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ABSTRACT
Objective This paper describes a natural language
processing system for the task of pneumonia
identification. Based on the information extracted from
the narrative reports associated with a patient, the task
is to identify whether or not the patient is positive for
pneumonia.
Design A binary classifier was employed to identify
pneumonia from a dataset of multiple types of clinical
notes created for 426 patients during their stay in the
intensive care unit. For this purpose, three types of
features were considered: (1) word n-grams, (2) Unified
Medical Language System (UMLS) concepts, and (3)
assertion values associated with pneumonia expressions.
System performance was greatly increased by a feature
selection approach which uses statistical significance
testing to rank features based on their association with
the two categories of pneumonia identification.
Results Besides testing our system on the entire cohort
of 426 patients (unrestricted dataset), we also used
a smaller subset of 236 patients (restricted dataset). The
performance of the system was compared with the
results of a baseline previously proposed for these two
datasets. The best results achieved by the system
(85.71 and 81.67 F1-measure) are significantly better
than the baseline results (50.70 and 49.10 F1-measure)
on the restricted and unrestricted datasets, respectively.
Conclusion Using a statistical feature selection
approach that allows the feature extractor to consider
only the most informative features from the feature
space significantly improves the performance over
a baseline that uses all the features from the same
feature space. Extracting the assertion value for
pneumonia expressions further improves the system
performance.

INTRODUCTION
The availability of comprehensive electronic
medical records that include narrative reports
provides an opportunity for natural language
processing (NLP) technologies to play a major role
in clinical research. One of the main advantages of
employing these technologies is the automatic
extraction of relevant clinical information to iden-
tify critical illness phenotypes and to facilitate
clinical and translational studies of large cohorts of
critically ill patients. Using NLP technologies in
clinical research also has the advantage of solving
problems which require the processing of a large
number of narrative reports in real time. In
contrast, this would not be feasible for the tradi-
tional approaches that use chart abstractions or
bedside data acquisition since they are expensive,

labor intensive, and involve many subjective
assessments.
As part of a clinical research study, we designed

an NLP system to automatically identify intensive
care unit (ICU) patients with pneumonia. More
exactly, using the narrative reports associated with
each patient, the task is to analyze the information
from these reports, and, based on this analysis, to
classify the patient as positive or negative for
pneumonia. To solve this task, our system relies on
a supervised machine learning framework that
selects only the most relevant features extracted
from the ICU reports. Selecting the most relevant
features resulted in a significant improvement in
the performance of the learning algorithm. In
addition, discarding the irrelevant and redundant
features reduced the dimensionality of the original
feature space, and, as a result, decreased the
computational cost of the classification task.
For evaluation, we used the same collection of

narrative reports as Yetisgen-Yildiz et al used in their
work.1 Specifically, the set consists of various types
of reports created by physicians during the patients’
ICU stay. While most previous work used only
radiology reports to identify patients with pneu-
monia, we believe that a full set of physician daily
notes is a rich source of clinical information for
accurately identifying complex illness phenotypes
such as pneumonia. In contrast to the narrow scope
of information provided by radiology reports,
physician daily notes include text detailing the
patient narrative, physiologic, imaging, and labo-
ratory data, and, most importantly, the physician’s
interpretation of these data.
Although this study focuses only on pneumonia

identification, our main research goal is to build
automated NLP systems that are able to detect
multiple critical illness phenotypes and to model
their progression from ICU data.

BACKGROUND AND RELATED WORK
Over the last years, several NLP systems have
demonstrated their utility in a variety of healthcare
applications.2 3 For instance, many hospitals are
currently using NLP systems for pneumonia
surveillance, because this type of application is
resource intensive and, at the same time, requires
real-time assessments. In this direction, automated
methods for identifying different types of pneu-
monia have been widely studied, although all focus
exclusively on radiology reports. As one of
the earliest examples, Fiszman et al tested an NLP
tool called SymText to identify acute bacterial
pneumonia-related concepts in chest x-ray reports
and compared its performance against human
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annotations.4 Their results indicated that the performance of
SymText was comparable to that of the physician. The same
research group used the concepts identified by SymText as
features for automatically identifying chest x-ray reports that
supported pneumonia.5e8 Their results showed that a machine
learning framework based on Bayesian networks performs as
well as expert constructed systems and the manual annotations
of a physician and a lay person.

