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Abstract

Background: Precise spike synchrony, at the millisecond or even sub-millisecond time scale, has been reported in
different brain areas, but its neurobiological meaning and its underlying mechanisms remain unknown or
controversial. Studying these questions is complicated by the lack of a validated, well-normalized and robust index
for quantifying synchrony. Previously used measures of synchrony are often improperly normalized and thereby are
not comparable between different experimental conditions, are sensitive to variations in firing rate or to the firing
rate differential between the two neurons, and/or rely on untenable assumptions of firing rate stationarity and
Poisson statistics. I describe here a novel measure, the Jitter-Based Synchrony Index (JBSI), that overcomes these
issues.

Results and discussion: The JBSI method is based on the introduction of virtual spike jitter. While previous
implementations of the jitter method used it only to detect synchrony, the JBSI method also quantifies synchrony.
Previous implementations of the jitter method used computationally intensive Monte Carlo simulations to generate
surrogate spike trains, whereas the JBSI is computed analytically. The JBSI method does not assume any specific
firing model, and does not require that the spike trains be locked to a repeating external stimulus. The JBSI can
assume values from 1 (maximal possible synchrony) to −1 (minimal possible synchrony) and is therefore properly
normalized. Using simulated Poisson spike trains with introduced controlled spike coincidences, I demonstrate that
the JBSI is a linear measure of the spike coincidence rate, is independent of the mean firing frequency or the firing
frequency differential between the two neurons, and is not sensitive to co-modulations in the firing rates of the
two neurons. In contrast, several commonly used synchrony indices fail under one or more of these scenarios. I also
demonstrate how the JBSI can be used to estimate the spike timing precision in the system.

Conclusions: The JBSI is a conceptually simple and computationally efficient method that can be used to compute
the statistical significance of firing synchrony, to quantify synchrony as a well-normalized index, and to estimate the
degree of temporal precision in the system.
Background
The most basic temporal relationship in the active ner-
vous system is firing synchrony, that is, the coincidence of
spikes fired by two or more neurons. Firing synchrony has
been widely reported in the nervous system and is of
much interest to neuroscientists both because of its po-
tential role in encoding, transmitting and decoding of in-
formation in the brain, and because it may reveal
something about the underlying synaptic (or other) inter-
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reproduction in any medium, provided the or
actions that generate it (for reviews, see [1,2]). Firing syn-
chrony increases the reliability of firing in downstream
neurons that receive the coincident synaptic inputs [3-5]
and may therefore be an efficient way to transmit informa-
tion through multiple layers of feed-forward excitatory
networks [6-8]. Alternatively or in addition, synchrony
may be used as a ‘binding’ signal [9] (but see [10]); may be
the neural correlate of attention or expectation [11-13]; or
may encode information about the stimulus, beyond that
available from the firing rate alone [14,15]. Synchrony can
arise when two or more neurons respond to a sudden
onset or rapid modulation of a sensory stimulus, such as
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an auditory click [16], a visual saccade [17] or a high-
velocity whisker deflection [18-20]. The focus here, how-
ever, will be on stimulus-independent synchrony that is
observed (in some systems) after correcting for stimulus
effects, or in the absence of a stimulus [5,21,22]. Whereas
stimulus-dependent synchrony may encode information
about the stimulus that drives it, stimulus-independent
synchrony may teach the experimenter something about
the connectivity of the underlying network. Two network
motifs have most often been invoked to account for
stimulus-independent synchrony: shared excitatory inputs
from diverging presynaptic axons [23,24] and electrical
coupling by gap junctions [25-27]. In a recent publication,
we demonstrated that a third motif, reciprocal inhibitory
chemical synapses, can drive stimulus-independent syn-
chrony with sub-millisecond precision, in the absence of
shared inputs or electrical coupling [28].
Since spike coincidence could also be a purely chance

occurrence, an important first step in studying syn-
chrony is to determine if the observed coincidence level
is ‘real’, meaning statistically significant - in other words,
to calculate its p-value or Z-score. We refer to this as
detecting synchrony. However, if one wants to decipher
the synaptic connectivity driving the synchrony, one
needs to go beyond a p-value and to quantify the syn-
chrony by a well-normalized ‘synchrony index’, which
can be examined for correlation with synaptic para-
meters such as the strength of the electrical coupling or
the rate of shared inputs. Various methods for achieving
the twin goals of detecting and quantifying synchrony,
some more practical than others, have been proposed
and used in the past, and some of them are described
and examined in detail in a recently published compen-
dium [29]. Unfortunately, many previously proposed
methods have serious limitations when used for detec-
tion and quantification of synchrony in real spike trains,
as we will see below. Analysis techniques that fall under
the general class of ‘jitter methods’ [30] seem to over-
come many of the drawbacks of other methods when it
comes to detecting synchrony; however, jitter methods
have not been used previously to quantify synchrony.
Here, I take jitter methods one step further and use
them to compute a novel synchrony measure, the Jitter-
Based Synchrony Index (JBSI).
In the remainder of this background section, I first

show how synchrony can be detected when the two
spike trains follow stationary Poisson statistics. I then
demonstrate numerically how this detection method fails
when firing rates are not stationary and explain how jit-
ter methods overcome this hurdle. Finally, I define and
describe two of the synchrony indices commonly
employed by experimental neurophysiologists to quan-
tify synchrony. In the Results, I first propose a set of five
requirements that an ideal index of synchrony should
fulfill, pointing out where existing measures fail to meet
these requirements. I then explain how the JBSI is com-
puted and follow with a comparison between the JBSI
and previously used indices. Lastly, I demonstrate how
the JBSI can be used to estimate the precision of spike
timing in the system. Computational details are provided
in three appendices.

Detecting synchrony: the Poisson case
Assume that we have recorded simultaneous spike trains
from two neurons. I will refer to the slower-firing
neuron as Neuron 1 or the reference neuron, and to the
faster-firing neuron as Neuron 2 or the target neuron.
Let us denote the number of spikes in the reference and
target trains by n1 and n2 and the average firing rates by
r1 and r2, respectively (so n1 ≤ n2 and r1 ≤ r2).
On the face of it, detecting and measuring synchrony

seems quite simple. First, decide on a definition of ‘syn-
chrony’: how far apart two spikes can occur and still be
considered as synchronous. Throughout this paper, I will
use τS to represent this synchrony span. Second, count
how many of the spikes fired by the reference neuron
occurred within the predefined synchrony span from any
spike in the target train. I will denote this observed coin-
cidence count as NC. Third, normalize the coincidence
count so it can be used to compare paired spike trains
of different lengths. A simple way to do this is to divide
it by the total number of reference spikes, transforming
the coincidence count to a coincidence rate RC ≡NC/n1
(note that rate is used here in the sense of per spike ra-
ther than per unit time). The advantage of dividing by n1
rather than, say, n2 or the average of n1 and n2, is that
RC can take values over the full range between 0 (no
coincidences) to 1 (all spikes coincident).
On their own, however, NC and RC are not very in-

