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ABSTRACT
Objective Relation extraction in biomedical text mining
systems has largely focused on identifying clause-level
relations, but increasing sophistication demands the
recognition of relations at discourse level. A first step in
identifying discourse relations involves the detection of
discourse connectives: words or phrases used in text to
express discourse relations. In this study supervised
machine-learning approaches were developed and
evaluated for automatically identifying discourse
connectives in biomedical text.
Materials and Methods Two supervised machine-
learning models (support vector machines and
conditional random fields) were explored for identifying
discourse connectives in biomedical literature. In-domain
supervised machine-learning classifiers were trained on
the Biomedical Discourse Relation Bank, an annotated
corpus of discourse relations over 24 full-text biomedical
articles (w112 000 word tokens), a subset of the GENIA
corpus. Novel domain adaptation techniques were also
explored to leverage the larger open-domain Penn
Discourse Treebank (w1 million word tokens). The
models were evaluated using the standard evaluation
metrics of precision, recall and F1 scores.
Results and Conclusion Supervised machine-learning
approaches can automatically identify discourse
connectives in biomedical text, and the novel domain
adaptation techniques yielded the best performance:
0.761 F1 score. A demonstration version of the fully
implemented classifier BioConn is available at: http://
bioconn.askhermes.org.

INTRODUCTION
The desire for knowledge discovery through text
mining of biomedical literature has led to a great
deal of research towards the extraction and retrieval
of valuable and useful information from biomedical
text, through natural language processing (NLP)
methods developed for recognizing entities (eg,
proteins, genes, drugs, diseases, etc), facts,
hypotheses, events, and relations between entities.
However, with the exception of some recent work
on coreference resolution,1 much of this processing
has been restricted to the level of the clause,
focusing on identifying entities and relations
within a clause, and has ignored the importance
of identifying relations expressed at the level of
discourse, ie, relations expressed across clauses or
sentences. In example 1, for instance, queries
regarding the inhibitory effect of IL-10 could be
answered more accurately when the ‘concession’
relation between the two sentences is identified,
signaled by the word However. Taking the first

sentence alone would otherwise lead to the false
inference that the IL-10-mediated inhibitory effect
is unrestricted.

Example 1:IL-10-mediated inhibition of CD4+ T-cell
cytokine production is principally dependent on its
inhibition of macrophage antigen-presenting cell function.1

However, this indirect inhibitory effect is thought
to be restricted at the site of T-cell activation in
RA. (Concession: contra-expectation)

Knowledge of such relations, called ‘discourse
relations’, can be very useful in extracting various
kinds of biomedical information. In this paper, we
present the first investigations towards identifying
discourse relations in biomedical literature. We
focus on identifying ‘discourse connectives’, which
are words or phrases used to indicate the presence
of discourse relations, such as the word However in
example 1. Following the terms and definitions of
the Penn Discourse Treebank (PDTB),2 discourse
relations hold between abstract objects, such as
eventualities and propositions, which serve as the
arguments to the relation. Each discourse relation is
assumed to hold between precisely two arguments
(named Arg1 and Arg2). Discourse relations are
characterized in terms of several semantic (or sense)
classes, including ‘contrast’, ‘conjunction’, ‘cause’,
‘condition’, and ‘instantiation’, among others. In
example 2, the word but is a discourse connective
that indicates the presence of a ‘contrast’ relation
between the eventualities expressed by the two
sentences. In all the examples in this paper, Arg2,
the argument syntactically associated with or
bound by the connective is underlined, while Arg1,
is shown in italics. The discourse connective is in
bold. The semantics (or sense) of the connective is
shown in parentheses at the end of the examples.

Example 2: The phosphorylation of signal transducer
and activator of transcription 3 was sustained in both
blood and synovial tissue CD4+ Tcells of RA, but it was
not augmented by the presence of 1 ng/ml IL-10.
(Contrast)

Identifying the presence of discourse relations
can help in the extraction of valuable information
from natural language text and also benefit many
NLP applications.3e9 For example, identifying
causal discourse relations will make it possible to
generate repositories of ‘why’ questions from
biomedical text.10 In general, question generation
systems,7 as well as question-answering systems,
stand to benefit greatly from recognizing discourse
relations because it will allow for the generation
and answering of complex questions about biomed-
ical events and situations.
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Discourse relations can also be used to benefit information
extraction from clinical narratives. Unique adverse drug event
information often appears in narratives of electronic health
records. While most biomedical natural language processing
(BioNLP) algorithms for adverse drug event extraction are based
on co-occurrence of an adverse event and a drug, problems exist
with such an approach, as illustrated by examples 3 and 4. In
example 3, connective after has a temporal function describing
the administration of atenolol. Whereas in example 4, the
connective after has a causal interpretation. The ‘bradycardia’ is
caused by atenolol.

