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Abstract
Most clinical blood biomarkers lack the necessary sensitivity and specificity to reliably detect
cancer at an early stage, when it is best treatable. It is not yet clear how early a clinical blood assay
can be used to detect cancer, or how biomarker-based strategies can be improved to enable earlier
detection of smaller tumors. To address these issues, we developed a mathematical model
describing dynamic plasma biomarker kinetics in relation to the growth of a tumor, beginning with
a single cancer cell. To exemplify a realistic scenario in which biomarker is shed by both
cancerous and non-cancerous cells, we primed the model on ovarian tumor growth and CA125
shedding data, for which tumor growth parameters and shedding rates are readily available in
published literature. We found that a tumor could grow unnoticed for over 10.1 years and reach a
volume of (20.44 mm)3 before becoming detectable by current clinical blood assays. Model
parameters were perturbed over log-orders of magnitude to quantify ideal shedding rates and
identify other blood-based strategies required for early sub-millimeter tumor detectability.
Detection times we estimated are consistent with recently published tumor progression timelines
based on clinical genomic sequencing data for several cancers. In this study, we rigorously
showed that shedding rates of current clinical blood biomarkers are likely 104-fold too low to
enable detection of a developing tumor within the first decade of tumor growth. The model
presented here can be extended to virtually any solid cancer and associated biomarkers.
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INTRODUCTION
Most cancers can be more effectively treated if they are discovered early, when the tumor is
confined to its primary site (1, 2). In these early stages, surgical resection and conventional
treatments are often curative. For example, ovarian cancer patients diagnosed at Stage I
exhibit 5-year survival rates as high as 90%; however, over 80% of ovarian cancer patients
are diagnosed when symptoms arise during Stages III and IV, when 5-year survival rates
become less than 30% (3, 4). Approaches to detect ovarian cancer in its earliest stages, when
the cancer is still confined to the ovary, may best help reduce mortality. However, current
screening methods for ovarian and other cancers are still inadequate due to lack of test
sensitivity and specificity (3, 4).

Early detection efforts have focused on developing screening assays to monitor levels of
cancer blood biomarkers – proteins, methylated DNA or other signatures of cancer that are
“shed” (secreted or released) into blood (2, 5, 6). Tumor-specific microRNAs have been
highlighted as ideal candidates for blood-based early cancer detection due to their tissue-
specific dysregulated expression in cancer, high abundance and stability in blood, and
sensitive methods such as qRT-PCR readily available for quantification (7–10). It is hoped
that cancer blood biomarkers will have the potential to accurately diagnose disease, monitor
treatment, and provide a reliable screening method that also reduces health-care expenses
resulting from late-stage treatment regimens (1, 2, 6). Unfortunately, of the thousands of
potential biomarkers reported and examined for diagnostic use, only few are routinely being
used in the clinic, and many (if not most) are of limited utility in detecting “relevant”
cancers (fast-growing cancers that will likely become lethal, thereby requiring immediate
intervention) at an early or curable stage (2). The lack of early cancer biomarkers is
currently a major obstacle for blood-based early detection. Development of reliable blood
assays with effective biomarkers, followed by sensitive molecular imaging exams to verify
the blood test findings as well as determine the stage of disease and localize tumor burden,
would expedite diagnosis and thereby accelerate the treatment process (2).

It is still unclear whether biomarkers released by small tumors (< 10 mm3) are capable of
being detected in blood. One reason is that several biological factors involved in early tumor
biomarker shedding (e.g., secretion rates from tumor and healthy cell populations, the
amount of biomarker entering tumor vessels from the interstitium, the effects of cancer
heterogeneity on tumor growth and biomarker shedding rates, etc.) have not been
quantitatively assessed in vivo. Thus, the correlation between blood biomarker levels and
tumor volume (or tumor growth) is not well understood. A separate issue is the ability of
blood biomarker assays to correctly identify cancer in a large patient population. Since
healthy (non-cancerous) cells may also shed the same biomarker, at varying levels among
individuals of a population, there is a probability that a healthy cancer-free patient will have
abnormally high levels of blood biomarker. This contributes to low test specificity, i.e., a
higher number of assay false positives.

