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A modular microfluidic airways model system that can simulate the changes in

oxygen tension in different compartments of the cystic fibrosis (CF) airways was

designed, developed, and tested. The fully reconfigurable system composed of

modules with different functionalities: multichannel peristaltic pumps, bubble

traps, gas exchange chip, and cell culture chambers. We have successfully applied

this system for studying the antibiotic therapy of Pseudomonas aeruginosa, the

bacteria mainly responsible for morbidity and mortality in cystic fibrosis, in

different oxygen environments. Furthermore, we have mimicked the bacterial

reinoculation of the aerobic compartments (lower respiratory tract) from the

anaerobic compartments (cystic fibrosis sinuses) following an antibiotic treatment.

This effect is hypothesised as the one on the main reasons for recurrent

lung infections in cystic fibrosis patients. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4742911]

I. INTRODUCTION

The human airways are complex multi-compartmental habitats for infectious bacteria. In

healthy humans, the majority of the airways are essentially kept sterile as a result of highly effi-

cient clearing mechanisms.1 In cystic fibrosis (CF) patients, this clearing mechanism is severely

impaired and bacterial infections inflict deteriorating health and become the major cause of

mortality in these patients.2,3

The human airways consist of at least three independent compartments, the conductive air-

ways (the trachea, bronchi, and bronchioles), the oxygen exchange compartment (alveoli), and

a third, less investigated compartment, the paranasal sinuses (maxillary sinuses, frontal sinuses,

and ethmoid sinuses). In the first and the last compartment, the environment is essentially an-

aerobic,4 while the alveoli are highly aerated.

In healthy individuals, the conductive airways are constantly cleared by mucociliary trans-

port of entrapped microorganisms.5 As a result, very few bacteria will ever reach the alveoli.

Bacteria that do evade this clearing mechanism will rapidly be cleared by the actions of the

immune system. The sinuses also have a mucociliary clearance mechanism although not as

effective as the one found in the conductive airways. Large concentrations of bacteria can be

found widely spread throughout the sinuses, in particular in cases of common colds, etc.6
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Cystic fibrosis patients suffer from a defect in the cystic fibrosis transmembrane conduct-

ance regulator (CFTR) gene. The affected gene codes for the CFTR protein, which is a chloride

channel that is present in the epithelial cell membrane. Reduced or absent function of the

CFTR will lead to highly reduced secretion of chloride and accordingly water over the cell

membrane.7 A direct consequence of this defect is that the mucus layer in the conductive air-

ways becomes very viscous and the mucociliary clearance mechanisms are highly impaired.3,8

This results in frequent and recurrent infections of the CF airways, with the risk of pneumonia.

As the bacteria infect the lungs in large numbers, the immune system tries to eradicate the

infection but with a reduced effect since the bacteria are embedded in mucus and more or less

recalcitrant to the cellular defence.9 Instead, the lung tissue is gradually damaged by the on-

going immunological exposure, eventually leading to massive pulmonary deficiency and

death.10 In the clinic, the infections can be treated with cocktails of antibiotics, which can

reduce or sometimes eradicate the infectious agents.11

Bacterial airway infections in patients with a normal mucosa are relatively easy to treat

with antibiotics. This is unfortunately not the case for CF patients and the myriad of infections

they acquire during their lifetime leave each patient with a high need for recurrent antibiotic

treatments. This is a multifactorial phenomenon and there are a lot of theories that try to

explain this.12–14 The most obvious reason for a treatment failure is the hindered diffusion of

the antimicrobial agent through the thick and viscous mucus layer.15,16 However, according to

recent findings, the main reason may reside in limited oxygen availability in some parts of the

airways.17,18 These highly different oxygen environments are due to the human physiology of

the airways and furthermore upheld by the consumption from epithelial and immune cells in

the local surroundings. Immune cells (mainly polymorphonuclear neutrophils, PMNs) consume

oxygen in order to produce reactive oxygen species to defeat the bacterial infection. The

immense respiratory bursts by the PMNs produce anaerobic niches in the mucus layers of the