Mendonca et al and Haas et al investigated the feasibility of
using NLP approaches in identifying healthcare associated
pneumonia in neonates from chest x-ray reports.9 10 Their NLP
approach involved two components: the MedLEE system and
rules that access the MedLEE output. The rules were manually
constructed by a medical expert to identify chest x-ray reports
indicating the presence of pneumonia.

Elkin et al also applied NLP approaches to identify pneumonia
cases in narrative radiology reports.11 Their system encoded the
radiology reports with SNOMED CTontology and subsequently
applied a set of manually constructed rules to the SNOMED CT
annotations to identify the radiological findings and diagnoses
related to pneumonia.

The previous studies outlined above have focused primarily on
the identification of pneumonia cases from radiologist chest x-
ray reports. While radiologic changes within the lung are
a necessary condition for a diagnosis of pneumonia, there are
data within other domains such as the disease presentation
narrative, physiologic measures, and laboratory abnormalities
that could add significant accuracy and depth to the identifica-
tion of pneumonia cases.12 13 Because chest x-ray abnormalities
comprise only part of the pneumonia definition, any system for
pneumonia identification which incorporates only chest x-ray
information will therefore lead to significant phenotypic
misclassification. Thus, there remains an unmet need to accu-
rately capture the clinical components of the pneumonia
phenotype.

Other clinical studies have used NLP methodologies for
processing a mixture of clinical note types. For instance,
Meyestre and Haug used various types of clinical documents
such as radiology reports, diagnostic procedure reports, surgery
reports, discharge summaries, and others, to identify 80 different
medical problems.14 For this purpose, they extracted the medical
problems from the clinical documents with MetaMap15 and
assigned to each problem an assertion value using Negex.16

Meyestre and Haug reported a significant increase in recall when
using MetaMap with a restricted subset of Unified Medical
Language System (UMLS) concepts. In another study, the
MediClass system17 was employed to enable the assessment of
smoking-cessation care delivery.18 The role of MediClass was to
evaluate a recommended treatment model proposed by a group
of clinicians and tobacco-cessation experts, which involves five
steps, the 5A’s: (i) ask about smoking status; (ii) advise patients
to quit smoking; (iii) assess a patient’s willingness to quit; (iv)
assist the patient’s quitting efforts; and (v) arrange follow-up.
Using various forms of clinical data, which include progress
notes, patient instructions, medication data, referrals, visit
reasons, and other smoking-related data, the MediClass system
was able to achieve results similar to that of a trained human
coder.

METHOD
In this section, we describe our approach to pneumonia identi-
fication. First, we introduce the dataset used for this study, and
then we present the system architecture as well as the features
employed for this task.

Dataset
The dataset consists of narrative reports for 426 patients.
Initially, the annotations of this dataset were performed for
another study of ICU subjects which was described previously.19

A research study nurse with 6 years of experience manually
annotated a patient as positive if the patient had pneumonia
within the first 48 h of ICU admission and as negative if the
patient did not have pneumonia or the pneumonia was detected
after the first 48 h of ICU admission. As a result, 66 patients
were identified as cases positive for pneumonia and the
remaining 360 patients as negative cases. Moreover, because
subjects in this dataset were admitted to the ICU from the
emergency department as well as from other hospitals, cases of
pneumonia included both community acquired pneumonia (ie,
pneumonia acquired outside of the hospital settings) and
hospital acquired pneumonia (ie, pneumonia acquired after
admission to hospital). Overall, our dataset includes a total of
5313 reports, each report having one of the eight report types:
admit note, ICU daily progress note, acute care daily progress
note, transfer/transition note, transfer summary, cardiology
daily progress note, and discharge summary. The total number
of reports per patient ranged widely due to the high variability
in the ICU length of stay: median 8, IQR 5e13, minimum 1,
maximum 198.
Table 1 shows the distribution of reports and patients among