Example 3: .atenolol should be continued while he is at hospital and
after he is discharged. (Temporal: succession)
Example 4: Patient was noted to bradycardia as heart rate fell to low 50s
after taking atenolol, (Cause: result)

Therefore, the identification of discourse relations would
enable text-mining engines to discover not only entities and
events, but also relations between biological or medical events,
such as the temporal and causal relations, relations between
facts, and relations between experimental evidence and their
conclusions. Further illustration is provided in the supplemen-
tary material (available online only).

Words that function as discourse connectives in some
instances may have non-discourse-related functions in others.
Therefore, one cannot identify discourse connectives by simply
using a list of connective expressions and applying pattern
matching over the texts. For instance, the word so functions as
a connective in example 5(a), expressing a result relation, while
acting as an intensifier in example 5(b) with no discourse
function at all. A similar example of such functional ambiguity
is given for ‘briefly’ in the supplementary material (available
online only).

Example 5(a): however, CsA also inhibits activation of the JNK
pathway following TcR/CD3 and CD28 stimulation,11 12 and so CsA
pretreatment may act to prevent early T cell activation of these
pathways, thus blocking cytokine production and protecting mice
from the effects of subsequent SEB exposure. (Cause: result)
Example 5(b): It is striking that ductal growth is so exquisitely
focused in the end buds.

Automatic discourse parsing comprises several sub-tasks,
including discourse connective detection, argument detection,
discourse connective sense categorization, and discourse struc-
ture composition. The first step towards a full-fledged discourse
relation detection system and parser is the detection of discourse
connectives. In this study, we explore supervised machine-
learning approaches to identify discourse connectives automat-
ically in biomedical literature and compare them with simple
lexical pattern matching-based approaches. The main contribu-
tions of this paper are: (1) we are the first group to identify
discourse connectives in the biomedical domain; (2) we explore
the use of domain-specific features in addition to the normal
syntactic features used in machine learning and (3) we use
domain adaptation techniques to leverage larger open-domain
datasets and further improve the performance of the discourse
connective identification.

RELATED WORK
A great deal of work has been performed to explore methods for
discourse parsing13e15 and discourse identification in the open
domain.16 17 Pitler and Nenkova18 explored supervised machine-
learning approaches to identify explicit discourse connectives
and disambiguate their sense in the PDTB.

In contrast, work on discourse parsing in the biomedical
domain has been limited. BioNLP tasks have traditionally
focused on sentence level analysis and information extraction.
Studies19e22 have explored approaches to segment biomedical
text into sections and topics. Szarvas et al23 created BioScope,
a corpus annotated with negative and speculative keywords and
their linguistic scope in biomedical text. Agarwal and Yu24 25

subsequently developed a system automatically to identify
negation and hedging cues and their scope in biomedical text.
The most closely related work is the development of an

annotated corpus of discourse relations called the Biomedical
Discourse Relation Bank (BioDRB),26 27 and studies on the sense
disambiguation of discourse connectives.26 Studies have also
examined certainty,28 and future research direction in biomedical
literature29 using discourse structure. Other discourse aspects
have been researched in the biomedical domain, such as the
annotation of co-reference relations1 11 12 30 and anaphora
resolution.31

Previously, we developed a preliminary conditional random
fields (CRF)-based classifier32 to identify discourse connectives
using the PDTB and BioDRB corpora. The classifier achieved an
F1 score of 0.55 for identifying connectives. In this study, using
the same corpora we significantly expand the previous work by
exploring new features including syntactic and domain-specific
semantic features and novel domain adaptation techniques.

MATERIALS AND METHODS
Discourse relations corpora
The two annotated corpora we used in this study are the PDTB
2.02 (http://www.seas.upenn.edu/wpdtb) and the BioDRB26

(http://biodiscourserelation.org/). The PDTB annotations are
done over 2159 texts (over 1 million word tokens) from the Wall
Street Journal (WSJ) articles collection of the Penn Treebank.33

The Penn Treebank is an open-domain large-scale annotated
corpus of syntactic phrase structure, which has been very widely
used by researchers for data-driven parser development. The
source WSJ articles have also been annotated for other kinds
of linguistic information, including semantic roles34 and co-
reference,35 among others. The PDTB was developed to enrich
the WSJ annotations further at the level of discourse and
provides annotations of explicit and implicit discourse relations
their arguments, their senses, and the attributions of discourse
relations and each of their two arguments.
The BioDRB is a corpus of discourse relations annotated over