CF airways.10,19

As Pseudomonas aeruginosa (P. aeruginosa) infections are almost inescapable in CF

patients, especially in older patients, this makes P. aeruginosa an important organism for stud-

ies of “oxygen” phenomena.20 P. aeruginosa is a facultative anaerobic bacteria21 with reduced

growth22 and metabolic activity18 at low oxygen levels. Antibiotics such as tobramycin,

ciprofloxacin, and tetracycline preferentially kill the physiologically active bacteria living at

high oxygen levels (aerobic environment), while colistin is more effective on the physiologi-

cally inactive bacteria growing in an anaerobic environment.10,23

An antibiotic treatment has the potential to clear a lung infection, yet after a few months

the same bacteria are very likely to reappear, possibly as a result of reinoculation from the

anaerobic environment of the sinuses.24 In this context, the sinuses could very well serve as a

reservoir for “sinus” bacteria, which are difficult to treat with antibiotics and can cause the rein-

fection of otherwise cleared patients.

The now classical ways of studying CF related bacterial infections, primarily P. aerugi-
nosa, are either to use animal models or to grow the bacteria in flow-cell systems.

A number of different animals have been tried as models of chronic infections in CF

patients.25 This includes rats,26–28 guinea pigs,29 cats,30 and rhesus monkeys.31,32 However, the

most important animal model is a mouse.33–36 The use of an animal model is expensive and

rises ethical concerns.37,38 Furthermore, animal models for CF related infections are still not

ideal, mainly due to immunological differences between man and, e.g., mouse. Mice do not ac-

quire spontaneous and chronic infections as seen with human CF patients.39 CFTR knock-out

mice do not show the same mucus accumulation as seen in the lower airways of CF

patients.40,41

In flow-cell based systems, the bacteria are allowed to form a biofilm on a surface, as in

the airways, and can then be monitored using a confocal microscope,11,42 However, this is not

a suitable model for the human airways as they are subdivided into aerobic and anaerobic

compartments.

The advancement in micro- and nanofabrication and assembly, as well as better understand-

ing of microfluidics, has made possible the development of devices for modelling different
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tissue organs. Thanks to these devices, the control over the environment, relations and interac-

tions between the cells and tissues at microscale with high spatial and temporal resolution can

be achieved.43,44 The yet small but fast growing number of microdevices that can mimic differ-

ent and even entire organs have been reported. These include blood vessels,45 bones,46

muscles,47 liver,48–51 brain,52 guts,53 kidneys,54,55 endothelia,56 and blood-brain barrier.57,58

In the field of mimicking the human airways, Huh et al.59,60 proposed a microfluidic device

that can simulate injuries to the airways epithelia done by liquid plug flow. Recently, Huh

et al. proposed a model of the vacuoles in the lung.61 In this work, the phagocytosis of plank-

tonic Escherichia coli cells by neutrophils on the epithelial surface was shown.

Other works focused on the artificial lungs which could be applied to patients suffering

from respiratory failure. Different solution based, e.g., on the microporous hollow fibers62,63 or

poly(dimethylsiloxane) (PDMS)64–66 has been proposed.

In our previous work,22 we have shown the possibility of using a PDMS membrane and an

oxygen scavenging liquid to control the oxygen gradient within cell culture microchambers. To

the best of our knowledge, the microfluidic model of different compartments of the human air-

ways that would allow to observe the influence of the microenvironment of these compartments

on the recurrence of CF related infections has not been reported previously.

Therefore, the aim of this work was to make a model system, which simulates the three

compartments of the airways to better understand the interplay between them. Using this artifi-

cial airways model, we can look into the bacterial details in the three compartments, their trans-

mitting interaction, and the states of the bacterial inhabitants before, during, and after antibiotic

treatment.

II. MICROFLUIDIC AIRWAYS MODEL

The three sections of human airways: the conductive airways (trachea, bronchi, and bron-

chioles), which are considered micro-aerobic, the highly aerobic gaseous exchange compart-

ments (the alveoli), and the compartments of the paranasal sinuses, which are basically anaero-

bic (Fig. 1(a)), are reproduced in this microfluidic airways model (MAM). This is realized by

constructing cell culture microchambers with different oxygen levels (Fig. 1(b)). A microcham-

ber with atmospheric air oxygenated media (aerobic environment) is connected by a channel to

a microchamber with culture media saturated below the atmospheric air saturation level (micro-

aerobic environment). This chamber is consecutively connected to a chamber with deoxygen-

ated media (anaerobic environment). The connections between the chambers as well as outlets

can be closed and opened and the actual oxygen level in the compartments is determined by an

oxygen probe. The entire system is actuated by peristaltic micropumps.

