
mammography reports into breast tissue composition classes.

We built and validated our algorithm using reports from three
different institutions: UCSF and Stanford for algorithm develop-
ment, and Stanford and Marshfield for testing. By including
reports from multiple institutions during the development
process, and by searching thousands of reports to detect variations
in how different breast composition classes were described, we
hoped to avoid creating an algorithm that was too institution- or
radiologist-specific.

Despite its high accuracy, our approach still has a few limi-
tations. Empirical observations of reports from UCSF and
Stanford revealed that radiologists at different institutions tend
to describe breast composition in characteristic, sometimes
divergent ways. For example, most of the class 1 reports at
Stanford used the phrase ‘largely fatty’, while UCSF radiologists
favored the phrase ‘entirely fatty ’ and almost never used ‘largely
fatty ’. This could be due to the use of institution-specific
templates in mammography reporting, which could indicate
that we need to include reports from several more institutions to
develop a truly robust algorithm. Future studies with larger and
more diverse datasets should be performed to confirm the
accuracy and generalizability of our algorithm to reports
obtained from other institutions. Although our use of regular
expressions was highly accurate for classifying breast tissue
composition based on the text of unstructured mammography
reports, the method is highly domain-specific and might not be
generalizable to other applications within the field of radiology.

CONCLUSION
In conclusion, we have created an algorithm that automatically
processes unstructured, free-text mammography reports and
reliably classifies them into BI-RADS breast composition classes.
Our algorithm achieves extremely high accuracy (>99%) during
testing. This method could facilitate research and policy analysis
by enabling investigators to efficiently mine large collections of
mammography reports.
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