24 full-text articles (w112 000 word tokens) taken from the
GENIA corpus.36 The GENIA articles were selected by querying
the PubMed for ‘blood cells’ and ‘transcription factors‘ and were
considered representative of scientific articles in this domain by
the GENIA research group.37 Discourse relation annotations of
the BioDRB largely follow the PDTB guidelines and, like the
PDTB, include annotations of explicit and implicit discourse
relations, their arguments and their semantics. Unlike the
PDTB, however, the BioDRB does not currently annotate attri-
bution. An overall agreement of 85% was reported among
annotators of BioDRB.27

The PDTB and BioDRB contain annotations for 18 459 and
2637 total explicit connectives, or 18.5 and 26.4 discourse
connectives per 1000 tokens, respectively. After connective
stemming (eg, ‘three days after ’ stemmed to ‘after ’) there are
100 unique explicit discourse connectives in the PDTB and 123
in the BioDRB.
Our analysis shows that 56% of the explicit discourse

connectives in the BioDRB occur in the PDTB, including
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common connectives like and, also, so, and however. Thirty-three
per cent of the connectives in BioDRB comprise the class of
‘subordinators’ like followed by, in order to, and due to, which are
not annotated as connectives in the PDTB corpus (connectives
in the PDTB are defined as belonging to three grammatical
classes: subordinating conjunctions, coordinating conjunctions,
and discourse adverbials). The final 11% of the connectives in
the BioDRB consist of lexical items that do not occur in the
PDTB texts and were therefore not classified as connectives.
Examples of these include: In outline, As a consequence, and In
summary.

Figure 1 shows the frequency of the tokens in the BioDRB
corpus and their frequency as connectives. From our analysis of
the BioDRB data we found that 76% of the connectives were
functionally ambiguous, in that they also appeared in the text
not as part of a discourse relation. We also found that 43.5% of
the connectives occurred only once as a connective in the entire
corpus.

As the BioDRB corpus is relatively small, we leveraged the
much larger PDTB corpus in order to help deal with data
sparseness. Although the PDTB is not from the biomedical
domain, we expect the addition of more data to boost the
performance of the classifiers.

Domain adaptation approaches
In order to compensate for the relatively small size of the
BioDRB (w112K tokens), and to leverage the much larger open-
domain PDTB (w1 million tokens), we explored domain adap-
tation approaches to build models trained on both corpora. In
domain adaptation, the larger corpus is referred to as the source
domain (PDTB in this case) and the smaller one as the target
domain (BioDRB in this case). In this study, we explored three
supervised domain adaptation techniques:

Instance weighting combines the data from both corpora, but
assigns different weights to them during the training phase. The
weights are usually inversely proportional to the size of the
corpus to compensate for the larger number of training examples
and to avoid over fitting to the source domain. The classifier was
then trained using this weighted training dataset.

Instance pruning actively removes misleading training
instances. For example, if for training example d, we find
different labels for d in the source and target domains, then we
remove all such instances of d from the source domain training
data. To apply instance pruning, we first trained a classifier on
the target domain data (BioDRB), and then applied this classifier
to the source domain data (PDTB). All the instances in the
source domain that were incorrectly classified are pruned from
the source training set (w1% of data was pruned). The final
classifier was trained using this pruned source domain dataset.

Feature augmentation is a method in which additional meta-
features are added to indicate whether a specific feature came
from the source or target dataset. For each training example, the
feature vector is expanded to contain not only the original
features, but also indicators representing the domain from
which each feature was taken. This makes it possible for us to
represent the effect of individual features in the source and
target domain, respectively, and for the machine-learning algo-
rithms to distinguish between features important to
the respective domains. The classifier is then trained on the
combined dataset with the additional features. Consider
the example, ‘.industry is regulated by commodity futures .’ in
the source domain and ‘.resulted in a small overlap in regulated
mRNAs at 4 .’ in the target domain. The word ‘regulated’ is
used as a verb in source domain where as it is used as an
adjective in target domain. In the feature vector for the word
‘regulated’, the source-specific indicator linked to ‘verb’ and the
target-specific indicator linked to ‘adjective’ is set.

Supervised machine learning
The two supervised machine-learning approaches we explored
were CRF and support vector machines (SVM). Our aim in using
these two approaches was to explore whether it was more
beneficial to cast the problem of identifying discourse connec-
tives as a sequence-labeling task (with CRF), or as a classification
task (with SVM).
CRF are a probabilistic modeling framework38 commonly used

for sequence labeling problems. In our experiments, we treated
documents as a sequence of words, and the classifier determined
whether or not each word in the sequence was part of a connec-
tive. We built the CRF classifiers using the ABNER toolkit.39