formative, because for any two overlapping series of
events there is some non-zero probability that occasion-
ally they will coincide in time, purely by chance. In the
case of two spike trains, we want to know whether the
two neurons fired independently and the observed coin-
cidences were therefore chance occurrences; this is the
null hypothesis. The alternative is that the neurons were
coupled, that is, interacted in some way with each other
or with a third neuron, causing them to synchronize
more (or perhaps less) than expected by chance. Our
first task is therefore to determine if the observed coin-
cidence was statistically significant. To do so, we need to
know something about the distribution of all chance co-
incidence counts; if this distribution was known, we
could determine the fractional area beyond NC under
the tails of the distribution, in other words, the p-value,
which would indicate how likely NC was to belong to
this set. At the very least, we would like to know the
mean of this distribution - that is, the expected
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coincidence count ‹NC› - and its variance, which would
then allow us to calculate a Z-score (distance of the
observed value from the mean, in units of standard devi-
ation). If the distribution is reasonably close to normal,
the Z-score can be directly converted to a p-value (for
example, p = 0.05 corresponds to Z = ~2 and p = 0.001 to
Z = 3.3).
One way to estimate the distribution of chance coinci-

dences is to assume a specific statistical firing model,
and very often the assumption made is that the spike
trains are a stationary Poisson process. Under this as-
sumption, the expected number of spikes occurring
within an interval Δt is r·Δt, where r is the time-inde-
pendent (stationary) average firing rate. Going back to
our paired spike trains, we observe that, for a sufficiently
small synchrony span τS, the probability that a reference
spike will occur within ±τS from any given target spike
is equal to the average number of reference spikes in a
window of width 2τS, or 2τS·r1. Because the target
neuron fired n2 spikes during the recording epoch, we
should expect a total of < NC >¼ 2τS⋅r1⋅n2 spike coinci-
dences.Fora recordingepochof lengthT,wehave r1 = n1/T
and r2 = n2/T, so we can re-write the expected number of
coincidenceseitheras:

< NC >¼ 2τS⋅r1⋅r2⋅T ð1Þ
oras:

< NC >¼ 2τS⋅n1⋅n2=T ð2Þ
In a Poisson process, the variance of the observed

counts is equal to the expected counts: we can therefore
test the null hypothesis of independent firing by calculat-
ing the likelihood that NC, the observed number of coin-
cidences, belongs to a distribution with a mean and
variance of ‹NC›.

Detecting synchrony: when Poisson cannot be assumed
The pitfall in the procedure described above is that, in
actuality, we are testing a dual null hypothesis: that (a)
the neurons fired independently and that (b) each spike
train is a Poisson process with a stationary average firing
rate. If (b) happens to be false, we stand the risk of
rejecting the null hypothesis, even when (a) is true. We
can illustrate this with a simple numerical example.
Assume that both neurons fired 10,000 spikes each

during a 250 s recording epoch, so r1 = r2 = 40 Hz. If
τS = 0.5 ms, then the number of coincidences expected
by chance is ‹NC› = 0.001 × 40 × 40 × 250 = 400, with a
standard deviation of 20. Now say that we actually
observed 500 coincidences. Because this is five standard
deviations above the expected mean, we conclude that
this degree of precise synchrony was highly unlikely to
be a random deviation (less than one in a million
probability) and that the two neurons must have been
coupled. Unbeknownst to us, however, both neurons
received bursts of inhibitory inputs from a common sub-
set of inhibitory neurons during the recording epoch.
These bursts occurred randomly, but were powerful
enough to silence both neurons (concurrently) for 20%
of the recording epoch. The actual firing epoch (that is,
the epoch during which the neurons were ‘allowed’ to
fire) was therefore only 200 s, so the firing rate of each
neuron was actually 10,000/200 = 50 Hz, and the true
expected number of spike coincidences was ‹NC› =
0.001 × 50 × 50 × 200 = 500. In other words, the observed
synchrony was precisely at chance level. While one
could argue that the two neurons were, in a sense,
coupled by the common inhibitory input, and thus vio-
lated both assumptions (a) and (b), it would clearly be
erroneous to conclude that this common inhibitory in-
put caused the neurons to synchronize with a precision
of ±0.5 ms.
The example above underscores the fact that it is the

‘local’ firing rate, rather than the global average firing
rate, that needs to be taken into account when determin-
ing the expected coincidences, since global averaging
ignores modulations in firing rates. If these bursts of in-
hibitory inputs were all identical or nearly so, if they
repeated at regular intervals and if we knew their times
of occurrence, we could estimate how many coinci-
dences were introduced because of these co-modulations
by dividing the full record into segments aligned on the
beginning (or end) of each inhibitory burst and exchan-
ging the spike trains of one neuron between segments.
The spike coincidences remaining after this procedure
could be taken as a good estimate of ‹NC› and can then
be subtracted from the observed coincidence count NC

to yield an estimate of the ‘excess coincidence’, that is,
the coincidence above chance level. This is the same
‘shuffling’ procedure commonly used by electrophysiolo-
gists to account for spurious coincidences introduced by
a sensory stimulus [31]. However, unlike co-modulations
resulting from an experimentally administered stimulus,
co-modulations resulting from uncontrolled environ-
mental or systemic influences are rarely reproducible, do
not occur at regular intervals and are not locked to the
stimulus (if there is a stimulus). Indeed, they may not
even be recognized by the experimenter. Therefore,
these co-modulations cannot be corrected by shuffling.
Another potential solution is to divide the firing epoch

into smaller segments and calculate the local firing rates,
and from them the expected coincidences, separately for
each segment. This would allow us to correct for any
modulations in firing rates that happen on a time scale
slower (longer) than the width of each segment. Further
scrutiny, however, reveals multiple problems with this
approach. First, where should the boundaries between
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segments be placed? Even a small segment may happen
to straddle two epochs with very different firing rates,
and may need to be further subdivided. Second, how
local is ‘local’ - how small should each segment be? To
account for as many co-modulations as possible, some
of which may have fast time courses, we would need to
make the segments as small as possible; but with very
small segments, firing rate estimation would become
very imprecise. Ideally, we would like to know the in-
stantaneous firing rate in the immediate vicinity of each
spike, but this is impossible to determine from a non-
repeating spike train.
The jitter method offers a solution to this dilemma. It