To address these issues, our laboratory recently developed the first mathematical model to
determine the smallest tumor volume likely detectable by current blood-based biomarker
assays for ovarian and prostate cancers (11). However, this simple modeling study was
performed assuming steady state, i.e., at a specific time when biomarker fluxes into and out
of plasma are assumed equal. These steady state assumptions generally hold only in the
special circumstance of a non-growing tumor population. A more realistic model
incorporating dynamic (changing) biomarker levels in blood over time (due to an increase or
decrease in the number of cancer cells), as would be expected during tumor growth and
treatment, would clearly be more relevant. No mathematical models have since been
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developed that can be used to monitor fluctuating blood biomarker levels in relation to a
growing tumor.

Incorporating time-dependency into the biomarker secretion model is an important and
necessary next-step in evaluating blood biomarker early detection capabilities because it
allows us to: 1) determine the minimum period of time a growing tumor cell population
would need to proliferate before being detectable by blood-based assays, and 2) identify
biomarker-associated parameters that significantly affect early detection capability, and
quantify how much these parameters would need to be manipulated to improve detection by
blood-based assays. We addressed these issues here, by incorporating tumor growth into a
new linear 1-compartment biomarker secretion model, to assess dynamic plasma biomarker
kinetics in relation to the genesis of cancer, beginning with a single parental tumor cell. We
aimed to quantify the time required for a growing malignant tumor cell population to reach a
sufficient size so that its shed blood biomarker levels were high enough to be detected using
current clinical blood biomarker assays, and then we used the model to calculate changes in
detection capabilities based on log-order perturbations in fundamental parameters for
biomarker shedding. Importantly, the model can be used to help identify the biomarker-
related parameters that most greatly impact blood-based early cancer detection, and quantify
how far each baseline parameter value would need to change in order to achieve earlier (sub-
millimeter) tumor detection.

RESULTS
Development of a mathematical model of plasma biomarker kinetics

A biomarker in whole-body plasma is assumed to be well-mixed and homogenous, and
therefore can be described using 1-compartment model kinetics (Fig. 1). Although
biomarker may be shed from benign and malignant tumors, we focus here on biomarker
shed from malignant cells only, as blood detection would then consequently reflect the
presence of a relevant cancer. As benign tumors may be detectable before they give rise to
malignant subclones, alternative equations for benign tumor shedding are presented in the
Supplementary Material (see “Extension of Model to Include Benign Growths”).

Plasma biomarker influx is the sum of biomarker shedding from tumor cells, uT(t), and from
healthy cells, uH(t). Each influx is a function of: 1) the fraction of shed biomarker entering
tumor vasculature, fPL,T, or healthy vasculature, fPL,H, which may differ due to the abnormal
leakiness and dilation of tumor blood vessels (12) and the extent of biomarker degradation
in the tumor microenvironment; 2) the shedding rates of biomarker from tumor cells, RT, or
healthy cells, RH, both of which are assumed constant; and 3) the number of tumor cells,
NT(t), or healthy cells, NH(t), shedding biomarker at a given time t. Note that if a biomarker
is exclusively shed by cancer stem cells, then NT(t) may represent a minority population of
cancer stem cells present in the growing tumor.

In this study, the process of “biomarker shedding” is loosely defined as the addition of
biomarker into the interstitium by any biological mechanism, e.g., the secretory pathway or
the release of cellular degradation products following apoptosis or necrosis (13, 14).
Assuming that all tumor cells shed biomarker, and that the biomarker shedding rates are
constant (but possibly different) for tumor and healthy cells, we attribute the increase in
plasma biomarker levels to the growth of the biomarker-shedding tumor cell population
(tumor burden), which includes all primary and metastatic tumor cells, if any. The number
of tumor cells, NT(t), is modeled using the Gompertzian function (15, 16),
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where NT,0 is the number of tumor cells present at time t = 0, kGR is the fractional growth
rate of the tumor population (day−1), and kdecay is the decaying rate of tumor growth
(day−1). Note that kGR is related to tumor doubling time (tDT) according to the equation kGR
= (ln 2)/tDT. As kdecay→∞, the number of tumor cells more quickly approaches its
maximum size. As kdecay→0, the Gompertzian function simplifies to the mono-exponential
growth function,