To test connective identification as a classification task, we
built an SVM classifier using Weka. SVM are a well-known
statistical machine-learning algorithm and have shown very
good performance in many classification tasks.40 41 We used the
SVM to classify each word in a sentence as either a discourse
connective token or a non-discourse token.
In addition to the default ABNER features, we evaluated

syntactic and domain-specific learning features. We explored the
syntactic features that have been shown to be important in
previous studies,13 16 18 namely part-of-speech (POS) of the token,
the label of the immediate parent of the token’s POS in a parse
tree, and the POS of the left sibling (the token to the left of the
current word inside the innermost constituent). Figure 2 shows
a sample constituency parse tree, in which the POS tag is always
the immediate parent label of a word token at the leaf of the tree.
In this example, the POS tag of the word ‘in’ is IN and the POS
tag of the word ‘contrast’ is NN. Furthermore, the immediate
parent label of the POS for ‘in’ is PP, and of the POS for ‘contrast’
is NP. The left sibling value is NONE assuming it is the start of
the sentence. The syntactic features were obtained using the
CharniakeJohnson parser trained in the biomedical domain. The
parser was evaluated to have the best performance when tested
on the GENIA corpus.42 We also explored domain-specific features
by applying BANNER43 gene tagger and the LINNAEUS44 species
tagger to identify gene and species named entities as well as
Metamap to map text elements to the unified medical language
system (UMLS)45 semantic types. Mapping free text to concepts
or named entities (eg, gene and species) represents a case of back-
off smoothing that contributes to improved performance.

Experiments and systems
We developed several systems to evaluate: the complexity of the
task; the impact of different syntactic and domain-specific

Figure 1 Frequency of the tokens in the Biomedical Discourse Relation
Bank (BioDRB) corpus and their frequency of as connectives.
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features; and the impact of different domain adaptation models.
As there is a total of 24 articles in the BioDRB, to simplify the
task, we used 12-fold cross-validation rather than the common
10-fold so that an article (not a segment of it) was assigned as
either a training or a testing article.

Evaluation of in-domain systems
In this experiment, we develop two heuristic baseline systems
and compare their performance with our in-domain CRF and
SVM-based classifiers.

Baseline systems
The first baseline system, BaseLex, uses a lexical heuristic,
creating a lexicon by extracting the connectives annotated in the
BioDRB corpus, and then tagging all instances of these words in
the text as connectives.

The second baseline system, BaseLexPunct, is a combination of
the lexical heuristic from BaseLex and additional heuristics
related to observed punctuation patterns associated with
connectives. In particular, we observed that connectives were
often either preceded or followed by a comma, or appeared as
the first word in the sentence. The system first identifies all
connective terms from the lexicon in the text, and then filters
out the instances that do not match with the manually created
punctuation heuristic.

Supervised machine-learning systems
The two baseline systems were compared against our supervised
machine-learning systems: In-domainSVM, the SVM classifier
and the In-domainCRF, the CRF-based classifier. Both the classi-
fiers were trained and tested on BioDRB, using syntactic features
(see Supervised machine learning section).

Measuring the impact of semantic features
In this experiment, we evaluated the impact of different types of
features; in particular we wished to determine the relative
performance of syntactic versus domain-specific features. For
this reason we built variants of the best performing classifier
from the first experiment using different features, as follows:

The UMLS classifier exclusively uses UMLS features extracted
using Metamap; the GeneSpecies classifier exclusively uses the
gene and species categories extracted with BANNER and
LINNAEUS as features; we then evaluate both of these classifiers
after adding the features used in the Evaluation of in-domain
systems experiment, which we call UMLS+ and GeneSpecies+,
respectively. Finally, we combined all of the features into a clas-
sifier, which we will call Semantics+.

Systems to measure impact of domain adaptation
In this experiment, we evaluated the impact of the domain-
adaptation approaches described in the Domain adaptation
approaches section, for which we compared several classifiers
with and without domain adaptation. We used the classifier
type and feature sets found to have the best performance in our
previous experiments.

Baseline systems
The following systems did not incorporate domain adaptation,
and were used as the baseline: the In-domain classifier, trained
exclusively on the target domain; the Cross-domain classifier,
trained on the source domain; and the Unweighted classifier,
trained on the merged source and target domains.

Domain adaptation systems
To test the various domain adaptation techniques, we developed
three classifiers: the Instance Weighting classifier, in which source
domain data were given a weight 0.1 times that of target
domain data (the value of 0.1 was used as an approximation of
the relative sizes of the datasets); the Instance Pruning classifier
and the FeatAugment classifier, which were trained using the
instance weighting, instance pruning and feature augmentation
approaches, respectively.

Combined domain adaptation systems
The following systems incorporated combinations of the
domain adaptation techniques: the Weighted-Pruning classifier,
trained using a combination of instance weighting and instance
pruning approaches; the Weighted-FeatAugment classifier, trained
using a combination of instance weighting and feature
augmentation approaches; the Hybrid classifier, trained using
a combination of instance pruning and feature augmentation
approaches; and finally, the Weighted-Hybrid classifier, trained
using the combination of all three approaches. For the combined
methods using instance weighting, the source weight was
changed from 0.1 to 0.5 to reflect the effects of the other two
adaptation methods.