FIG. 1. (a) The human airways system67 and (b) the MAM.
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III. DESIGN

The above model was implemented, as a modular system comprised of the following dis-

tinct modules: a modified previously described multichannel microfluidic peristaltic pump,68,69

a bubble trap, and gas exchange and cell culture chambers (Fig. 2). The system allows the

simultaneously cultivation of cells in 8 chambers (3 of them facilitate aerobic environment, 2

micro-aerobic environment, and 3 anaerobic environment).

These modules can be attached to form a microfluidic platform. The detailed design of

each of these modules and the platform is available in the supplementary material in Ref. 70.

IV. MATERIALS AND METHODS

A. Microfabrication

The material of choice for most of the parts was polycarbonate (PC) (Nordisk Plast A/S,

Denmark). This material exhibits low oxygen permeability (1.8 barrer71), very good mechanical

and optical properties72 as well as being resistant to alcohols and oils, which is important for

sterilization and microscopy. The structures in PC were obtained by micromilling (Mini-Mill/

3PRO, Minitech Machinery Corp., USA) followed by solvent vapour assisted bonding. The gen-

eral bonding procedure was adopted after Ogo�nczyk et al.72 with minor changes. As a solvent

we used tetrahydrofuran and the temperature and pressure was 50 �C and 1.5 MPa accordingly.

PDMS inlays were fabricated by casting the silicone mixture (Sylgard 184, Dow Corning

Corp., USA) against the milled mould. The PDMS parts were bonded to PC using silicone ad-

hesive tape (ARcare
VR

91005, Adhesive Research, Inc., Ireland). The tape was cut into the

desired shape using laser ablation (48-5S Duo Lase carbon dioxide laser, SYNRAD Inc., USA).

The gaskets used for sealing the modules to the platform, as well as check valves, were

fabricated by milling in fluoroelastomer VITON A (J-Flex Rubber Products, UK). The plunging

pattern was used for fabricating the parts in fluoroelastomer.

B. Cultivation of P. aeruginosa strains

The P. aeruginosa laboratory strain PAO1 was used for all biofilm experiments. The PAO1

strain was originally isolated from a burn wound.73 PAO1 was fluorescently tagged at a neutral

chromosomal locus with green fluorescent protein (GFP) or monomeric red fluorescent protein

(mRFP1) with miniTn7 constructs as previously described.74 A P. aeruginosa medium

(FAB)42,75 supplemented with 0.3 mM glucose and 65 mM KNO3 (FAB-GN) was used for bio-

film cultivation. All biofilms and batch cultures were grown at 37 �C. PAO1 was pre-cultured

overnight in Luria Bertani (LB) media and prepared for inoculation in FAB-GN media. The

overnight culture was diluted to an OD600 of 0.01 and subsequently 100 ll was inoculated with

a Gilson P200 pipette through the designed inlets. In order to visualise the bacteria migration,

the anaerobic culture chambers were inoculated with the GFP tagged strain and microaerobic

and aerobic chambers were inoculated with the mRFP1 tagged strain. The device was left

FIG. 2. Modular implementation of MAM as a multichannel setup capable of generating multiple instances of the different

oxygen environments.
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upside down for an hour without media flow. Following the 1 h incubation period, the media

flow was started at 500 ll�h�1 per channel. After 48 h of cultivation in the growth chambers,

the media was exchanged to media supplemented with 50 lg�ml�1 of the antibiotic, ciprofloxa-

cin (Sigma-Aldrich, Denmark A/S). 24 h of antibiotic treatment was followed by staining with

1 lM SYTOX
VR

Blue dead cell stain (Molecular Probes, Invitrogen, Denmark). The chambers

were left for 48 h running on media without ciprofloxacin. This was done in order to subse-

quently evaluate the cells’ ability to migrate between oxygen gradients. Interconnection was

made between the chambers and cells were allowed to migrate for 24 h before analysed with

confocal laser scanning microscopy.