We note that while such simplistic, unbounded, strictly increasing growth models may not
fully encapsulate the heterogeneity of cancer (in terms of varying degrees of cell
proliferation, necrosis, angiogenesis, biomarker shedding rates, etc., in different regions of
the tumor) as some multi-scale models may, they are sufficient for calculating earliest
possible detection times. We simulated tumor growth from t = 0 days, which can be
interpreted as the time of tumor onset (or “genesis” of a tumor), at which a premalignant cell
transforms into the first malignant (tumor) cell capable of shedding the biomarker(s) of
interest.

In this study, a “healthy cell” is defined to be any non-cancerous cell in any organ of the
body that sheds the same biomarker as tumor cells (possibly at a different rate, RH). Unlike
the growing tumor cell population, the number of healthy cells is assumed constant, i.e., the
rates of healthy cell growth and death are assumed equal. Therefore NH(t) = NH,0, where
NH,0 is the number of healthy biomarker-shedding cells.

Biomarker elimination from plasma may occur via a number of processes, including
irreversible excretion in kidneys, degradation in liver, or breakdown by proteases. The rate
of plasma biomarker elimination (kEL) is assumed linear, i.e., a fraction of total biomarker in
plasma is irreversibly removed per unit time. We calculated kEL based on the half-life t½ of
biomarker in blood, where kEL = (ln 2)/t½.

It is important to note that the general model structure described here is used to determine
the earliest possible detection time for a tumor, by supposing a continuous and strictly
increasing tumor growth model and constant biomarker secretion. A more realistic depiction
of biomarker blood levels and actual detection times can be developed in the future by
incorporating more complex (multi-scale) growth and secretion models, as these
mechanisms become better studied, and as the relevant clinical data becomes available.

Example: Ovarian Cancer and CA125 Secretion
The 1-compartment model presented here is generalizable for any solid cancer and
corresponding shed biomarker(s). To exemplify a realistic scenario in which biomarker is
shed by both tumor and healthy cells, we used parameter values based on ovarian carcinoma
growth and associated CA125 shedding, which have been well-studied with all parameter
values available in published literature (11, 17–27) (Tables 1 and 2). We note that the
number of detectable blood biomarker proteins/molecules can be easily calculated for
biomarkers measured in mass units (e.g., ng). However, this conversion is not possible here
because CA125 is measured in arbitrary units (U).
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To date, there is no single biomarker capable of detecting any relevant early stage cancer
with adequate sensitivity and specificity. It should be noted that while CA125 is widely used
to monitor ovarian cancer recurrence, it is not praised as an early detection biomarker, as it
lacks sensitivity in screening asymptomatic patients, and has a high rate of false positives
due to its elevated presence in many non-cancerous cases (menstruation and pregnancy,
endometriosis, uterine fibroids, liver cirrhosis) as well as non-ovarian cancers (pancreatic,
breast, bladder, lung, liver) (28, 29). We used CA125 as an example in the current work not
because it will necessarily prove useful for detecting early ovarian cancer, but because it has
been sufficiently studied with all required model parameter values available in literature.
Although many new blood biomarkers have been discovered in the past 10 years (for
ovarian and other cancers), few have been widely tested for screening purposes (3, 4, 6), let
alone studied adequately enough to provide the parameter values needed for the current
study.

Therefore, the ovarian cancer growth and CA125 shedding literature values were used here
to provide realistic baseline values for model simulations, and were then examined over
several log-orders of magnitude in subsequent sensitivity analyses. These results were
compared against published estimates of tumor progression timelines for other cancers.