Evaluation metrics
All the classifiers (including the baseline classifiers) were run at
the token level, ie, the word level, marking each token in the
evaluation corpus as either connective or not. They were eval-
uated with 12-fold cross validation, except for the Cross-Domain
classifier, which was trained on the source domain and evaluated
on the target domain. For systems using the combination of the
BioDRB and the PDTB, the training for each fold was always
done on the entire PDTB with 11/12s of the BioDRB, and the
evaluation done on the remaining BioDRB data. The standard
evaluation metrics of recall, precision, and F1 scores were used to
measure the performance of all systems.

RESULTS
Table 1 shows the performance evaluation of the in-domain
classifiers relative to the baseline systems, as described in the
Evaluation of in-domain systems and Measuring the impact of

Figure 2 Sample parse tree.
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semantic features sections. The heuristic baseline systems
BaseLex and BaseLexPunct had an F1 score of 0.33 and 0.272,
respectively. The supervised machine-learning classifiers In-
domainSVM and In-domainCRF had an F1 score of 0.657 and
0.757, respectively. The supervised machine-learning methods
clearly outperform the baseline methods. The CRF-based system
had the best performance overall, and was therefore chosen as
the system to be adapted for subsequent experiments.

It is clear from the data in table 1 that the addition of domain-
specific semantic features did not help improve classifier
performance. The In-domain classifier, trained using only the
syntactic features, had the best performance, F1 score 0.757,
followed by the Gene-Species classifier, F1 0.753. While the
difference between the two scores is not statistically significant,
the additional features were clearly not providing any benefit.
Therefore, in subsequent experiments with domain adaptation,
we used only syntactic features to train classifiers. We can also
see from table 1 that the identification of non-discourse
connectives had good performance in all systems.

Table 2 shows the performance of all CRF classifiers with the
impact of different domain adaptation models, as described in
the Systems to measure impact of domain adaptation section.
Among the simple domain adaptation techniques, the Instance
Weighting classifier had the best performance; with an F1 score of
0.730, compared with other individual domain adaptation-based
classifiers Instance Pruning and FeatAugment, for which F1 scores
were 0.637 and 0.677, respectively.

None of the methods, however, performed better than the
baseline In-domainCRF classifier. Some classifiers increased recall

(Instance Weighting) while others increased precision (Instance
Pruning). This indicates that systems combining multiple
domain adaptation techniques may be more robust, and therefore
produce better F1 scores. Results of these combinations are
shown in the last four rows. The Hybrid classifier had the best
performance among all classifiers, with an F1 score of 0.761. All
the classifiers shown in table 2 were statistically significant
(t test, p<0.005) when compared with the Cross-domain classifier.
The performance of classifiers trained using simple domain

adaptation methods were statistically significant (t test,
p<0.005) when compared with the classifiers trained using
combined domain adaptation methods. However, the classifiers
trained using combined domain adaptation techniques did not
produce statistically significant differences in their results.

ERROR ANALYSIS
For error analysis, we focused on analyzing the CRF classifiers
trained on syntactic features, because they showed the best
performance. Error analysis revealed that most of the errors were
due to the common problem of data sparseness. In particular,
most of the false negatives did not appear in the training set or
appeared only once as a connective in the entire corpus. There-
fore, we assessed classifier performance while taking these
distributions into account. We first categorized the connectives
based on their occurrence distributions in the PDTB and BioDRB
corpora. There were three categories: connectives that were
present and annotated in both corpora (BioDRB X PDTB),
present in both but annotated only in BioDRB (BioDRB ;
PDTB), and finally, present and annotated only in BioDRB

Table 1 Task complexity: performance (average6Std) of different classifiers for the task complexity measurement. Effect of learning features:
performance (average6Std) of in-domain CRF classifiers trained with different learning features

Classifier type
Overall performance (F1 score) (Precision,
Recall) discourse connectives

Overall performance (F1 score) (Precision,
Recall) non-discourse connectives

Task complexity

BaseLex 0.33060.044 (0.19860.032, 1.00060.000) 0.94860.005 (1.00060.000, 0.90160.010)

BaseLexPunct 0.27260.058 (0.16560.041, 0.79060.072) 0.94660.006 (0.99460.001, 0.90160.010)

In-domainSVM 0.65760.061 (0.77360.066, 0.57560.07) 0.94560.002 (0.99860.001, 0.89760.004)