allows us to estimate the coincidence count expected
from the local firing rate, without explicitly determining
the rate itself. To do so, we replace one of the two spike
trains with a virtual one (a ‘surrogate’), in which each
spike is slightly shifted (or ‘jittered’) from its original
time of occurrence by a random amount, within a prede-
termined ‘jitter window’ of ±τJ. This procedure destroys
any spike coincidences that may have resulted from
interactions on a time scale faster than 2τJ, but fully pre-
serves local firing rates (and therefore any spike coinci-
dences attributable to co-modulations in these rates) at
all slower time scales. Again, we can take the number of
jitter-resistant coincidences as an estimator of ‹NC›, the
expected number of coincidences, and use it to estimate
the excess synchrony. Moreover, if we can determine the
distribution of all possible coincidence counts likely to
be observed after a jitter, we can determine if the experi-
mentally observed count NC is an exceptional value (that
is, falls in the tails of this distribution) and therefore
reflects true, statistically significant synchrony, or if it is
likely to be a chance occurrence. Note that the jitter pro-
cedure relies on the assumption that co-modulations in
firing rates occur on a relatively slow time scale com-
pared with the time scale of the spike coincidences we
are interested in. Thus, we need to set τJ judiciously: if
we set τJ too large, we risk destroying some of the
chance coincidences caused by co-modulations, and we
will then underestimate ‹NC› and overestimate the true
degree of synchrony, just as in the numerical example
above. Conversely, it would be meaningless to make τJ
smaller than the synchrony span τS, because such a small
jitter would likely preserve all coincidences, both chance
and real, and not help us in distinguishing between the
two.
The rather intuitive idea of introducing virtual spike

jitter was rigorously formulated and explored theoretic-
ally and in computer simulations by Geman and collea-
gues [30,32-34], and applied to experimental data by
them [32,35] and others [36-40], in some cases critically
[41]. The approach taken here differs in two important
ways from these previous implementations. First, it
differs in how it determines the distribution of all pos-
sible coincidence counts. Previous implementations used
the Monte Carlo approach: to generate many (hundreds
or thousands of ) realizations of jittered spike trains and
count the number of spike coincidences for each one,
which is computationally intensive. The current ap-
proach is based on an analytical computation of the
exact probability distribution, thus considerably reducing
the computational effort. Even more importantly, previ-
ous implementations used the jitter method only to de-
tect synchrony, not to quantify it. Here, I use the jitter
method to define a novel synchrony index, the JBSI,
which can be used to quantify synchrony and (as we will
see) is robust under a wide variety of realistic conditions
under which other synchrony indices fail.

Quantifying synchrony: how to compare different cell
pairs
Detecting synchrony is only the first task facing us. Our
second task is to quantify the synchrony to allow valid
comparisons of synchrony strength between different
cell pairs, even when recorded in different experiments
or even by different investigators. At first glance, it may
seem that the very measures of statistical significance
could also be used to quantify the strength of the syn-
chrony. However, measures of statistical significance can
be made arbitrarily high (Z-scores) or arbitrarily close to
zero (p-values) by increasing the sample size, that is, by
using longer spike trains, even if the rate of synchrony
(per spike and per time) remains unchanged. Measures
of significance cannot, therefore, be used directly to
quantify synchrony - to do so we need a synchrony
index.
Many different synchrony indices have been proposed

in the literature but relatively few of these have gained
popularity with the experimental neurophysiology com-
munity, and there seems to be no generally agreed upon
‘best’ index [5,12-14,39]. Neurophysiologists often depict
the outcome of paired recordings graphically, by a cross-
correlation histogram (cross-correlogram, CCG) [22,31],
and most previously employed indices were calculated
from the CCG. If the bin width of the raw CCG is
chosen to be 2τS, then the height of the central bin will
be equal to NC. To generate a synchrony index, the coin-
cidence count is first corrected for chance coincidences
by subtracting the expected from the observed count;
this yields an estimate of excess coincidences. If the
spike trains are locked to a repeating stimulus and if
repeated spike trains are assumed to be stationary and
reproducible, then this correction can be done by sub-
tracting a shuffled cross-correlogram [31]. Otherwise, it
is done by subtracting the average number of counts in
a region of the CCG equal in width to but away from
the central peak. For simplicity, we again assume that
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the central peak of the CCG is one-bin wide, so that the
average count in a far-from-center bin is very close to
the overall average count per bin, b·n1·n2/T, where b is
the bin width. With a bin width of 2τS , the average
count is therefore equal to our previously defined:

< NC >¼ 2τS⋅n1⋅n2=T ð2Þ

Thus, the excess coincidence count is equal to NC−‹NC›.
Since the excess coincidence count depends on the

number of recorded spikes, it is typically normalized in
some manner to yield a synchrony index that is not
dependent on spike number. For comparison with the
JBSI, I selected two of the more commonly used indices
in the experimental literature. In the first index, which is
usually notated in the literature by E but will be called
here Excess Coincidence Index or ECI, the excess coinci-
dence count is simply normalized by the number of
spikes in the reference train [42-44]:

ECI ≡ NC − < NC >ð Þ=n1 ð3Þ

In the second index, referred to in the literature as the
cross-correlation coefficient (CCC) [4,45] or, somewhat
loosely, as the correlation coefficient [19,46,47], the ex-
cess count is divided by a more complicated expression:

CCC≡
NC− < NC ; >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1⋅n2 1− n1⋅b
T

� �
1− n2⋅b

T

� �q ð4Þ

This normalization factor is justified mathematically in
[48]; for completeness, I derive the CCC from first prin-
ciples in Appendix C.
Given the availability of these and other synchrony in-

dices in the neurophysiological literature, the reader may
wonder: how should an experimenter decide which is
the best index to use, and why did the author bother to
devise yet one more index? To answer these two ques-
tions, I first lay out a set of requirements that, I propose,
should be met by an ideal synchrony index. I then show
how both the ECI and the CCC fail to meet some of
these requirements whereas a novel index, the JBSI, ful-
fills them all.

Results and discussion
What should we expect from an ideal synchrony index?
I propose the following as a minimum set of require-
ments to be met by an ideal measure of synchrony:
1. The measure should be applicable to both periodic
and aperiodic data, and to spontaneous spike trains
as well as to stimulated responses. This eliminates
from the current discussion a large collection of
methods for analyzing periodic signals and measures
for quantifying synchrony within the frequency domain
(for example, phase coherence) or for quantifying the
degree of phase-locking to a precisely repeating
stimulus (for example, vector strength) (reviewed in
[49-51]).

2. As indicated above, the index should be properly
normalized, to allow valid comparison between different
experiments. This means that ‘perfect synchrony’ and
‘purely chance synchrony’ should assume the same finite
values (say, 1 and 0, respectively), regardless of the
experimental details. Several synchrony indices
previously used in the literature are un-normalized or
improperly so. For example, the synchrony index
designated in the literature as k’ [23,52-54] and defined
as the ratio NC/‹NC›, is obviously unbounded, because it
can assume very large values if ‹NC› (the expected
coincidence count) is very low.