the eight different report types from the dataset. The second
column of the table gives the number of reports for each report
type, while the third column shows the number of distinct
patients who had the report type in the dataset. As can be seen
from the table, not all patients have all report types. For
example, only 280 (65%) patients have admit notes; the
remaining 146 patients who have no admit notes are likely to
have been transferred to the ICU from other medical units.
There were 350 (82%) patients with discharge summaries. Out
of the 426 patients, only a subset of 236 (55%) patients had both
admit notes and discharge summaries. We will later use this
subset of patients as the restricted dataset.
It is also worth noting that, of the admit notes collected in

this corpus, over 75% derive from the first day of hospital
admission. Furthermore, ICU progress notes were consistently
generated throughout the first 96 h of admission. These data
show that admit notes will generally document the pre-hospital
situation and early hospital stay, while ICU progress notes will
be the predominant daily text source following the day of
admission. Discharge notes largely arose after 96 h since
admission.

System architecture
The main components of our system architecture are depicted in
figure 1. As illustrated, we designed the architecture on top of
a supervised machine learning framework, where features

Table 1 Corpus statistics by the frequency of report types and the
number of distinct patients who had the report type

Report type Reports Patients

Admit note 481 280

ICU daily progress note 2526 388

Acute care daily progress note 1357 203

Interim summary 164 115

Transfer/transition note 243 175

Transfer summary 18 18

Cardiology daily progress note 133 17

Discharge summary 391 350
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associated with each data instance (ie, patient) are automatically
extracted to be used by a binary classifier. For classification, we
employed LIBLINEAR,20 an implementation of support vector
machines. In this framework, we represented each patient by all
of the corresponding reports. To extract features for each
patient, in the preprocessing phase, we first tokenized the
reports with SPLAT21 and filtered out the punctuation tokens.

Unlike a conventional learning framework, however, we also
implemented a methodology to select only the most informative
features for pneumonia identification. Specifically, this
methodology uses statistical significance tests to measure the
association strength between each feature from the training set
and the two categories of this task (ie, positive and negative
pneumonia). As a result, the features will be ranked based on
those values such that those with a strong association with the
two categories will be on top. Finally, only the most relevant
features that are within a specific threshold will be selected
for training. This methodology is also called statistical feature
selection.

Statistical feature selection
Feature selection algorithms have been successfully applied in
text categorization in order to improve the classification accu-
racy. By significantly reducing the dimensionality of the feature
space, they also improve the efficiency of the classifiers and
provide a better understanding of the data.22e24 Since our task is
very similar to text categorization, using a feature selection
approach is recommended. Indeed, representing each patient by
a large document containing all the patient’s reports, we can
cast the pneumonia identification problem as the problem of
categorizing these large documents into positive or negative
pneumonia categories.

Before learning a model for pneumonia identification, we first
built lists of ranked features from the training set. For this
purpose, we considered as features all possible uni-grams and bi-
grams of words and UMLS concepts. We identified the UMLS
concepts in our dataset by using MetaMap. In order to rank the
set of features associated with a feature type as illustrated in
figure 1 (eg, the ranked list of word bi-grams), we constructed
a contingency table for each feature from the set and used
statistical hypothesis testing to determine whether there is an
association between the feature and the two categories of our
problem. Specifically, we computed the c2 and t statistics,25

which generate two different orderings for each feature set. The
reason for generating two different orderings is based on the fact
that the t test assumes that the event of a feature being asso-
ciated with a specific category is sampled from a normal distri-
bution whereas the c2 test does not use this assumption.

Table 2 lists the top 10 uni-grams, bi-grams, and UMLS
concepts ranked by these statistical tests. As can be observed,
many of these features are closely linked to the known causes
(eg, influenza) and clinical signs and symptoms (eg, sputum,
coughs, decreased breath) of pneumonia. However, this table may
also list features that are not directly related to the diagnostic

criteria for pneumonia since they may well indicate latent risk
factors for pneumonia or simply capture a predominant associ-
ation with one of the two categories (eg, urine sputum, coccyx).
Report writing is often formulaic, so there can be a preponder-
ance of evidence for the order of, for example, urine and sputum as
we see in ‘urine, sputum and blood remain negative,’ ‘blood, urine,
sputum cultures have not grown pathogenic organisms to date,’ ‘urine,
sputum, blood cultures pending,’ etc.
Once all features are ranked and their corresponding threshold