The interconnections between chambers were made with poly(vinyl chloride) (PVC) tubing

attached to PEEK connector plugs that were inserted into the specific chambers with different

oxygen levels.

C. Dissolved oxygen level control

In order to control the dissolved oxygen levels in the cell culture media, one of the PDMS

gas exchange module inlays was supplied with an oxygen scavenger (10% sodium sulphite so-

lution with 0.1 mM CoSO4 as catalyst, both from Sigma-Aldrich Denmark A/S). The second

inlay was left open to atmospheric air.

Determination of the oxygen levels in the cell culture chambers was achieved using the

phosphorescent oxygen-sensitive nanoprobe based on Platinum(II)-tetrakis-(pentafluorophenyl)

porphine (PtTFPP) dye76 (Luxcel Biosciences, Ireland). The oxygen levels were determined by:

(1) phosphorescence intensity and lifetime measurements on an Axiovert 200 wide-field micro-

scope (Carl Zeiss, Germany) upgraded for phosphorescence lifetime imaging (LaVision Biotec,

Germany), and (2) phosphorescence lifetime measurements on a multi-label plate reader (Vic-

tor2, Perkin-Elmer Life Sciences, USA). The imaging experiments were performed as described

previously by Fercher et al.77 using pulsed excitation with a 390 nm light-emitting diode (LED)

and emission collection at 655 6 50 nm. Plate reader measurements were performed as described

previously,76 using excitation at 340 nm and emission at 642 nm. For such measurements, the de-

vice was inoculated with non-fluorescent P. aeruginosa laboratory strain PAO1, then maintained

under a flow of medium, containing 0.01 mg ml�1 of probe, for 12 h and then washed with me-

dium. Thus, biofilms stained with the phosphorescent probe were produced in the device, which

can be used to monitor oxygenation and conduct biological experiments for several days.

The correlation between the phosphorescence intensity or photoluminescence lifetime and

dissolved oxygen concentration was determined by two-point calibration: at 0% and 100% of

atmospheric air oxygen saturation in the culture media. The 0% atmospheric air oxygen satura-

tion was obtained by supplementing the glucose containing culture media with glucose oxidase

(Sigma-Aldrich Denmark A/S) as previously described by O’Donovan et al.78 The very good

linearity of Stern-Volmer plots (s0/s vs [O2]) allows to use very simple two-point calibration as

discussed by O’Riordan et al.79 Each cell culture chamber was calibrated separately.

D. Confocal microscopy and image analysis

Confocal fluorescence images were taken with a Leica TCS SP5 microscope using a 50� /

0.75 W objective. 4 random pictures were taken from each chamber. Settings for visualization

of the probes were: 514 nm excitation and 613-688 nm emission for mRFP1; 488 nm excitation

and 517-535 nm emission for GFP; 458 nm excitation and 475-490 nm emission for SYTOX
VR

Blue dead stain. All images were processed by the IMARIS 7 software package (BITPLANE AG,

Z€urich, Switzerland).

V. RESULTS

A. Integration of the modular microfluidic system

The microfluidic modules described in the supplementary material70 were successfully fab-

ricated and assembled on a microfluidic platform (Fig. 3(a)). The system was integrated with
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16-channel peristaltic micropump. The pump was actuated by two motors obtained from com-

mercially available LEGO
VR

Mindstorms
VR

NXT 2.0 robotic kit80 (The LEGO Group, Denmark)

(Fig. 3(b)).69

B. Determination of the dissolved oxygen level

The differences between the phosphorescence intensity of the P. aerugionsa biofilm,

stained with the PtTFPP nanoprobe, in the aerobic and anaerobic environments were investi-

gated in order to determine the oxygen removal efficiency from the culture media using the gas

exchange module (Fig. 4). The phosphorescence intensity increased approximately two-fold in

anaerobic conditions as compared with aerobic conditions.

FIG. 3. (a) Microfluidic platform with modules and (b) the peristaltic micropump.