Assessing performance of current clinical biomarker assays
In this study, the model was used to examine two cases: 1) biomarker shedding by tumor
cells only; and 2) biomarker shedding by tumor and healthy cells (Fig. S1). The first case is
ideal for the early cancer detection setting because any biomarker detected in blood can be
attributed to the presence of at least one cancer cell. In the second case, additional secretion
by healthy cells induces an inherent background signal that will also confound biomarker
levels indicative of the presence of a tumor.

When a biomarker is not shed by healthy cells, the number of tumor cells detectable is
strictly dependent on the sensitivity of the blood assay. An assay with a lower detection limit
will therefore be able to detect fewer tumor cells. Assuming a baseline detection limit of d =
1.5 U/ml (the detection limit of current clinical CA125 ELISA assays) and all other baseline
parameters indicated in Tables 1 and 2, the model indicates that 1.22×108 tumor cells are
detectable, corresponding to a tumor volume of (8.48 mm)3 (Fig. S2A–G, dashed vertical
lines). This is potentially a 5-fold improvement over the mean tumor volume ((42 mm)3)
detected using ultrasound at clinical diagnosis (30). Approximately 8.8 years (assuming
mono-exponential growth) to 10.6 years (assuming Gompertzian growth) are required for
the tumor to reach a volume of (8.48 mm)3 from the genesis of the first cancer cell. This
detectable tumor burden includes all biomarker-shedding primary and metastatic (if any)
tumor cells.

Assuming additional shedding of biomarker by healthy cells, the ability to detect a growing
tumor is no longer dependent on the sensitivity of the biomarker assay alone, since healthy
patients will presumably be shedding detectable levels of biomarker. The question then
becomes, how much of the plasma biomarker is attributed to tumor cells? For CA125, the
mean concentration in healthy women is 13.1 U/ml (22), with an estimated 99.9% having
less than 34.11 U/ml (11). We found that a growing tumor must reach 1.71×109 cells or
(20.44 mm)3 to shed enough CA125 to exceed this healthy-state cut-off limit (Fig. S3A–H,
dashed vertical lines). This would require 10.1 years (assuming mono-exponential growth)
to 12.6 years (assuming Gompertzian growth) after the genesis of the initial tumor cell.
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Simulated Strategies for Earlier Cancer Detection
The baseline parameter values used in the model provided ranges of minimum detection
time nearing one decade (8.8 to 10.1 years) and minimum tumor burden well exceeding (1
mm)3 volume ((8.48 mm)3 to (20.44 mm)3). We next sought to determine the magnitude the
shedding-related (fPL,T, RT, kEL and fPL,HRHNH,0) and assay-related (d) parameters would
need to increase or decrease to provide earlier detection times (i.e., smaller tumor volumes).
To do this, we systematically calculated the value each parameter would need to be to
achieve a volume that was 10-fold, 100-fold, …, 109-fold lower than the baseline minimum
tumor burden volume. We excluded tumor growth and disease cut-off parameters from these
sensitivity analyses, as direct parameter manipulations to decrease tumor volume or lower
the healthy-disease threshold would only artificially decrease early detection time. (Effects
of perturbations in these parameter values, however, are shown in Fig. S2 and S3).

Table 3 provides results for the case of biomarker shedding by tumor cells only. A 10-fold
increase in tumor cell shedding rate RT, or a 10-fold decrease in assay detection limit d,
could allow a (3.94 mm)3 tumor to be detectable within 7.7 years after its genesis. Although
there are currently no known biomarkers with such high shedding rates, or clinical assays
with such good sensitivities, these values suggest that when healthy cell biomarker shedding
is not involved, better blood-based detection strategies might include identification of other
biomarkers that are shed in higher amounts, as well as the development of more sensitive
technologies to detect lower levels of biomarker in blood. These strategies are not
unreasonable. The ability to increase tumor biomarker secretion rates up to 4-fold is now
becoming possible, with emerging strategies such as the application of high frequency
ultrasound to induce shedding from suspect tumor sites (31). Furthermore, newer detection
technologies are now capable of detecting biomarker concentrations as low as 50 attomolar
(5×10−17 M) (32, 33).