In-domainCRF 0.757±0.059 (0.81760.058, 0.71160.086) 0.99460.001 (0.99260.002, 0.99660.001)

Effect of learning features

UMLS (UMLS Semantic features) 0.68160.063 (0.78660.050, 0.60660.086) 0.99360.001 (0.99060.003, 0.99660.001)

Gene-Species (Gene + Species features) 0.68660.058 (0.79760.050, 0.60860.082) 0.99360.001 (0.99060.002, 0.99660.001)

UMLS+ (Syntactic + UMLS Semantic features) 0.74460.061 (0.80660.051, 0.69660.087) 0.99260.001 (0.98660.003, 0.99760.001)

Gene-Species+ (Syntactic + Gene + Species features) 0.75360.052 (0.81460.045, 0.70360.075) 0.99460.001 (0.99260.002, 0.99660.001)

In-domain (Syntactic features) 0.757±0.059 (0.81760.058, 0.71160.086) 0.99460.001 (0.99260.002, 0.99660.001)

Semantics+ (All features) 0.74760.059 (0.81060.048, 0.69860.086) 0.99460.001 (0.99260.002, 0.99660.001)

Values in bold indicate the performance of the classifier that had the best performance.

Table 2 Performance (average6Std) of different classifiers based on CRF for identifying the discourse
connectives using domain adaptation techniques for various categories

Classifier type
Overall performance (F1 score)
(Precision, Recall) discourse connectives

Overall performance (F1 score)
(Precision, Recall) non-discourse conn

Cross-domain 0.59260.066 (0.83460.061, 0.46160.065) 0.99260.001 (0.98660.002, 0.99860.001)

UnWeighted 0.67760.071 (0.81060.061, 0.58560.085) 0.99360.001 (0.98960.002, 0.99760.001)

In-domain 0.75760.059 (0.81660.058, 0.71160.086) 0.99460.001 (0.99260.002, 0.99660.001)

Weighted 0.73060.053 (0.80560.052, 0.67160.075) 0.99360.001 (0.99160.002, 0.99660.001)

Pruning 0.63760.076 (0.84460.070, 0.51460.079) 0.99360.001 (0.98760.002, 0.99860.001)

FeatAugment 0.69560.056 (0.76060.048, 0.64760.090) 0.99360.001 (0.99060.002, 0.99660.001)

Weighted-Pruning 0.75360.057 (0.81660.051, 0.70360.083) 0.99460.001 (0.99260.002, 0.99660.001)

Weighted-FeatAugment 0.75760.045 (0.80960.050, 0.71660.068) 0.99460.001 (0.99260.002, 0.99660.001)

Hybrid 0.76160.051 (0.81360.041, 0.71960.079) 0.99460.001 (0.99360.002, 0.99660.001)

Weighted-Hybrid 0.75760.050 (0.80760.047, 0.71760.076) 0.99460.001 (0.99260.002, 0.99660.001)

Values in bold indicate the performance of the classifier that had the best performance.
CRF, conditional random fields.
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(BioDRB B PDTB). We then investigated the performance of
each domain-adapted classifier on each of the categories for
tokens that appear at least once as connectives in the corpus.
Table 3 shows the percentage of connectives identified by the
classifier in each category, the classifier ’s performance in that
category for identifying the token as a discourse connective and
non-discourse connective. We observed that the weighting
technique improved the performance across all three categories.

The impact of the frequency of the connectives on the
performance of the classifier was analyzed. Figure 3 shows
the graph of the number of connectives and the performance of
the top-performing Hybrid classifier against the frequency of
connectives in the BioDRB.

In general, as the frequency of the connectives increased,
the performance of the classifier for identifying those connec-
tives increased. This is to be expected, as increased training data
resulted in improved classification. The decrease in performance
for very frequent connectives can be explained by a small
number of very frequent but very ambiguous connectives.

Table 4 below shows the five most common connective forms,
the likelihood of each form occurring as a connective, and the F1

scores of the classifiers on these connectives. The Hybrid and In-
domain classifiers performed better for frequent connectives (>100
occurrences as connectives). The connective and had an F1 score of
approximately 0.760.04 for all the classifiers except for the
FeatAugment classifier. For the connectives by, to, and after, the table
shows that as domain adaptation techniques were applied, the
performance increased overCross-Domain andUnweighted classifiers.
Our results show that a significant percentage of errors was

introduced by two of the most frequent connectives, by and to,
which were annotated in the BioDRB. We assessed the perfor-
mance of all the classifiers from the Systems to measure impact
of domain adaptation section after removing the connectives by
and to. The F1 score of the Hybrid classifier increased from 0.761
to 0.792, which was statistically significant (t test, p<0.001) (see
supplementary material, available online only).