FIG. 4. Phosphorescence intensity (top panel) and lifetime (bottom panel) images of the P. aeruginosa biofilm stained with

the PtTFPP nanoprobe in the culture chambers with high (left) and low (right) oxygen concentrations.
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A two-step calibration curve was established by measuring the photoluminescence lifetime

of the nanoprobe in oxygen free and atmospheric air-saturated media (see Sec. IV). The photo-

luminescence lifetime was determined to be 54.5 6 1.3 ls (oxygen free media) and 29.7 6 0.6 ls

(and atmospheric air-saturated media). Oxygen concentration in atmospheric air-saturated media

was determined to be 0.281 mM.81 The measurements were performed at room temperature.

Assuming a reversible collisional quenching model,82 the Stern-Volmer constant was deter-

mined to be 2.97 mM�1.

The photoluminescence lifetimes of the nanoprobe in the chambers, resembling aerobic,

micro-aerobic, and anaerobic environments, were 30.5 ls, 35.8 ls, and 51.1 ls, respectively,

which correspond to 94.2%, 62.7%, and 7.9% of atmospheric air-saturation of the culture media

according to the two-point calibration curve.

C. Cultivation of P. aeruginosa strains in different oxygen environments

PAO1 biofilm formation was analysed 24 h after inoculation. In order to follow the trail of

each specific population following each inoculation, we used different fluorescent tagged ver-

sions of PAO1. In the culture media (supplemented with nitrate as an alternative electron

acceptor), highly equivalent biofilms were formed irrespective of the generated oxygen environ-

ment (Figs. 5(a)–5(c)).

The green confocal image (Fig. 5(a)) originates from GFP tagged bacteria and was culti-

vated under the lowest oxygen saturation. The red biofilm derives from mRFP1 tagged bacteria

and was cultivated in microaerobic (Fig. 5(b)) and aerobic conditions (Fig. 5(c)). However,

under the tested conditions in a minimal media, the biomass within first 24 h of growth reached

highly equivalent magnitudes of biomass regardless of oxygen tension. Under anaerobic

FIG. 5. 3D representation of the PAO1 biofilms at different oxygen saturations in FAB-GN media (minimal media supple-

mented with nitrate). PAO1 expresses either the fluorescent protein GFP or mRFP1. (a)-(c) 24 h old biofilms in FAB-CN

media. (d)-(f) 48 h after inoculation the cells were challenged with 50 lg�ml�1 ciprofloxacin for 24 h and then stained with

dead stain SYTOX
VR

Blue. (g)-(i) Interconnected chambers of the different oxygen saturation environments.
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conditions, supplemented with nitrate as electron acceptor, PAO1 has, in LB media, shown to

develop 3 fold more biomass.83

In order to evaluate the efficiency of the antibiotic ciprofloxacin on PAO1 biofilms under

conditions of lowered oxygen availability in a FAB-GN media, each chamber was challenged

with the same ciprofloxacin concentration. After 24 h of incubation, each chamber received

media supplemented with 50 lg�ml�1 of the antibiotic ciprofloxacin for a period of 24 h. The

treatment would present the differences in the effectiveness of the antibiotic in a developing

PAO1 biofilm. Dead cells in the biofilms were visualized by staining each chamber with Sytox
VR

blue dead cell stain (Figs. 5(d)–5(f)). The effect of the ciprofloxacin on the PAO1 biofilm was

highly dependent on the oxygen environment. PAO1-GFP biofilm was much more susceptible

to the antibiotic treatment than biofilm formed under higher oxygen concentrations. The antibi-

otic concentration was chosen to eradicate the majority of cells in the establishing biofilms,

though low enough to allow surviving cells. PAO1 had in that sense been established enough to

produce a healthy biofilm and represent a community associated environment.

Following the 24 h treatment with ciprofloxacin, the chambers were taken off the antibiotic

containing media for 48 h and connections between the different oxygen environments were

made (Figs. 5(g)–5(i)) (see connection details in the supplementary material in Ref. 70). This

enabled tracking of the bacteria in a novel way that has previously not been possible. We setup

the system in a way to follow in which direction, if any, the surviving bacteria would move. As

the ciprofloxacin treatment had been stopped, the only difference between the chambers was

the differences in oxygen concentrations. The small green clusters on Figs. 5(a) and 5(i) come

from the GFP tagged bacteria. This proves that PAO1 moves from chambers with low oxygen

tension (Fig. 5(g)) to microaerobic (Fig. 5(h)) and aerobic chambers (Fig. 5(i)).