values are established, the feature extractor is now able to build
a feature vector for each patient. Specifically, given a fixed subset
of relevant features determined by selecting the top features
from the ranked lists of features up to a threshold value, the
feature extractor considers in the representation of a patient’s
feature vector only the features from the subset of relevant
features that are also found in the patient’s reports. Therefore,
the size of the feature space will be equal to the size of the
relevant features subset, whereas the length of each feature
vector will be at most this value.
Because the c2 and t significance tests will generate two

different feature rankings for every feature set, the two feature
subsets extracted from these rankings at any given threshold
value will also be different. Therefore, an interesting experiment
will be to choose relevant features from the union of the two
feature subsets (c2+t) in order to see the contribution of both
statistical tests to the overall system performance. To determine
whether this is a feasible experiment, we first studied how many
features each pair of feature subsets will have in common. As an
example, the c2 and t bi-gram subsets listed in table 2, at
a common threshold value of 10, have 60% of features in
common. For a more elaborate overview, figure 2 shows the
percentage of words and UMLS concepts shared by the two
statistics for all possible threshold values. As can be seen from
this figure, the lists of words and UMLS concepts considered
have approximately 58 000 and 20 000 features, respectively.
In our experiments, we also measured the association between

a feature and the two categories using the Fisher exact test,

Figure 1 System architecture for pneumonia identification.

Table 2 The top 10 most informative uni-grams, bi-grams, and Unified
Medical Language System (UMLS) concepts for pneumonia
identification according to c2 and t statistics

Uni-gram Bi-gram UMLS concept

c2 Statistic

col sputum cx Microbial culture of sputum

tan sputum culture Sputum

coughs h1n1 positive Fluorescence Units

pneumo acquired pneumonia Structure of middle lobe of lung

sputum positive h1n1 Influenza preparation

consolidation pneumonia continue H1N1

stacking continue lpv Influenza virus vaccine

cart coarse mechanical Novel H1N1 influenza

proning continue oseltamivir Oseltamivir

coccyx treatment pneumonia Infiltration

t Statistic

sputum sputum cx Microbial culture of sputum

suctioning sputum culture Sputum

h1n1 continue lpv Consolidation

ventilatory h1n1 influenza Infiltration

consolidation acquired pneumonia Influenza preparation

secretions bacterial pneumonia Influenza virus vaccine

lpv continue oseltamivir Pneumonia

coughing decreased breath Fluorescence Units

flu positive h1n1 Influenza

tachypneic urine sputum Decreased breath sounds
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pointwise mutual information, and the Dice coefficient;
however, these measures did not perform as well as the c2 and t
statistical tests.

Assertion of pneumonia expressions
There are cases where the ICU reports include an explicit
statement that the patient has, is suspected of, or does not have
pneumonia. To account for these cases, in addition to the
features selected using statistical tests, we implemented a binary
feature, called the assert feature, which assigns to each patient
a label corresponding to positive or negative pneumonia. The
assignment of this label is based on the assertion values associ-
ated with pneumonia expressions and their related words (eg,
pneumonitis) found in the patient’s reports.

We associated an assertion value with a pneumonia expression
by training a maximum entropy classifier on the dataset
provided by the 2010 i2b2/VA challenge for assertion classifica-
tion.26 The purpose of this task is to classify the assertion value
of a medical concept expressed in a free-text report as present,
absent, possible, conditional, hypothetical, or associated with someone
else. Using simple lexical features that explore the surrounding
context of a medical concept in text as well as features extracted
with the NegEx and ConText27 tools, our classifier achieves
a satisfactory 92.79 micro-averaged F1-measure.