Examples
In this section we manually examined the set of classified
instances to evaluate the classifier that had the poorest perfor-
mance (Cross-domain) and the classifier that had the best
performance (Hybrid).

Table 3 Performance (F1 score) of the classifiers for identifying the discourse connectives

BioDRB X PDTB BioDRB ; PDTB BioDRB B PDTB

% Of conns
Performance
as DCONN

Performance
as non-DCONN % Of conns

Performance
as DCONN

Performance
as Non DCONN % Of conns

Performance
as DCONN

Performance
as non-DCONN

Cross-domain 96.7% 0.62 0.92 3.3% 0.03 0.97 0% 0 0.86

UnWeighted 84.3% 0.70 0.93 10.5% 0.21 0.98 5.2% 0.55 0.91

In-domain 74% 0.78 0.94 19.8% 0.65 0.98 6.2% 0.63 0.91

Weighted 75.7% 0.75 0.94 17% 0.51 0.98 7.3% 0.7 0.92

Pruning 93.4% 0.67 0.93 3.3% 0.08 0.97 3.3% 0.14 0.87

FeatAugment 72.8% 0.70 0.93 21% 0.58 0.98 6.2% 0.5 0.9

Weighted-Pruning 75.3% 0.77 0.94 18.5% 0.60 0.98 6.2% 0.63 0.91

Weighted-FeatAugment 72.6% 0.77 0.94 20.2% 0.67 0.98 7.2% 0.7 0.92

Hybrid 74.4% 0.78 0.94 19.5% 0.66 0.98 6.1% 0.67 0.92

Weighted-Hybrid 73.8% 0.78 0.94 20.2% 0.65 0.98 6% 0.67 0.92

BioDRB, Biomedical Discourse Relation Bank; PDTB, Penn Discourse Treebank.

Figure 3 The graph of performance of
Hybrid classifier over different
distributions of the connectives.
BioDRB, Biomedical Discourse Relation
Bank; PDTB, Penn Discourse Treebank.
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Example 6: One day after injection, the swelling of the ears was
determined with a gauge (Hahn & Kolb, Stuttgart, Germany).
(Temporal: succession)
Example 7: In view of the fact that NF-kB was also activated by
anti-CD3/anti-CD28, IL-15 or mitogens in our experiments, it is
most likely that the NF-kB pathway is also actively involved in the
induction of IL-17 in RA PBMC. (Cause: justification)

Examples 6 and 7 show instances in which both the Cross-
domain and Hybrid classifiers failed to identify the connectives.
The connectives One day after and In view of the fact that appear
only once in the entire BioDRB corpus and do not occur at all in
the PDTB corpus. As the classifiers encounter these connectives
for the first time during testing, they fail to recognize them as
discourse connectives. Example 6 suggests that collecting an
exhaustive list of discourse connectives will not be feasible because
any number could be inserted into the expression One day after.

Example 8: In order to explain this differential efficacy, several
parameters were analyzed. (Purpose: goal)
Example 9: Due to the high level of sensitivity of nested RT-PCR,
even low levels of illegitimate transcription in PBMNC can cause false-
positive results.2e5 (Cause: reason)

Examples 8 and 9 show instances that were correctly identi-
fied by the Hybrid classifier, but were incorrectly classified by the
Cross-domain classifier. Both in order to and due to are subordina-
tors that were not annotated as connectives in the PDTB corpus,
but were annotated as connectives in the BioDRB corpus. As the
Hybrid classifier is trained for the biomedical domain using
BioDRB, it identified them as connectives; however, the Cross-
domain classifier failed to identify them as connectives as its
training set did not contain such instances. In fact, the only
connective in the BioDRB ; PDTB class that Cross-domain
correctly classifies is as an example, which shares words with
common connectives in PDTB.

Example 10: We considered this to be an appropriate positive control, as
any cell that is detected using the immunobeads should express the
EpCAM gene. Tests of the single tumor cell and 100 PBMNC
aliquots with EpCAM showed that it was also expressed to
a sufficient level to enable detection of the tumor cell in 31/35
(89%) cases after 45 cycles of PCR amplification. (Conjunction)
Example 11: The accelerating effect of the mAb RIB5/2 was reproduced
in two additional treatment experiments, and this effect was observed
despite a variable onset of AA in the PBS-treated animals (day 9 to
11). (Conjunction)

Examples 10 and 11 show instances that were correctly
identified by the Cross-domain classifier, but incorrectly classified

by the Hybrid classifier. The connectives also and and occur in
both the PDTB and BioDRB corpora. Table 4 shows that the
connective and had a better F1 score for the Cross-domain and In-
domain classifiers compared with the Hybrid classifier. In addi-
tion, the Hybrid classifier incorporates feature augmentation,
whose difficulty classifying and is clearly illustrated in table 4.