Smaller tumor volumes and earlier detection times for other hypothetical parameter
scenarios are indicated in Table 3 and described in the Supplementary Material (see
“Discussion of Five Example Early Detection Strategies”). Interestingly, tumor volumes
smaller than (3.94 mm)3 are not detectable by altering fPL,T or kEL alone, as this would
require physiologically implausible parameter values, i.e., fPL,T > 1 or kEL < 0.

Table 4 indicates results for the case of biomarker shedding by tumor and healthy cells. In
this case, the model predicts that a 13-month improvement in early detection time (from
10.1 yr to 9.0 yr) may be possible if tumor shedding rate RT were 10-fold higher, or if
healthy cell shedding fPL,HRHNH,0 were 10-fold lower. Decreasing fPL,HRHNH,0
corresponds to using biomarkers that have lower average levels in the healthy cancer-free
population (e.g., for CA125, a 10-fold decrease in baseline fPL,HRHNH,0 would correspond
to an average biomarker concentration of 1.3 U/ml in the healthy population). Note that kEL
is not listed in Table 4, as the detectable tumor volume does not decrease even as kEL is
altered (Fig. S3F).

As CA125 may not be the ideal biomarker for early detection, we next used the model to
explore the characteristics of an ideal candidate biomarker by simulating the following
scenarios: increasing vascular permeability to 100% (fPL,T = 1), eliminating healthy cell
biomarker shedding, increasing tumor cell biomarker shedding, and decreasing assay
detection limit. Fig. 2 summarizes some specific strategies for detecting a tumor at an earlier
stage, based on data from Tables 3 and 4 and Fig. S2 and S3. Point A indicates the current
status of clinical ELISA assays for measuring a biomarker shed by both tumor and healthy
cells (10.1 yr, (20.44 mm)3). Performance is only slightly improved if 100% of shed
biomarker reaches plasma (Point B, 9.0 yr, (9.49 mm)3), or if there is no background
shedding by healthy cells (Point C, 8.8 yr, (8.48 mm)3). Assaying for biomarkers that are
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shed from tumor cells at 103-fold higher shedding rates (despite baseline values for
background healthy cell shedding) may allow detection of tumors as low as 2-mm in
diameter (Point D, 6.8 yr, (2.04 mm)3). Improvements in assay sensitivity will only allow
sub-millimeter tumor detectability when healthy cell biomarker shedding is essentially
negligible relative to tumor cell shedding; even then, at least a 103-fold improvement in the
assay detection limit is required (Point E, 5.6 yr, (0.85 mm)3; Point F, 3.4 yr, (0.18 mm)3).
In these optimal scenarios, sub-millimeter tumor detection may occur at least 4.5 years
earlier relative to baseline (10.1 yr), reducing early detection time by 45%. Note that if a
biomarker were shed by tumor cells only, and assay detection limits remained at baseline 1.5
U/ml, the model indicates that Points E and F could also be achieved by increasing tumor
cell shedding rate 103-fold and 105-fold respectively (Table 3).

We note that n-way sensitivity analyses can be conducted to simultaneously examine how
the model outputs would be affected by simultaneous perturbations in multiple parameter
values. Examples of two-way sensitivity analyses are shown in Fig. S5–S8.

DISCUSSION
“Early” relevant cancer detection is only effective if an early-stage tumor can be detected
when the cancer is still treatable. In the current study, we used a mathematical framework to
evaluate the early cancer detection problem, to motivate design of new experiments that
challenge current hypotheses regarding biomarker detectability, and to determine, by
rigorous sensitivity analyses, whether blood detection of single cancer biomarkers can ever
become a feasible end-all strategy for diagnosing early-stage cancers.