The extraction of pneumonia expressions from our dataset
was performed by first parsing the reports with MetaMap and
then selecting only the identified medical phrases that have the
same identifier as pneumonia (CUI:C0032285) in the UMLS
Metathesaurus. For a more complete set, we also ran simple
regular expressions to identify the word pna, an abbreviation
often used by physicians in clinical reports for pneumonia but
which is not yet tagged as a pneumonia concept in the UMLS
Metathesaurus. After we ran the assertion classifier for all the
pneumonia concepts of a patient, we counted how many times
each of the six assertion values were identified, and then mapped
the most frequent value to one of the two categories of pneu-
monia identification. We found that a good mapping of the
assertion values is (present)/positive pneumonia, and (absent,
possible, conditional, hypothetical, associated with someone else)/
negative pneumonia. For those binary features corresponding
to patients with no pneumonia concepts identified in their
reports (223 out of 426), we assigned a default value of negative
pneumonia.

RESULTS
Since we employed the same dataset as used by Yetisgen-Yildiz
et al, we considered that work as the baseline for our system.
This system consists of a supervised learning framework, where

the feature vector corresponding to a patient is represented as
a ‘bag of words’ built from the patient’s reports.1 Yetisgen-Yildiz
et al experimented with different representations of the patient
data but concluded that using all of the report types for feature
generation gave the best performance, and consequently, we
use only the representation comprised of all report types. As
features, they considered various combinations of word n-grams,
UMLS concepts, and their corresponding semantic types. Besides
performing experiments on the entire cohort of 426 patients (the
unrestricted dataset), they also considered a smaller subset of
236 patients restricted to those with both an admit note and
a discharge summary (the restricted dataset). Using a fivefold
cross-validation scheme, their system achieved the best results of
50.7 and 49.1 F1-measure on the restricted and unrestricted
dataset, respectively, when the entire set of word uni-grams was
considered. For an accurate comparison, in our experiments we
used the same folds of the two datasets as Yetisgen-Yildiz et al.

Experimenting with word n-grams
In a first set of experiments, we studied how the performance of
our system evolves for various threshold values on the c2, t, and
c2+t ranked word lists. Figure 3 shows the results of these
experiments. The plots at the top correspond to the results
found for the restricted dataset, while the plots at the bottom
show the results for the unrestricted dataset. The results are
computed using the F1-measure, which represents the harmonic
mean of precision and recall. For each experiment, we considered
27 different values that capture the threshold variation for
selecting from a range of 10e40 000 significant word n-grams.
For instance, if the feature extractor selects the first 30 features
of the t word lists built from the training set of the restricted
corpus, our system will achieve 63.25 F1-measure (threshold¼30
in the top left plot for the t experiment). For a clear under-
standing of our experimental setup, we would like to emphasize
that by selecting the first 30 features from the t word lists, we
actually consider the union of the first 30 word uni-grams and
the first 30 word bi-grams, for a total feature space of at most 60
features. We consider a similar setup when including the UMLS
concept lists. We also consider different threshold values for the
UMLS concept lists since the sizes of these lists are considerably
smaller than the sizes of word n-gram lists.
As can be observed in figure 3, our system shows some fluc-

tuation in performance across the range of threshold values.
This fluctuation implies that the order imposed by the two
statistical tests does not guarantee a perfect order for selecting
features for pneumonia identification. Therefore, noisy features
do exist at the top of the lists ranked by these statistical tests
that have a negative impact on our system performance;
conversely, there are relevant features toward the bottom of
the ranked lists which can improve the performance of our
system. However, two clear observations from the plots drawn
in figure 3 indicate that the statistical tests group most of the
relevant features toward the beginning of their corresponding
lists. First, most of the results obtained in all the experiments
significantly outperform the baseline results. For instance, the
best results on the restricted and unrestricted datasets were
achieved by the t experiment (80.95 F1-measure when consid-
ering the first 10 000 features) and by the c2+t experiment
(75.63 F1-measure when considering the first 800 features),
respectively. And second, the results corresponding to all the
experiments considered reached a plateau for the last threshold
values. In fact, the results of the last threshold values are very
close to the baseline results since, in these cases, the feature
extractor selects almost the entire feature set.
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Figure 2 Words and Unified Medical Language System (UMLS)
concepts shared in common by the c2 and t lists. The horizontal axis
specifies the threshold values that determine the size of the feature
subsets extracted from the c2 and t lists. The vertical axis shows the
percentage of features these subsets have in common.
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Experimenting with all feature types
Figure 4 shows the results of a second set of experiments where
we evaluated the impact of combining the word n-gram features
with the assert feature and UMLS concepts. For clarity in the
plots, we considered only the experiments involving the c2+t
ranked lists. In this figure, we used a threshold value of 100 for
the selection of the concept n-grams. As observed, the best
results in these plots correspond to the experiment that
combines all the feature types. To get a better insight into the
results corresponding to various combinations of feature types,
we computed the micro-averaged precision (microP), recall

