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Abstract
Radiation-induced heart disease (RIHD) is a serious side effect of radiotherapy for intrathoracic
and chest wall tumors. The threshold dose for development of clinically significant RIHD is
believed to be lower than previously assumed. Therefore, research into mechanisms of RIHD has
gained substantial momentum. RIHD becomes clinically apparent ten to fifteen years after
radiation exposure. Chronic manifestations of RIHD include accelerated atherosclerosis,
cardiomyopathy, and valve abnormalities. Reducing exposure of the heart during radiotherapy is
the only known method of preventing RIHD, and there are no approaches to reverse RIHD once it
occurs. We use a combination of pharmacological and genetic animal models to determine
biological mechanisms of RIHD. Major technological advances in small animal research have
made this type of study more valuable. The long-term goal of this work is to identify targets for
intervention in RIHD, thereby enhancing the efficacy and safety of thoracic radiotherapy.

It is truly a great honor to receive the Radiation Research Society’s 2011 Michael Fry
Award, which recognizes the contributions of a junior investigator to the field of radiation
research. The main focus of my research has always been radiation-induced heart disease
(RIHD). This side effect of radiation therapy captured my attention both as a clinical
problem and from a radiation biology standpoint. Here, I am very pleased to have the
opportunity to present and describe this line of research, as I hope to convey to you my
fascination with it.

Radiation-induced heart disease is a long-term side effect of radiotherapy of thoracic and
chest wall tumors when all or part of the heart is exposed to radiation. For instance, RIHD
can occur among survivors of Hodgkin’s disease (1,2) or breast cancer (3–5) because
radiation therapy fields for those patients can encompass the heart. Manifestations of RIHD
include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction
abnormalities, and injury to cardiac valves (6, 7). Both incidence and severity of the disease
increase with higher radiation dose, larger volume exposed, younger age at time of
exposure, and greater time elapsed since treatment. From a clinical perspective, the only
approach to reduce late complications in the heart is through efforts to reduce cardiac
exposure during therapy. Indeed, radiotherapy has undergone many such improvements over
the last decades. Nonetheless, recent studies indicate that despite safety advances in
radiotherapy some patients with Hodgkin’s disease, lung, esophageal or proximal gastric
cancers still receive either a high dose of radiation to a small part of the heart or a low dose
to the whole heart (8–13). In addition, there is increasing use of concomitant therapies, with
the consequences of many combinations yet to be determined. While certain cardio-toxic
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chemotherapeutic agents such as anthracyclines are known to exacerbate radiation injury in
the heart, the effects of many other agents are still unknown.

Clinical studies into RIHD are complicated by the fact that the symptoms of RIHD are
indistinguishable from those of other forms of heart disease. It is therefore difficult to
unequivocally relate injury in the heart to prior radiation exposure, as opposed to radiation
injury in certain other organ systems such as the lung or intestine. As a result, most of the
time it is impossible to identify the individual patients for whom it is certain that radiation
exposure caused their heart disease. Moreover, the incidence and severity of RIHD are
influenced by many factors, most of which can be considered general cardiovascular risk
factors such as hypertension, smoking, and obesity. To overcome these issues, some studies
have compared outcomes between groups of left-sided and right-sided breast cancer
patients. The anatomical location of the heart often results in left-sided breast cancer patients
being exposed to higher doses to the heart than right-sided breast cancer patients, especially
in tangential breast irradiation. Other risk factors are assumed to be evenly distributed
between the two groups. Several studies have shown greater morbidity and mortality from
cardiovascular disease after treatment for left-sided breast cancer patients compared to those
patients treated for right-sided breast cancer, which illustrates the cardiotoxicity of ionizing
radiation (5, 14–16).

Analyses of atomic bomb survivors show an increased incidence of cardiovascular disease
in populations that have been exposed to low doses of ionizing radiation (17, 18). These
outcomes significantly strengthened interest in determining the cardiovascular effects of
low-dose ionizing radiation and rekindled debate over the magnitude of the threshold dose (a
level below which no effect would be obtained) (19–22). Based on these studies and on
studies in other epidemiological cohorts, some researchers have suggested that doses of 1
Gy or lower could result in increased incidence of heart disease (23–25). However, as
previously mentioned, the existence of many confounding factors related to cardiovascular
disease make it difficult to draw affirmative conclusions about the minimum dose that may
cause clinically relevant injury in the heart and vasculature. Nevertheless, these outcomes
have raised the issue of possible cardiovascular effects of exposure to ionizing radiation
during space flights or other scenarios of low-dose exposure.