Based on published ovarian carcinoma growth and CA125 shedding parameters (Tables 1
and 2), we found that “early” detection of a continuously growing tumor burden using
currently available assays may require at least 8.8 to 10.1 years following the appearance of
the first cancer cell (Tables 3 and 4). These early detection times, which are dependent on
the extent of healthy cell biomarker shedding, are still only optimistic lower limit estimates
of time until detection because they were calculated assuming (unbounded and strictly
increasing) mono-exponential growth. To account for the possibility that the rate of tumor
growth may decrease as tumor volume increases, we also used a Gompertzian growth model
to estimate time until detection, and found that a tumor may grow for 10.6 to 12.6 years
(Fig. S2 and S3, baseline dashed lines) before being detectable by current clinical ELISA
assays. In addition, early-stage microscopic tumors likely undergo an occult dormancy
period in which initial tumor growth remains static and limited, possibly because vasculature
may not yet be fully established (which may also limit biomarker influx into blood) (34, 35).
Thus, it would not be unreasonable to assume that these cancers may go undetected for
several years longer.

Interestingly, these model predictions are consistent with published cancer progression
timelines recently reported for other human cancers (36–39). Yachida and colleagues
analyzed genomic sequencing data of metastases from seven patients with Stage IV
pancreatic cancer and calculated that the first parental (non-metastatic) founder cancer cell
may require 6.8 years to generate subclones with metastatic potential; these subclones could
give rise to distant metastases within 2.7 years, with clinical diagnosis likely occurring 18–
20 years after the genesis of the founder cell (38). Jones and colleagues found that a benign
colorectal tumor might require 17 years to develop into an advanced carcinoma (36). On a
larger timescale, Meza and colleagues reported that the average time from an initial
premalignant mutation to the ultimate conversion of a detectable cancer (based on no-
extinction and in the absence of censoring due to other causes of death) in pancreatic and
colorectal cancers may take 50 years (39). While tumor progression timelines may vary for

Hori and Gambhir Page 7

Sci Transl Med. Author manuscript; available in PMC 2012 August 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



different cancers, these studies share in common the implications that there exists at least a
period of 7–10 years before a primary tumor begins to metastasize. The model presented
here indicates that the cancer biomarkers and blood assays currently being used in clinic
may not be capable of detecting a growing tumor burden until metastasis has likely
occurred.

Here, we pinpoint where blood biomarker assays enter on the timeline of tumor growth. The
baseline parameter values used in this simulation-based analysis provide a reference point
for how well current assays are performing and how future ones will have to perform to
likely be useful. Since the “age” of a tumor cannot be accurately measured at clinical
diagnosis, we were unable to compare the model predictions directly to relevant patient data.
Direct extrapolation of the model predictions to the clinic is particularly difficult to validate
at this time; there is currently no available patient data correlating tumor size with plasma
biomarker levels, before and after cancer diagnosis, for multiple time points in the same
subject, throughout the natural course of disease progression. When relevant cancers are
discovered early, they are typically not serially monitored for both blood biomarker levels
and tumor volumes without treatment or intervention, and therefore we could not compare
these results to clinical data for increasing biomarker levels and tumor growth for large
patient populations.

It is not surprising that the relationship between tumor size and blood biomarker levels is not
entirely straightforward or well understood. Biomarker shedding is likely dependent on
many complex nonlinear processes, e.g., vascularization and tumor growth, and these
processes likely influence each other. However, several studies have shown that serum
CA125 levels may reflect tumor burden, as well as therapeutic response, in many epithelial
ovarian cancers (11, 17, 40–42). One study found that elevated CA125 levels (>35 U/ml)
were present only when ovarian tumor size was greater than 10 cm (43). More recently, it
has been shown that CA125 levels were significantly higher in female patients with
malignant ovarian tumors versus benign masses (p < 0.001) (30).