(microR), and F1-measure (microF1) over all 27 threshold values
associated with each experiment. For instance, the microF1
values of the c2+t, c2+t+assert, c2+t+concepts, and c2+t
+concepts+assert experiments on the restricted dataset are
70.76, 72.35, 71.65, and 75.97, respectively. Additional results
and a more detailed ablation study (at the feature type level) are
presented in the supplementary online appendix. The online
appendix also lists, for each experiment, the best and worst F1
results (denoted as maxF1 and minF1, respectively) over the 27
threshold values for the word n-gram lists as well as experiments
considering various threshold values for the concept n-gram lists.

Figure 4 A study on the impact of the performance results when considering various combinations of word n-grams, Unified Medical Language
System (UMLS) concepts, and the assert feature. For each experimental result, the number of relevant features selected from the c2+t lists of word n-
grams is indicated by the threshold values on the horizontal axis of each plot. On the vertical axes, the system performance is expressed in terms of F1-
measure. The threshold value for selecting the most relevant UMLS concepts is set to 100 in all the experiments from these plots. The plots at the top
correspond to results on the restricted dataset, while the plots at the bottom correspond to results on the unrestricted dataset.

Figure 3 Performance results for various subsets of relevant features selected from the c2, t, and c2+t ranked lists of word n-grams. The size of
each subset is indicated by the threshold values on the horizontal axis of each plot. On the vertical axes, the system performance is expressed in terms
of F1-measure. The plots at the top correspond to results on the restricted dataset, while the plots at the bottom correspond to results on the
unrestricted dataset.
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In the online appendix, the threshold value for the UMLS
concepts is denoted as ucth.

Finally, tables 3 and 4 list the best performing results for each
combination of feature types for the restricted and unrestricted
datasets, respectively. The results are reported in terms of true
positives (TP), false positives (FP), false negatives (FN), true
negatives (TN), precision (P), recall (R), negative predictive value
(NPV), specificity (Spec), accuracy (Acc), and F1-measure (F1).
The best results associated with each performance metric from
these two tables are emphasized in boldface. For each experi-
ment that involves the word and UMLS concept features, the
tables also list the threshold values corresponding to the best F1-
measure (the primary measure considered for pneumonia iden-
tification). These two thresholds are denoted in the tables as wth

and ucth. To determine whether the differences in performance
between our proposed system configurations and the baseline
are statistically significant, we employed a randomization test
based on stratified shuffling.28 As can be seen, the results
produced by our system significantly outperform the baseline
results. On both datasets, the best results were achieved when
combining all three feature types. In particular, on the restricted
dataset, the t experiment peaks at wth¼10 000 and ucth¼5000,
whereas, on the unrestricted dataset, the c2 experiment has the
best F1-measure when wth¼600 and ucth¼5000. In addition to
the baseline considered, we also developed a rule-based system
using the value assigned to each patient by the assert feature.
Although this rule-based system achieved better results than the
baseline (57.14 and 54.03 F1-measure on the restricted and
unrestricted dataset, respectively), the differences in perfor-
mance are not statistically significant. This is because both
datasets have a relatively small number of instances. Of note as
well, the rule-based system is significantly inferior to any of our
systems that include machine learning.