VI. DISCUSSION AND CONCLUSIONS

In this paper, we describe design, fabrication, working principle, and application of a

highly complex modular microfluidic system. Integration of different modules, bringing in such

important functionalities as multichannel fluid control, bubble trapping, gas control-exchange

and bacterial culturing on a microfluidic lab-on-a-chip system, has been shown to be success-

fully achieved. The modularity allows addition and removal of the different functionalities. The

design permits easy reconfiguration and tailoring of the system to match particular needs. In

case of malfunctions in a single module, the system benefits from its modular construction and

allows uncomplicated exchange of the broken module without the need for fabrication of other

essential parts of the system. This is particularly important in the field of life science microflui-

dic systems, in which not yet all of these components are suitable for mass production. Further-

more, it allows quick prototype testing of different system configurations.

The microfluidic system in its present configuration enables comparison of changes

between anatomically driven oxygen tensions in different compartments of the CF airways

model, as well as full control and sensing of dissolved oxygen levels. By making the system

compatible with common substrates such as microscope slides and multitier plates, it enables

research staff to use standard laboratory equipment such as standard microscopes and multitier

plate readers.

Furthermore, the microfluidic CF airways model permits to freely reconfigure connections

between oxygen rich and oxygen depleted regions without bringing restrictions to the researcher

in the design of experiments. It enables to mimic some different conditions and diseases in

patients suffering from CF, such as clogging of the ostia in recurrent sinusitis4,84 or the devel-

opment of mucus plugs85 in the bronchioles. These experiments were not previously possible to

perform in standard in vitro flow-cells’ models for biofilm studies. In vivo models will usually

not allow precise control of such important conditions.

Moreover, the use of this microfluidic system, instead of a CF airways animal model, is

cheaper, safer and easier to handle for researchers. Importantly, it furthermore does not raise

any ethical concerns, which is the case for the use of animal models in medical research. We

demonstrated the application of our microfluidic airway model for studying P. aeruginosa
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PAO1 under different oxygen levels in response to treatment with ciprofloxacin. We have in

this way explicitly shown that the system is an asset in reliable and controllable biofilm evalua-

tions for treatment with antibiotics at reduced oxygen concentrations. Importantly, such a sys-

tem allows testing of very small volumes thereby minimizing the use of large amounts of ex-

pensive antimicrobials. PAO1 survival was shown to be highly dependent on the amount of

oxygen available during the antimicrobial treatment. This corresponds very well with previous

studies where it was shown that higher metabolic rate, in nitrate supplemented media under an-

aerobic conditions, leads to a lower survival rate of the bacteria.86

We have shown that PAO1, under lowered oxygen concentrations, migrates towards higher

oxygen concentrations even in nitrate supplemented media. Nitrate, which serves as final elec-

tron acceptor for anaerobic nitrate respiration (denitrification), does not seem to be favoured in

the presence of oxygen. This scenario can mimic the reinoculation of the lower respiratory

tract, previously cleared by the antibiotic treatments, with bacteria from the sinuses. This effect

is hypothesised as the main reason for recurrent infections in CF patients.17

Microfluidic systems present an efficient tool in mimicking organ specific functions. The

advantage of these systems is the possibility of mimicking key functionalities while omitting

non-essential ones. However, researchers should always keep in mind that in general, these sys-

tems lack the complexity of real organs. Therefore, careful interpretation of the generated

results should always follow. In case of the presented system, the mucociliary clearance was

not taken into account due to the general impairment of this mechanism in CF airways. How-

ever, if one would like to relate the results obtained in the presented system to a bacterial infec-

tion in healthy individuals, the mucociliary clearance mechanism needs to be taken into consid-

eration. Next generation microfluidic systems should focus on in vivo-like microenvironmental

cues (mucus accumulation, mucus constituents, air-liquid interface, stress factors, etc.) that

would lead to more profound understanding of the bacterial role in CF pathology.
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