DISCUSSION
Automatic identification of discourse connectives is a challenging
task. We found 76% of connectives to be ambiguous. As such, it is
not surprising that using simple lexical features based on
a connective-matching system did not perform well (0.33 F1 score
as shown in table 1).Our results show that the supervisedmachine-
learning approaches significantly outperformed the simpler
pattern-matching approaches, yielding a maximum 0.757 F1 score.
We explored two different machine-learning models: SVM and

CRF. We found that the CRF model outperformed the SVM
model, yielding 0.757 F1 score, 10% higher than that of the SVM
model. Note that the performance of both systems was much
lower than in the open domain (0.94 F1 score). For comparison,
we trained and tested CRF models on the PDTB with the
published feature set.18 The classifier yielded similar results (0.937
F1 score), which demonstrated that our models are state of the art.
Our results have shown that in-domain classifiers outper-

formed cross-domain classifiers. While the CRF-based in-domain
classifier achieved the highest performance of 0.757 F1 score, the
best cross-domain classifier yielded only 0.592 F1 score. The
results demonstrate that the biomedical domain needs domain-
specific models for discourse connective identification. As the
PDTB is not taken from the biomedical domain and has different
linguistic characteristics, the addition of additional training data
from the PDTB does not boost classifier performance.
We explored different learning features. Similar to previous

open-domain work,18 we found that syntactic features are
important. In contrast, adding domain-specific semantic features
(eg, features based on UMLS) did not improve the performance.
We speculate that the additional features may have introduced
noise that is responsible for decreased performance.
Previous work has demonstrated that domain-adaption

approaches can significantly improve the performance of tasks
such as semantic role labeling.46 In contrast, our experiments
show that different domain adaptation methods have comple-
mentary effects on performance and can be combined for further
improvement. Our new domain adaptation model Hybrid, which
is a CRF model trained with a combination of instance pruning
and feature augmentation domain adaptation techniques,
outperformed all other models achieving and F1 score of 0.761.
The Hybrid classifier used the advantages of both the instance
pruning (improved precision) and feature augmentation (improved
recall) approaches thus increasing the overall performance.
Data sparseness is a very common problem in statistical NLP.

In our study 43.5% of the connective types appeared only once
in the entire corpus as connectives. However, our results show
that removal of these singleton connectives did not drastically
affect system performance. This may be explained by the fact
that the singleton connectives accounted for only a small
portion (3%) of all discourse connective instances. This suggests
that future work should focus on identifying improved features
for disambiguating commonly occurring and highly ambiguous
(such as by and to) connectives.

CONCLUSION AND FUTURE WORK
We have presented a method to identify discourse connectives
automatically in biomedical text. This task is difficult and poses

Table 4 The most common connectives in BioDRB and their F1 scores
on the classifiers

Classifiers
And
(8.1%)

By
(26.1%)

To
(10.8%)

After
(52.7%)

However
(100%)

Cross-domain 0.72 0.03 0 0.06 0.98

UnWeighted 0.73 0.3 0.07 0.67 1

In-domain 0.7 0.64 0.66 0.74 1

Weighted 0.7 0.52 0.53 0.72 1

Pruning 0.74 0.04 0 0.5 0.99

FeatAugment 0.26 0.55 0.58 0.65 0.99

Weighted-Pruning 0.74 0.57 0.6 0.73 1

Weighted-
FeatAugment

0.67 0.59 0.67 0.72 1

Hybrid 0.67 0.64 0.67 0.72 1

Weighted-Hybrid 0.67 0.62 0.66 0.71 1

Values in bold indicate the performance of the classifier that had the best performance.
BioDRB, Biomedical Discourse Relation Bank.

806 J Am Med Inform Assoc 2012;19:800e808. doi:10.1136/amiajnl-2011-000775

Research and applications



many challenges. The Hybrid classifier based on CRF with
a combination of instance pruning and feature augmentation
domain adaptation techniques had the best performance (F1
score 0.761) in the biomedical domain, while performance in
open domain is still better (F1 score 0.93). This paper explored
various supervised machine-learning-based algorithms for auto-
matically identifying explicit discourse connectives and evalu-
ated different domain adaptation techniques to adapt models
trained on the PDTB to the biomedical domain with various
novel features. Although performance of the Hybrid classifier is
not statistically more significant than the In-domain classifier,
leveraging the large corpus from another domain makes the
classifier trained for biomedical domain more robust when the
data are sparse. Future work will explore features to disambig-
uate the commonly occurring and confounding connectives like
by and to. Later, we will extend this work to identify the argu-
ments of explicit discourse connective and perform connective
sense categorization, the next step towards developing
a discourse parser. We will also explore techniques to identify the
presence of implicit discourse relations in the text.
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