Error analysis
There are several important limitations to our current dataset.
First, it is not a complete set of reports for all patients (eg, none
of the notes entered prior to the day of ICU admission were
captured). Of the total of 426 patients, 35% did not have admit

notes, 18% did not have discharge summaries, and 18% did not
have any reports generated in the first 24 h of hospital stay.
Second, the pneumonia annotation in this dataset was created
for a different purpose, where the annotator (a medical expert)
was asked to determine whether a patient had pneumonia
within 48 h of admission to the ICU. As such, positive cases
cover both community and hospital acquired pneumonia, which
is confusing to the learner when it encounters a negative
training example of hospital acquired pneumonia post-48 h of
admission to the ICU. Third, the dataset is relatively small with
a limited number of positive pneumonia cases.
Another source of errors is due to the limitations of our

current system, which relies on features available from shallow
processing of the text. The detection of a phenotype such as
pneumonia often requires a deeper understanding of the reports
that goes beyond assertion identification. For instance, for the
reports that do not explicitly mention that the patient has
pneumonia, one important decision factor is given by the
pneumonia-related symptoms and lab results encoded in the
ICU reports. However, lab results and other structured data that
may be relevant for pneumonia identification are often not
included in these reports. While the objective of the current
study was to explore the text reports using NLP technologies, in
our future work we plan to use a dataset that also includes
informative structured data and radiology reports.

CONCLUSION
We presented a machine learning framework that is able to learn
a model for pneumonia identification from narrative ICU
reports. Statistical feature selection plays an important role in
this framework, ranking features using statistical significance
tests. As a result of this ranking, only the most relevant features
for pneumonia identification will be selected by the feature
extractor. We empirically proved that, by using this feature
selection approach and considering only a small subset of
informative features from the feature space, we can achieve
significantly better results than a baseline which uses all the
features from the same feature space. Consequently, this
methodology significantly reduces the original feature space and

Table 3 The best performing results for each combination of feature types on the restricted dataset

Feature set Test wth ucth TP FP FN TN P R NPV Spec Acc F1

Baseline 17 6 27 186 73.90 38.60 87.32 96.90 86.00 50.70

concepts c2 e 300 37 15 7 177 71.15 84.09 96.20 92.19 90.68 77.08*

concepts+assert c2 e 300 37 12 7 180 75.51 84.09 96.26 93.75 91.95 79.57**

Words t 10 000 e 34 6 10 186 85.00 77.27 94.90 96.88 93.22 80.95**

words+assert c2+t 10 e 40 12 4 180 76.92 90.91 97.83 93.75 93.22 83.33**

words+concepts t 10 000 50 37 8 7 184 82.22 84.09 96.34 95.83 93.64 83.15**

words+concepts+assert t 10 000 5000 36 4 8 188 90.00 81.82 95.92 97.92 94.92 85.71**

*p<0.01, **p<0.001; statistically significant differences in performance between the system configurations considered and the baseline.
Acc, accuracy; F1, F1-measure; FN, false negatives; FP, false positives; NPV, negative predictive value; P, precision; R, recall; Spec, specificity; TN, true negatives; TP, true positives.

Table 4 The best performing results for each combination of feature types on the unrestricted dataset

Feature set Test wth ucth TP FP FN TN P R NPV Spec Acc F1

Baseline 28 20 38 340 58.30 42.40 89.95 94.40 86.40 49.10

concepts c2 e 900 45 12 21 348 78.95 68.18 94.31 96.67 92.25 73.17**

concepts+assert c2 e 1000 50 10 16 350 83.33 75.76 95.63 97.22 93.90 79.37**

words c2+t 800 e 45 8 21 352 84.91 68.18 94.37 97.78 93.19 75.63**

words+assert c2+t 800 e 49 11 17 349 81.67 74.24 95.36 96.94 93.43 77.78**

words+concepts c2 700 50 49 7 17 353 87.50 74.24 95.41 98.06 94.37 80.33**

words+concepts+assert c2 600 5000 49 5 17 355 90.74 74.24 95.43 98.61 94.84 81.67**

**p<0.001; statistically significant differences in performance between the system configurations considered and the baseline.
Acc, accuracy; F1, F1-measure; FN, false negatives; FP, false positives; NPV, negative predictive value; P, precision; R, recall; Spec, specificity; TN, true negatives; TP, true positives.
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is able to discard most of the irrelevant and redundant features
for the task of pneumonia identification. Furthermore, we
showed that the addition of a feature that extracts the assertion
value of all pneumonia expressions from our dataset improves
the performance of our system for this task.
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