It should be noted that the model’s predictive capability is limited by the model assumptions
and available data. First, the model does not include circadian variations in biomarker
shedding, as may be expected in tumors or other organs, since these fluctuations have not
been adequately studied to date. Here, we used constant shedding rates obtained from
published cell culture experiments, which specifically account for the cumulative amount of
biomarker shed per cell in a 48-hr period (27). To our knowledge, there is no in vivo
information available in literature regarding the time-varying amount of biomarker shed per
cell (cancerous or non-cancerous) in living tumor-bearing animals or in patients with any
cancer. It should be noted, however, that nonlinear shedding rates can easily be incorporated
into future generations of the model (e.g., using a time-dependent function RT(t)). Second,
the tumor burden volume reported here represents the total number of biomarker-shedding
primary and metastatic cells. The model does not account for different shedding rates or
growth rates in primary and metastatic tumor cell populations, as these differences, to our
knowledge, have not been measured in vivo. It should also be noted that the goal of this
study (and more generally, of the early cancer detection problem) is not to detect advanced
cancers that have already metastasized, but rather to detect the primary tumor before any
significant metastasis has occurred. Therefore, while the mono-exponential and
Gompertzian growth models may not hold for advanced stage cancers involving more
complex tumor processes (such as metastasis, which may require more than 18 years
following the genesis of the parental tumor cell (38)), they are likely sufficient for studying
the early growth a small primary tumor. Finally, we do not model the fraction of biomarker
entering blood as a time-varying fraction, as this time-dependency has not been reported and
is not easily generalizable. It is expected that the amount of biomarker entering blood may
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change with respect to tumor size, angiogenesis and necrosis. Interestingly, this fraction may
now be better studied in small animal models in vivo using intravital microscopy (44) to
monitor the intratumoral distribution of fluorescent secretable biomarkers such as SEGF
(45) in tumor-bearing animals.

New biomarkers are constantly being discovered and each will need to be systematically and
rigorously evaluated for its potential to distinguish between healthy and early cancer states.
In addition, it is becoming clear that a single biomarker alone may not be capable of
detecting cancer with sufficient sensitivity and specificity; instead, panels of up to 10
biomarkers may be needed (29, 46). The mathematical model presented here can be
extended to virtually any solid cancer and corresponding biomarker panel shed, assuming
that such parameter values are available or can be measured. Importantly, this model is not
limited to proteins, but can be applied to a diverse spectrum of secreted biomarkers. For
example, hundreds of miRNAs have now been detected in blood at trace levels, using PCR
and bead-based hybridization methods (47). The time course and characteristics of tumor
growth can potentially be evaluated using this mathematical framework by analyzing
hundreds of miRNA profiles simultaneously.

The one-way sensitivity analyses performed in this study are a logical “next-step” in the
current predicament in which relevant clinical data is lacking; we can observe how the
model outputs (early detection time and tumor volume) respond to perturbations in the
parameter values, without focusing on the absolute values of the parameters themselves. The
model is not only used to estimate the minimum “age” of a tumor at blood-based clinical
diagnosis; a more powerful result is the identification of parameters that may be capable (or
incapable) of accelerating early cancer detection, and more importantly, quantifying how far
these parameters must be perturbed in order to achieve earlier (sub-millimeter) detection.
The estimated 10-year period until detection, as determined in the likely case when both
tumor and healthy cells shed the same assayed biomarker, indicates that there is still time for
earlier blood-based detection. This may become possible as the time-varying or nonlinear
biological complexities of biomarker shedding, angiogenesis, tumor dormancy and tumor
growth become better understood.

MATERIALS AND METHODS
Calculating Time Until Detection and Corresponding Tumor Volume

The change in the amount (mass) of plasma biomarker with respect to time is equal to the
difference between the influx of biomarker into plasma, as shed by tumor cells and healthy
cells, uT(t) + uH(t), and the outflux of biomarker from plasma, kELqPL(t). Plasma biomarker
mass was converted to units of concentration by dividing by VPL, the mean plasma volume
of a 70-kg female (Table 1).

For the case of biomarker shedding by tumor cells only, the earliest possible detection time
(tD) was calculated by setting plasma biomarker concentration qPL(t)/VPL equal to d, the
detection limit of the assay, and subsequently solving for t. The corresponding number of
tumor cells was then calculated by substituting tD into either the Gompertzian or mono-
exponential growth function.