3. The synchrony measure should reflect the intrinsic
strength of the network motif that drives it (common
inputs, electrical coupling or mutual inhibition) but
should not be sensitive to the mean firing rate,
because the latter depends mostly on factors extrinsic
to the two neurons such as background synaptic input
or experimentally injected current. As previously
demonstrated [53,55-57] and as is confirmed in
Results, the ECI and several other previously used
indices exhibit a strong negative dependence on the
firing rate and therefore do not fulfill this requirement.

4. The ideal measure should be maximized whenever
spikes fired by Neuron 1 are precisely synchronized
with spikes of Neuron 2, even if Neuron 2 fires many
more spikes than Neuron 1. As shown in Results and
in Appendix C, the CCC is highly sensitive to the firing
rate differential between the two trains. Similarly, so-
called spike train metrics [58-61] are sensitive to
differences between spike times as well as differences
between spike numbers and therefore do not meet this
requirement.

5. The method should be applicable to any arbitrary pair
of concurrent spike trains, without assuming any
specific firing statistics or firing rate stationarity. Many
published methods for detecting and quantifying
synchrony assume, explicitly or implicitly, that (in the
case of spontaneous firing) spike trains are stationary
Poisson processes (for example, [62]), or, in the case of
evoked responses, that responses to repeating stimuli
are reproducible (for example, [31,63]). However, real
spike trains are, in general, not stationary Poisson
processes, as the firing rate is continuously modulated



Figure 1 Using virtual spike jitter to quantify synchrony. (A) A
hypothetical segment from two simultaneously recorded spike
trains, with spikes from the reference and target train represented as
blue and red bars, respectively. (B) By placing a synchrony window
(red) of ±τS centered on each target spike, we see that three of the
five reference spikes are synchronous. (C) A jitter window (blue) of
±τJ is centered on each reference spike. (D) Areas of overlap
between jitter and synchrony windows are shaded; spikes are
omitted for clarity. The probability pi that any given reference spike
will be synchronous after jittering is given by the shaded fraction of
its jitter window, and is indicated below the window. The
probabilities are then used to determine the expected number of
spike coincidences (∑pi), which is then subtracted from the observed
number to yield an estimate of excess coincidences. The latter is
normalized by the number of spikes in the reference train and
multiplied by a scaling factor to yield the JBSI.

Agmon Neural Systems & Circuits 2012, 2:5 Page 6 of 15
http://www.neuralsystemsandcircuits.com/content/2/1/5
by factors beyond the experimenter’s control or even
knowledge. Similarly, repeating stimuli may not
generate reproducible responses due to trial-to-trial
variation in subject motivation, state of anesthesia,
viability of the preparation and so on. These fluctuations
will often manifest themselves as modulations in firing
rate and/or in latencies, common to both neurons. As
previously noted in the literature [64-66] and as
illustrated numerically above (see Background), these
co-modulations can lead to erroneous detection of
correlations or synchrony. I show below that both the
ECI and the CCC erroneously indicate synchrony
between independently generated spike trains when
co-modulations of firing rate are introduced.

Calculation of the Jitter-Based Synchrony Index
Let us assume that we have recorded two simultan-
eous spike trains. We express each spike train as a
vector of spike occurrence times, so we have two
vectors: one from the reference neuron, containing
n1 spikes designated by their time of occurrence t10…
t1i…t1n1-1, and one from the target neuron, containing
n2 spikes designated t20…t2k…t2n2-1. We will assume
that the time of occurrence of each spike is known
to any desirable precision (say 0.1 ms). In Figure 1,
reference spikes are depicted in blue and target
spikes are depicted in red. The coincidence counting
process can be represented graphically by drawing a
synchrony window WS

k of width 2τS centered on
each target spike t2 k (Figure 1B) and counting how
many blue spikes fall within a synchrony window.
Formally, we assign to each reference spike t i

1 a bin-
ary value Syn(i), defined as:

Syn ið Þ≡1 if t1i ∈W
S
k for at least one k; otherwise 0

ð5Þ

and then define:

NC ≡∑i Syn ið Þ ð6Þ

Obviously, NC will depend on our choice of the syn-
chrony span τS. If τS is increased beyond ½ of the smal-
lest interspike interval in the target train, synchrony
windows will begin to overlap, and a given spike in the
reference train may be synchronous with more than
one spike in the target train. According to (5), it will
still only be included once in the coincidence count,
thus guaranteeing that NC ≤ n1 or that RC ≤ 1. Also,
note that our definition of coincidence does not rely
on time binning and thereby avoids the pitfall of two
near-coincident spikes falling into two adjacent bins
and not being counted as synchronous.
Next, we select a jitter span τJ, τJ> τS, and shift
(jitter) each reference spike t1i by up to ±τJ. (Note that
we jitter only the shorter, reference spike train, thereby
conserving computational effort.) As shown below, it is
advantageous to choose the ratio τJ/τS to be 2. The
number of coincidences observed after the above jitter
procedure, NC

J, is a random variable with some probabilis-
tic distribution; according to our null hypothesis, NC

should be from the same distribution. To test this hypoth-
esis, we need to calculate the probability of observing any
given number of total spike coincidences N, 0≤N≤ n1,
after a jitter. We call this probability PJ(N):

PJ Nð Þ≡ Pr NC
J ¼ N

� � ð7Þ

To compute PJ(N), we first calculate the probability pi
that spike t1i will be synchronous with spike t2k, for at
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least one k, after applying the jitter. The process can be
represented graphically (Figure 1C) by drawing a jitter
window WJ

i of width 2τJ, centered on each reference
spike t1i (blue). It then becomes apparent that pi is equal
to the fraction of WJ

i that intersects (overlaps) the
union set of all synchrony windows (the intersections
are shaded in Figure 1D).
Formally:

pi≡
1
2τJ

⋅ WJ
i∩ U

k
WS

k

� �
ð8Þ

In Appendix A1 we compute the union set of all synchrony
windows, and in Appendix A2 we compute pi. PJ(N) can
then be computed exactly from the vector pi using an effi-
cient recursive algorithm, proposed in [67] and provided
for the reader’s convenience in Appendix A3. This calcula-
tion demonstrates that the distribution PJ(N) converges
rapidly to a normal distribution with the same mean and
standard deviation (not shown). We therefore do not need
to compute PJ(N) explicitly to test our null hypothesis - we
can use the fact that the fractional area under the tail of a
normal distribution, that is, the p-value, can be determined
directly from the standardized distance of the tail from the
mean, the Z-score. To calculate the Z-score, we only need
to know the expected value and the variance of NC

J, and
these can be derived directly from the pi’s:

hNC
J i ¼ ∑

i
pi ð9Þ

and

Var NC
J

� � ¼ ∑
i
pi⋅ 1−pið Þ ð10Þ

(In the case of equal probabilities, pi = p for all i’s, and we
get the well-known formulas for the mean and variance of
a binomial distribution, Np and Np·(1-p), respectively.) The
Z-score of the experimentally observed synchrony NC is
therefore:

Z≡
NC−hNC

Jiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var NC

Jð Þp ¼
NC−∑

i
piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
i
pi⋅ 1−pið Þ

q ð11Þ

The Z-score tells us if the coincidence count NC is a
statistically significant observation. In other words, it
allows us to detect synchrony. However, the Z-score
cannot be used to quantify synchrony because, like the
p-value and other measures of statistical significance, it
depends on the sample size (the length of the spike
train) and therefore is not directly comparable between
different experiments. To quantify synchrony in a man-
ner that would allow comparison between experiments,
we define a normalized synchrony index - the JBSI:

JBSI≡β⋅
NC−hNC

J i
n1

¼ β⋅
NC−∑

i
pi

n1
ð12Þ

where β = 2 if τJ/τS ≤ 2 and β = τJ/(τJ − τS) if τJ/τS> 2.
As shown in Appendix B, the scaling factor β assures

that the JBSI will attain its maximal value of 1 for the
case of perfect synchrony. In the case of perfect
asynchrony, however, the JBSI will attain its minimal
value of –1 only if τJ/τS ≤ 2 (see Appendix B). In all
the simulations below, we select τJ/τS = 2 and there-
fore β = 2.

Comparison of the Jitter-Based Synchrony Index with
cross-correlogram-based synchrony indices
To test the JBSI and compare it with previously used
synchrony indices, I generated simulated paired spike
trains that (initially) followed Poisson statistics, by allow-
ing each neuron to fire at random at an average firing
rate that could be made time-dependent. Controlled
spike coincidences were inserted into each train pair by
randomly selecting reference spikes, at a probability D,
to be shifted to within ±C of the next nearest target
spike. Thus, the parameter D determined the injected
coincidence rate (per spike), and the parameter C deter-
mined the precision of the synchrony (see Methods for
details). For the simulations shown in Figure 2, C was
maintained at 1 ms. The first second of firing from rep-
resentative simulations is illustrated in the two rightmost
columns of Figure 2, with reference and target spikes
shown blue and red, respectively. Below each pair of
spike trains is the CCG computed from the full train
(about 1,000 spikes per neuron) using 2 ms-wide bins.
The counts in each bin are normalized by the number of
spikes in the reference train, so the height of the central
peak is numerically equal to the coincidence rate RC.
I first compared the JBSI with two commonly used

synchrony indices, the ECI and the CCC (see Back-
ground), by generating simulated spike trains in which
the average firing rate in both neurons was maintained
constant at about 70 Hz but the rate of injected coinci-
dences D was increased parametrically, from 0 to 0.6.
For each value of D, five runs of the simulation were
generated. The three indices and their linear trends are
plotted in Figure 2A, left panel. Clearly, all three indices
increased more or less linearly with the rate of inserted
coincidences, albeit with somewhat different slopes.
Thus, under routine conditions, all three indices per-
formed comparably well.



Figure 2 Comparison of the Jitter-Based Synchrony Index with the Excess Count Index, the cross-correlation coefficient and the
corrected Excess Count Index . In the left column of each panel, the indices and their linear regression lines are plotted for a range of
simulations in which one parameter of the simulation was varied. (A) The rate of inserted coincidences, D, was varied; (B) the average firing rate,
r (defined as the geometrical average of the mean firing rate of the two neurons) was varied; (C) the differential in firing rates, Δr, was varied; (D)
the amplitude of firing rate co-modulation, M, was varied. In the two rightmost columns, 1 s segments of simulated spike trains, representing two
extreme values of the varied parameter, are shown above the cross-correlograms (CCGs) computed from the same trains. CCGs were computed
in 2 ms bins and the counts normalized by the number of reference spikes. The black regression lines in B and C represent the corrected Excess
Count Index (ECIcor); for clarity, the ECIcor data points are not plotted. In A and D, the ECIcor data points precisely overlapped the CCC. Note that
the JBSI was the only index that was robust against variations in all tested parameters.
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Next, I tested the indices under three challenges. The
first challenge was a series of paired spike trains in
which D was kept constant (at 0.25) while the firing rate
in both neurons was parametrically increased from ap-
proximately 10 to 140 Hz (Figure 2B). According to re-
quirement three of the set of requirements outlined at
the beginning of this section, an ideal synchrony index
should be independent of the firing rate. As seen in the
left panel of Figure 2B, both the JBSI and the CCC cor-
rectly maintained a nearly constant value; in contrast,
the ECI trend line dropped steeply with the increased
firing rate, incorrectly implying loss of synchrony at the
higher firing rates.
Although several previous studies note the negative

dependence of the ECI (and other synchrony indices) on
the firing rate [53,55-57], they differ in their explanation
for this dependency and no remedies are proposed. To
see why the ECI is dependent on the firing rate and how
this flaw can be corrected, we note that the ECI is meant
to estimate the true spike coincidence rate, RC

true, by
subtracting the chance spike coincidence rate RC

chance

from the total spike coincidence rate RC. However, the
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set of chance coincidences and the set of true coinci-
dences are not mutually exclusive sets - their inter-
section is a set of coincidences that occur at a rate
that equals the product of their individual rates,
RC

true∙RC
chance. Therefore:

RC ¼ RC
true þ RC

chance−RC
true RC

chance ð13Þ

This can be solved for RC
true:

RC
true ¼ RC−RC

chance
� �

= 1−RC
chance

� � ð14Þ

We should therefore correct the definition of the ECI by
dividing it by (1- RC

chance). Since RC
chance = ‹NC›/n1, the

corrected ECI, or ECIcor, is:

ECIcor≡ NC − < NC >ð Þ= n1− < NC >ð Þ ð15Þ

Note that in the case of the JBSI such a correction is not
needed, because chance spike coincidences are defined as
spike coincidences that survive the jitter process, while true
spike coincidences are those that are destroyed by the jitter
process, and these two sets are mutually exclusive. As
shown in Figure 2B (black trend line), the ECIcor was nu-
merically very close to the JBSI and was not dependent on
the firing rate.
The second challenge tested the fourth of the require-

ments outlined at the beginning of this section, that the
index be independent of any firing rate differential between
the two neurons. This was tested by simulated spike trains
in which the injected coincidence rate D was maintained at
0.2, the geometric mean of the two average firing rates (r)
was kept at approximately 45 Hz, but the difference be-
tween the two firing rates (Δr) was parametrically increased
from 2.5 to 110 Hz (Figure 2C). Both the JBSI and the ECI
correctly maintained a nearly constant value, and so did the
ECIcor (black trend line), but the CCC decreased steeply
with Δr.
The dependence of the CCC on the firing-rate differential

is a direct result of its definition. As shown in Appendix C,
for a fixed number of spikes per train, the value of the CCC
for the case of perfect synchrony, CCCmax, will not attain 1
unless the number of spikes in the two trains is equal;
otherwise, CCCmax will be <1 and will decrease with an in-
creasing firing rate differential. This suggests a simple rem-
edy - divide the CCC by CCCmax to yield a corrected CCC
index, the CCCcor. Interestingly, as shown in Appendix C,
the CCCcor turns out to be identical to the ECIcor above.
Thus, the ECIcor (or CCCcor) satisfies both requirements
three and four, and is therefore preferable to either the ECI
or the CCC. Indeed, when firing rates are stationary, the
ECIcor may be the index of choice because it has all the
advantages of the JBSI but is much easier to compute.
Unfortunately, the ECIcor fails, as do the ECI and the