Pharmacological methods to prevent or reverse RIHD in humans are not yet available.
Therefore, pre-clinical (in vitro or animal) studies have been used to unravel biological
mechanisms of RIHD, with the ultimate goal of identifying potential targets for intervention
(pharmacological or other) that could eventually be translated to human subjects. Studies
using these models have shown that local heart irradiation causes long-term changes in
cardiac function and adverse myocardial remodeling in dogs, rabbits, rats, and mice (26–30).
Spontaneously hypertensive rats or animals on a high-fat diet have been used to study
radiation-induced accelerated atherosclerosis in coronary arteries (31, 32). Some of the
histopathological changes in pre-clinical models, such as myocardial degeneration and
fibrosis, are described in human cases of RIHD after exposure to doses of ~30 Gy and above
(1, 2, 33–35). Although clinical and pre-clinical data on the cardiovascular effects of lower
radiation doses are growing (9, 18), there is still uncertainty with regard to biological
mechanisms and species-specific threshold doses.

I was familiarized with the topic of RIHD during my graduate studies in the laboratory of
Jan Wondergem, at the Leiden University Medical Centre in The Netherlands. Dr.
Wondergem provided his graduate students much freedom in the design of their
experiments, which gave us a positive sense. We determined that histopathological changes
in our rat heart model of local heart irradiation could be identified more easily in
longitudinal heart sections compared to one midventricular section (36). We observed that a
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dose-dependent increase in the number of mast cells in the heart, coinciding with
histopathological signs of radiation injury (36). Mast cells are mostly known for their
adverse role in allergic reactions, but they also play an important role in tissue homeostasis
and remodeling. Hence, the potential role of mast cells in RIHD captured my attention.

Shortly before my graduation, Dr. Wondergem put me in contact with Dr. Martin Hauer-
Jensen at the University of Arkansas for Medical Sciences (UAMS), and I was selected to
do my postdoctoral studies in his laboratory. Much of what I know today about experimental
design and scientific writing I learned during those postdoctoral years. In addition, I realized
that I my interest in RIHD remained strong. I was very fortunate that the Department of
Pharmaceutical Sciences in the College of Pharmacy at UAMS offered me a faculty position
to further develop projects to identify biological mechanisms of and potential interventions
for RIHD.

We studied the mechanistic role of mast cells in radiation injury in the heart with the use of
a genetic mast cell-deficient rat model (37). After local heart irradiation, mast cell-deficient
rats showed more severe changes in in vivo and ex vivo cardiac function, more pronounced
myocardial deposition of collagen III, and less myocardial degeneration than their mast cell-
competent littermates (38) (Fig. 1). From these somewhat surprising results we concluded
that mast cells played a predominantly protective role in RIHD in the rat. Mast cells may
have cardioprotective effects through several mechanisms, one of which involves the
kallikrein-kinin pathway. Kinins are peptide hormones that may aggravate the effects of
certain cardiac events such as myocardial infarction (39), but they also display several
cardioprotective properties, partially through the induction of nitric oxide (40–42). Mast
cell-derived proteases enhance the release of kinins from their precursors, which are high-
molecular-weight and low-molecular-weight kininogen (43,44). We recently used a rat
model deficient in the secretion of kininogens (45, 46) to start investigating the role of the
kallikrein-kinin pathway in RIHD. Preliminary results indicated that early cardiac functional
events and late changes in inflammatory infiltration after local heart irradiation are less
pronounced in kininogen-deficient rats (unpublished data).