For the case of biomarker shedding by tumor and healthy cells, values of tD and the
corresponding number of tumor cells at detection were calculated similarly, except plasma
biomarker concentration qPL(t)/VPL was set equal to c, the plasma biomarker “cut-off” level
for healthy and disease states. It should be noted that patients with biomarker levels qPL(t) <
c would be categorized as disease-negative, whereas patients with biomarker levels qPL(t) ≥
c would be classified as disease-positive. The cut-off level c was calculated previously (11),
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and was based on the mean biomarker level in healthy patients, which was assumed to
represent a steady-state mass of plasma biomarker,

The number of detectable tumor cells was converted to tumor volume using two
assumptions: 1) Tumor cells comprise p = 20% of the total tumor volume (11); and 2) the
tumor has a cell density of 1×106 cells/mm3 (11, 19). These assumptions were made to help
the reader interpret the estimated tumor size, not to provide a literal prediction of clinical
tumor volume. The value of p was chosen as a lower limit (11, 20) and its impact on the
calculation of tumor volume is illustrated in Fig. S4–S8 (see also “Supplementary
Sensitivity Analyses”). In this study, tumor volume was described in terms of tumor
“diameter,” where volume = (diameter)3.

Sensitivity Analyses Performed
We first calculated tD and the corresponding tumor diameter assuming baseline parameter
values (Table 2) and either a Gompertzian or mono-exponential tumor growth model. We
then performed one-way sensitivity analyses on the 9 parameters listed in Table 2, with
parameter values and ranges justified in the Supplementary Methods. Specifically, for a
given parameter, we divided the “range simulated” into ≥21 subintervals using equally
spaced nodes, and calculated new tD and tumor diameter values at each node. All
calculations were performed using Mathematica 6.0 (Wolfram Research).

Identifying Strategies to Improve Early Detection
To identify the model parameters most capable of affecting tD and tumor diameter, we
systematically calculated the value each parameter would need to be to achieve a tumor
volume 10-fold, 100-fold, …, or 109-fold lower than the baseline minimum tumor volume.
Non-physiological parameter values were declared infeasible. See also “Discussion of Five
Example Early Detection Strategies” in the Supplementary Material.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. One-compartment model for plasma biomarker kinetics
The change in the amount (mass) of plasma biomarker with respect to time is equal to the
difference between the influx of biomarker into plasma, as shed by tumor cells and healthy
cells, uT(t) + uH(t), and the outflux of biomarker from plasma, kELqPL(t). See “Derivation of
Model Equations” in the Supplementary Material.
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Fig. 2. Model-predicted detection capability of current and potential strategies for earlier cancer
detection using blood biomarker assays
See Table 2 for baseline parameter values. Dashed horizontal lines indicate the mean (42
mm) and minimum (10 mm) tumor diameters detected by transvaginal ultrasound (TVUS)
in a study of 1,094 women with adnexal mass (30). Detection capability using: (A) current
clinical ELISA assays (assuming baseline parameter values); (B) a biomarker that has 100%
vascular permeability (fPL,T = 1); (C) a biomarker not shed by healthy cells; (D) a biomarker
shed by tumor cells at a rate 103-fold higher than baseline; (E) a biomarker not shed by
healthy cells, and decreasing assay detection limit 103-fold relative to baseline; (F) a
biomarker not shed by healthy cells, and decreasing assay detection limit 105-fold relative to
baseline.
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Table 1
General Parameters for the Biomarker Shedding Model

Parameter values were based on ovarian carcinoma progression and CA125 shedding in the average female
patient.

Parameter Description (Units) Fixed Value Ref

VPL Mean plasma volume in a 70-kg female patient (ml) 3,150 (26)

qSS/VPL Mean concentration of biomarker in healthy patient plasma (U/ml) 13.1 (22)

density Expected tumor cell density in solid tumor (cells/mm3) 1×106 (11, 19)

p Percent of total tumor volume occupied by tumor cells 20 (11, 20)
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