CCC, in regards to requirement five, in that these indi-
ces are sensitive to co-modulations in the firing rates.
This is illustrated in Figure 2D, which represents simula-
tions with independent spike trains (that is, D = 0) in
which the total number of spikes was maintained nearly
unchanged at about 1,000 per train but the mean firing
rate of both neurons was co-modulated in time with a
period of 0.5 s, with the amplitude of the modulating
waveform varied parametrically. Even though no coinci-
dences were inserted into these trains, the values of the
ECI and the CCC were> 0 and increased with the
modulation amplitude (note that the ECIcor is not plot-
ted in Figure 2D, because in these simulations the firing
rate differential was very low, so the ECIcor was virtually
identical to the CCC). This is a fatal, non-remediable
flaw in these commonly used synchrony indices, origin-
ating in the basic assumption that the two spike trains
are a Poisson process, an assumption that is violated (as
we saw in Background) when co-modulations are
present. In contrast, the JBSI correctly reported no syn-
chrony for these independent spike trains, even when
co-modulations were present.

Comparison of the Jitter-Based Synchrony Index with the
Jitter-Sensitive Synchrony Index
In a previous experimental publication [28] we intro-
duced the Jitter-Sensitive Synchrony Index (JSSI) and
used it to quantify sub-millisecond firing synchrony be-
tween inhibitory cortical interneurons. The JSSI was
defined as the Z-score of the observed coincidence
count (Equation 11) normalized by ((τJ/τS -1)·n1)

1/2. Like
the JBSI, the JSSI is robust in regards to co-modulations
in firing rates; however, the JSSI exhibits a negative de-
pendency on the overall firing rate and therefore the
JBSI is preferable to the JSSI.

Estimating the temporal precision of neuronal firing
How precise is neuronal firing in the brain, and how
does one measure this precision? These questions have
long occupied both experimental and theoretical neuros-
cientists, and do not yet have a satisfactory answer
[7,68-71]. Jitter methods are particularly amenable for
testing hypotheses regarding temporal precision. Jitter
methods test a specific null hypothesis: that the tem-
poral precision of firing is no better than ±τJ, for any
desired τJ, and therefore a jitter of up to ±τJ should not
reduce the observed coincidence count [30,32-34]. If the
probability that the null hypothesis is true falls below
any predetermined threshold, one can conclude that fir-
ing precision was better than ±τJ. One can then proceed
to test increasingly smaller values of τJ until the null
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hypothesis can no longer be rejected; the smallest value of
τJ that allows rejection of the null hypothesis can be con-
sidered an estimate of the firing precision in the system.
This is illustrated in Figure 3A, in which three simulated
paired spike trains were used to calculate Z-scores and
JBSI for τJ values increasing from 1 to 16 ms in multiples
of √2, while maintaining τJ/τS = 2. The three superimposed
plots correspond to simulations with the same rate of
inserted coincidences (determined by the parameter D,
which for these simulations was fixed at 0.2) but with dif-
ferent degrees of precision of synchrony (determined by
the parameter C, which was varied between 1, 2 and 4 ms,
as indicated in the figure legend). Each plot is an average
of five different runs of the simulation. The black arrows
in Figure 3A point to the intersection of the graphs with
the line Z = 3.3, corresponding to p = 0.001. With this
stringent threshold for significance, firing precision was
better than about 1.5, 3 and 6 ms, respectively, for the
three simulations, consistent with the corresponding pre-
cision parameter C used to generate each simulation.
The problem with this approach is the arbitrariness of

any selected significance threshold and the fact (already
alluded to in this article) that one can increase statistical
significance at will, simply by recording longer spike
trains. To remove the dependence on the length of the
train, one can use the JBSI instead of the Z-score, as is
done in Figure 3B; however, the question then becomes
what JBSI value one should use as a threshold. The solu-
tion is to determine firing precision based on the shape
of the JBSI versus τS curve (Figure 3B) rather than on
any particular threshold. As illustrated in Figure 3B, this
curve is strongly asymmetric, sloping shallowly from its
peak value rightwards, but sloping steeply to the left. It
is instructive to examine the reason for these two differ-
ent slopes. The shallow rightward decrease in JBSI
Figure 3 Estimating temporal precision of firing using the Jitter-Base
simulated paired spike trains; each plot is an average of five runs of the sim
firing rate r (approximately 45 Hz) and the rate of inserted coincidences D
varied from 1 to 4 ms. (A) The Z-score is plotted against the jitter span τJ, w
maintained at τJ/2. The intersections of the three plots with the line Z = 3.3
τJ = 1.5, 3 and 6 ms (black arrows). (B) For the same simulations as in (A), th
points, from which the JBSI fell steeply to the left, correspond to τS = 1, 2 a
values reflects the gradual increase in the widths of the
synchrony windows WS: with the union of all synchrony
windows occupying a larger fraction of the spike record,
a jittered spike is more likely to fall into a synchrony
window and thereby preserve or increase the expected
coincidence count ‹NC

J›. The steep decline to the left
results from a very different reason - it reflects the jitter
parameter τJ falling to values that are too small to make
any difference in the temporal structure of the spike
train; in other words, τJ falling below the temporal preci-
sion of the system. This suggests that one should use the
points at which the curves drop off steeply to the left as
cutoff points for determining firing precision. The cutoff
points indicated by arrows in Figure 3B correspond to τS
values of 1, 2 and 4 ms, exactly the values of the corre-
sponding precision parameter C.