Mast cells may also display protective properties by releasing proteases that break down
endothelin-1 (ET-1) (47). Interestingly, we found that left ventricular ET-1 gene expression
was upregulated after local heart irradiation in mast cell-competent rats, but not in mast cell-
deficient rats (48). These results sparked our interest in a potential pharmaceutical
intervention in RIHD that would inhibit the effects of ET-1 in the heart. We tested the
effects of bosentan, a dual inhibitor of the ET-1 receptors ETA and ETB, in our rat model of
local heart irradiation. The effects of bosentan on late cardiac radiation injury in the rat were
minimal, which may have been caused by the opposing roles that ETA and ETB are known
to play in cardiovascular function and disease (48, 49).

Another pharmaceutical intervention that we are testing is the cyclic AMP
phosphodiesterase inhibitor pentoxifylline. Studies by us and others suggest that
pentoxifylline in combination with α-tocopherol can improve cardiac function and reduce
adverse cardiac remodeling in the rat when administration starts before irradiation, also
when administration starts several months after local heart irradiation (50,51) (Fig. 2). Some
of our current studies focus on the effects of compounds that are related to pentoxifylline
and α-tocopherol.

Small animal models of local heart irradiation have improved greatly. We are now able to
perform real-time, image-guided localized irradiation that allows more precise targeting of
the organ or tissue of interest (Fig. 3) (52). Ex vivo perfused heart preparations have long
been used in biomedical research and are continuously updated to provide important insight
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into cardiac function and disease including RIHD (Fig. 1) (38, 53, 54). In addition, in the
last decade tremendous advancements have been made in the development of noninvasive
imaging technologies for use with small laboratory animals. High-resolution ultrasound,
magnetic resonance imaging, and single photon emission computed tomography are only a
few examples of tools that are now available to closely follow cardiac function in small
laboratory animals (55, 56). Several of these technologies have been included in
radiobiological studies of cardiovascular radiation injury (50, 57). Future developments will
hopefully bring pre-clinical models closer to clinical applications. These are very exciting
times to be involved in this type of research.

Once more I would like to end by expressing my deep appreciation for being honored with
the 2011 Michael Fry Research Award. These are not the easiest times for junior
investigators or those who are considering a career in the research. This award serves as a
great motivation for young investigators to continue with their fascinating work in radiation
research. One of the highlights since my nomination was an e-mail from Dr. Fry with his
congratulations. The Radiation Research Society is one of a kind in this respect.
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FIG. 1.
In vivo ultrasound at 6 months after local heart irradiation in mast cell-deficient and mast
cell-competent rats. Panel A: Long axis view of a rat heart. Panel B: Short axis views of
hearts in systole (left) and diastole (right) were used to measure left ventricular area. Panel
C: Reductions in left ventricular diastolic area and left ventricular systolic area were more
severe in mast cell-deficient rats. Data are shown as average ± SEM, n = 10, *P < 0.05
irradiated compare to sham irradiation, #P < 0.05 mast cell-deficient compare to mast cell-
competent. This figure presents data from (38).
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FIG. 2.
Effects of pentoxifylline and α-tocopherol on ex vivo cardiac function measurements at 6
months after local heart irradiation. Panel A: The Langendorff ex vivo perfused heart
preparation is commonly used for investigation of cardiac physiology and disease. The
picture reflects a rat heart in a Langendorff apparatus. A left ventricular balloon is connected
to a pressure transducer to obtain real-time pressures generated inside the left ventricle.
Panel B: Treatment with pentoxifylline and α-tocopherol reduced left ventricular diastolic
wall stress at 6 months after local heart irradiation with 5 daily fractions of 9 Gy. Data are
shown as average ± SEM (n =6–8). *P < 0.05 irradiated compared to sham irradiation, #P <
0.05 pentoxifylline + α-tocopherol compared to vehicle. This figure presents data from (50).
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FIG. 3.
The Small Animal Conformal Radiation Therapy Device (SACRTD) (University of
Arkansas for Medical Sciences, Department of Radiation Oncology) allows precise image-
guided irradiation of the target of interest with minimal exposure of surrounding tissues in
small laboratory animals. Panel A: Set-up for localized heart irradiation in the rat. Vertical
positioning of the animal allows for X-ray imaging of the chest to delineate the heart. Panel
B: Rat chest X rays taken in vertical position at different angles for heart delineation.
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