Other applications of the Jitter-Based Synchrony Index
method
In this manuscript I demonstrate the utility of the JBSI
method for quantifying precise firing synchrony between
two neurons; in principle, however, this method can be
extended to other temporal relationships between spike
trains. For example, instead of testing for synchrony
(zero lag between the two spikes), one can test for a re-
curring lag L, L ≠ 0, between the two spike trains, such
as postulated by the ‘synfire chain’ hypothesis [46]. This
is equivalent to shifting the red synchrony windows in
Figure 1B by L. One can also use the JBSI to measure
precision of firing between recurring trials recorded
from a single neuron in response to a repetitive stimu-
lus, by regarding the stimulus as the reference train. To
generate a time-resolved index of synchrony, one can
calculate the JBSI over a sliding window of any chosen
width, provided that the firing rate is high enough to
d Synchrony Index. The three superimposed plots represent different
ulation (error bars indicate standard error of the mean). The average
(0.2) were identical for all pairs, but the precision of synchrony C was
hich was varied from 1 to 16 in √2-fold increments while τS was
, representing a significance threshold of p = 0.001, correspond to
e JBSI is plotted for increasing values of the synchrony span τS. Cutoff
nd 4 ms (black arrows).
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generate sufficient spikes within each window for a reli-
able computation. Finally, although a bivariate measure
in its present form, the JBSI can be extended to synchrony
between multiple simultaneously recorded spike trains, for
example by averaging over all possible pairs. Future work
may generalize the JBSI to a truly multivariate measure of
synchrony.
Appendix A
A1. Algorithm for calculating the union set of all
synchrony windows
Given the vector t2 representing the target spike train
and the selected synchrony span τS, this algorithm
returns a d by 2 matrix U, with each of the d rows
representing a contiguous time segment [Um,0, Um,1],
0 ≤m ≤ (d-1).

U 0;0 ¼ t20−τS
U0;1 ¼ t20 þ τS if t20 þ τS < t21−τS
otherwise t21 þ τS if t21 þ τS < t22−τS
otherwise t22 þ τS etc:

ðA1:1Þ

A2. Algorithm for computing the probability vector pi

pi≡
1
2τJ

⋅ WJ
i∩ U

k
WS

k

� �
ð8Þ

S

Conclusions
I describe here a conceptually simple and computation-
ally efficient method for determining the statistical sig-
nificance of firing synchrony between two neurons and
for quantifying synchrony as a normalized index, the
JBSI. The method is based on the introduction of virtual
spike jitter, but unlike previous implementations of this
idea, it does not rely on computationally intensive gener-
ation of surrogate spike trains, and it uses jitter not only
to test the statistical significance of spike coincidences
but also to quantify synchrony. To evaluate the JBSI in
comparison with previously used synchrony measures, I
propose a set of five requirements from an ideal measure
of synchrony. I show that the JBSI meets them all, unlike
some commonly used synchrony indices such as the ECI
and the CCC. First, the JBSI can be computed for any
pair of spike trains, whether spontaneous or locked to a
repeating stimulus and whether periodic or not. Second,
the JBSI is well-normalized, in that it assumes values be-
tween 1 (highest possible synchrony for a given number
of spikes in each train) and −1 (lowest possible syn-
chrony), with 0 indicating chance-level synchrony. Third,
the JBSI is independent of the firing rate, whereas the
ECI is not. Fourth, the JBSI is independent of the firing
rate differential between the two neurons, whereas the
CCC is not. Finally, the JBSI is robust against co-
modulations in firing rate, while both the ECI and the
CCC show spurious synchrony when such co-modula-
tions are present. I also show that a minor modification
in the definitions of the ECI and the CCC results in an
improved index, the ECIcor, which is robust under the
third and fourth requirements and is therefore superior
to both the ECI and the CCC. The ECIcor may indeed be
the index of choice due to its computational simplicity,
if firing rates are known to be stationary. However, the
JBSI is the only index that meets all five requirements.
By virtue of its robustness, the JBSI can be used to com-
pare firing synchrony between experiments conducted
under widely different experimental conditions and, as I
demonstrate, it can also be used to estimate the tem-
poral precision of firing in the system.
The union of all synchrony windows, Uk W k , is first
expressed as the d by 2 matrix U (Appendix A1). Next we
calculate Ii,m, the intersection of the jitter window WJ

i with
the segment [Um,0, Um,1], as follows (t

1 is the vector repre-
senting the reference spike train):
Methods
All computations and simulations were implemented in
MathCad (PTC); the MathCad code is available from the
author upon request. A MatLab routine for calculating
the JBSI will be made available on the journal website.
Spike train simulations
For most simulations, the epoch length and/or the firing
rate were adjusted so the generated trains consisted of
about 1,000 spikes each. Each simulation started by gen-
erating two independent Poisson spike trains, as follows:
for each 1 ms bin of the time epoch, a spike was consid-
ered fired if a randomly generated number between 0
and 1 was smaller than the predetermined firing rate (in
spikes/ms); the precise time of the spike within the 1 ms
bin was then randomly determined. To enforce a refrac-
tory period of 2 ms, if a spike was fired then no spikes
were allowed in the next two bins. Next, firing coinci-
dences, at a rate D and a precision C, were inserted as
follows: for each spike of the reference train, if a ran-
domly generated number was smaller than D, the spike
was shifted forward to within ±C of the next spike of
the target train. Finally, any spike in the shifted refer-
ence train that violated the refractory period was
removed; typically, this resulted in the final spike count
of the two spike trains differing by about 5% to 10% (if
the initial, predetermined firing rates were equal). To
generate co-modulations in the firing rate (Figure 2D),
the predetermined firing rate was multiplied by a recti-
fied sinusoidal function with a period of 1 s, raised to
the power M: M was parametrically increased to vary
the depth of the modulation.



Ii;m ¼ 0 if Um;0−τJ
� �

≥t1i or Um;1 þ τJ
� �

≤t1i
τJ− Um;0−t1i

� �
if Um;0−τJ
� �

≤ t1i ≤min Um;0 þ τJ ; Um;1−τJ
� �

τJ þ Um;1−t1i
� �

if Um;1 þ τJ
� �

≥ t1i ≥ max Um;0 þ τJ ; Um;1−τJ
� �

min Um;1−Um;0; 2τJ
� �

otherwise

ðA2:1Þ

Note that if τS is smaller than ½ the smallest target
interspike interval and therefore synchrony windows do
not overlap, we have Uk,0 = t2k− τS and Uk,1 = t2k + τS, and
(A2.1) simplifies to

Ii;k ¼ 0 if jt1i–t2k j≥τJ þ τS

2τS if t1i−t2kj j≤τJ−τS
τJ þ τS−ð jt1i−t2k jÞ otherwise

ðA2:2Þ

Finally, we sum over all m segments and divide by the
width of the jitter window to yield pi:

pi ¼ 1
2τJ

⋅ ∑
m
Ii;m ðA2:3Þ

A3. Algorithm for calculating the probability of N
successes in n1 trials with non-homogeneous success
probabilities (adapted from [67])
We regard the reference spike train after a jitter as a
Bernoulli series of n1 trials indexed on i, each with its own
success (that is, synchrony) probability pi (calculated in Ap-
pendix A2) and failure probability qi = 1− pi. We calculate
the probability P J(N), 0≤N≤ n1, that exactly N of the
spikes will be synchronous, by constructing a triangular n1
by (n1 + 1)matrix P recursively. The first three rows are:

P1;0 ¼ q0 P1;1 ¼ p0

P2;0 ¼ q0q1 P2;1 ¼ q0p1 þ p0q1 P2;2 ¼ p0p1

P3;0 ¼ q0q1q2 P3;1 ¼ q0q1p2
þq0p1q2
þp0q1q2

P3;2 ¼ q0p1p2

þp0q1p2
þp0p1q2

P3;3 ¼ p0p1p2

We define Pk,j = 0 for j> k.

Inspection shows that each row can be expressed in
terms of the previous row:

Pm;M ¼ pm−1⋅Pm−1;M−1 þ qm−1⋅Pm−1;M

The final row gives us the desired probability, P J(N) =
Pn1,N.

Appendix B
A proof that the Jitter-Based Synchrony Index is bounded
between −1 and 1
In the discussion below, the ratio of the jitter to synchrony
windows will be indicated by α, that is, α = τJ/τS. The JBSI
will be maximized when ‹NC

J›, that is, the expected coin-
cidence count following a jitter, is minimized. This will
happen when each of the spikes of Neuron 1 is at least τJ
+ τS away from any spike of Neuron 2 other than spikes it
is synchronized with, and is infinitesimally less than τS
away from the spike it is synchronized with. Note that if
one constructs a cross-correlogram of the two spike trains
with a bin width of 2τS and the central bin symmetric
about 0, the first condition is equivalent to saying that the
two off-center bins should have 0 counts. Under these op-
timal conditions, the probability that a synchronous spike
will remain synchronous after a random jitter is ½ for
α ≤ 2 or 1/α for α ≥ 2, and PJ(N) becomes a binomial
distribution with the binomial parameters p = 1/α and
N = NC. A binomial distribution has an expected value
of N·p, so for α ≥ 2 the JBSI becomes:
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JBSI ¼ α

α−1
⋅
NC−NC⋅ 1α

n1
¼ α

α−1
⋅
NC 1− 1

α

� �
n1

¼ NC

n1
¼ RC ðB1Þ

It is easily verified that the same holds for α ≤ 2.
In other words, in this optimal scenario, JBSI is
equal to the observed coincidence rate RC. Since by
definition RC ≤1, we have JBSI ≤1.
The JBSI can also attain negative values, indicating

less-than-expected synchrony (not to be confused
with ’anti-synchrony’, which is usually meant to indi-
cate precise out-of-phase relationships). For example,
if none of the spikes are synchronous but some of
the reference spikes are within τJ + τS of target
spikes (that is, the center bin in the CCG is 0, but
the off-center bins are not), there is a non-zero
probability that some spikes will become synchron-
ous after a jitter. This will render both the Z-score
and the JBSI negative. To calculate the lowest pos-
sible values of the JBSI, we look at the extreme case
in which each reference spike is infinitesimally more
than τS away from some target spike, and therefore
has a probability of 1/α (1/2 for α ≤ 2) of becoming
synchronous after a jitter. Again we have a binomial
distribution, yielding JBSI = −1 for α ≤ 2, or JBSI = −1/
(α-1) for α ≥ 2. It is therefore both numerically con-
venient and advantageous to select α = 2, as this ratio
will allow the maximal dynamic range for the JBSI.

Appendix C
Derivation of the Cross-Correlation Coefficient
Assume that we have recorded two simultaneous
spike trains, during a recording epoch of duration T,
with n1 and n2 spikes each, respectively. Assume
n1 ≤ n2. We would like to calculate the probability
P(N) of observing exactly N coincidences, 0 ≤ N ≤ n1.
The CCC is based on the assumption that the two
spike trains are independent and that the spikes
occur randomly in time. We bin the epoch T into K
bins, with bin width small enough so no more than
one spike of each neuron can occur per bin. We can
recreate the two spike trains in the following man-
ner. First, we generate train #2, by distributing n2
spikes at random into n2 bins. We then generate
train #1 by distributing the n1 spikes into n1 bins in
the same random manner. What is the probability
that N of these n1 bins already contain a spike from
train #2? This can be solved by basic combinatorics,

as follows. There are
n2
N

� �
distinct configurations

of N objects (spikes, in our case) in n2 bins, where

Y
X

� �
≡ Y !

X! Y−Xð Þ! is the binomial coefficient. For each of

these configurations, there are
K−n2
n1−N

� �
ways to

place the remaining (n1−N) objects in the remaining

(K−n2) bins, so in total there are
n2
N

� �
⋅

K−n2
n1−N

� �

distinct configurations with exactly N spikes from
train #1 falling into bins that already contain a spike
from train #2. To convert this number into probabil-
ity, we need to divide by the total number of pos-
sible configurations of n1 objects in K bins, which is
K
n1

� �
. The requested probability is therefore:

P Nð Þ ¼
n2
N

� �
⋅

K−n2
n1−N

� �

K

n1

� � ðC1Þ

This is the well-known hypergeometric distribution,
which has a mean (expected coincidences count) and a
variance given, respectively, by:

EHG ¼ n1n2
K

ðC2Þ

and

VARHG ¼ n1n2
K−1

1−
n1
K

� �
1−

n2
K

� �
ðC3Þ

The CCC is defined as the Z-score of the observed co-
incidence count under the assumption of a hypergeo-
metric distribution, normalized by √(K−1):

CCC≡
NC−EHGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K−1ð ÞVARHG

p ¼ NC− n1⋅n2
Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1⋅n2 1− n1
K

� �
1− n2

K

� �q
ðC4Þ

To verify that this expression is indeed normalized,
we substitute for NC the highest possible coincidence
count, which is the number of spikes in the shorter
train, n1:

CCCmax ¼
n1⋅ 1−

n2
K

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1⋅n2 1−

n1
K

� �
1−

n2
K

� �r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1⋅ 1−

n2
K

� �

n2 1−
n1
K

� �
vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffi
K
n2

−1

K
n1

−1

vuuuuut
ðC5Þ
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Clearly, for all n1 ≤ n2, we will have CCCmax ≤1, so the
CCC is normalized. However, CCC as defined will only
reach 1 if n1 = n2, that is, if the two firing rates are equal.
This is a disadvantage compared to the JBSI, which will
be 1 for perfectly synchronized trains, even if the two
spike trains have very different rates. This suggests a
simple way to correct the CCC -divide it by the CCCmax:

CCCcor ¼ NC−EHGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1⋅n2 1−

n1
K

� �
1−

n2
K

� �r ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2⋅ 1−

n1
K

� �

n1 1−
n2
K

� �
vuuut

¼
NC−

n1⋅n2
K

n1⋅ 1−
n2
K

� � ¼
NC−

n1⋅n2
K

n1−
n1⋅n2
K

If we choose the bin width to be 2τS, then K = T/2τS,
and therefore (using equation 2) n1·n2/K = ‹NC›
So, using equation 14:

CCCcor ¼ NC − < NC >ð Þ= n1− < NC >ð Þ ¼ ECIcor

ðC6Þ
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