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Abstract

Major depression is a prevalent disorder that imposes a significant burden on society, yet objective laboratory-style tests to
assist in diagnosis are lacking. We employed network-based analyses of ‘‘resting state’’ functional neuroimaging data to
ascertain group differences in the endogenous cortical activity between healthy and depressed subjects. We additionally
sought to use machine learning techniques to explore the ability of these network-based measures of resting state activity
to provide diagnostic information for depression. Resting state fMRI data were acquired from twenty two depressed
outpatients and twenty two healthy subjects matched for age and gender. These data were anatomically parcellated and
functional connectivity matrices were then derived using the linear correlations between the BOLD signal fluctuations of all
pairs of cortical and subcortical regions. We characterised the hierarchical organization of these matrices using network-
based matrics, with an emphasis on their mid-scale ‘‘modularity’’ arrangement. Whilst whole brain measures of organization
did not differ between groups, a significant rearrangement of their community structure was observed. Furthermore we
were able to classify individuals with a high level of accuracy using a support vector machine, primarily through the use of a
modularity-based metric known as the participation index. In conclusion, the application of machine learning techniques to
features of resting state fMRI network activity shows promising potential to assist in the diagnosis of major depression, now
suggesting the need for validation in independent data sets.
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Introduction

The Major depressive disorder (MDD) is a complex disease

associated with high rates of misdiagnosis [1]. The limitations of

the current symptom-based approach are well recognised [2] and

remain the subject of scientific debate (e.g. see [3,4]). For example

primary care physicians in the outpatients setting recognize only

some 35% cases of depression [1,5] and falsely diagnose almost

20% of patients who are not depressed [1]. Until recently, the

‘gold standard’ for assessing depression was the Hamilton scale for

depression (HAM-D). However, recent evidence suggests that the

HAM-D may be psychometrically and conceptually flawed [6],

arguing that a fundamental reassessment of this gold standard is

needed. Whereas diagnosis has traditionally focused on clinical

interview and clinician or patient rating scales, recent advances in

brain imaging techniques strengthen the possibility of using the

structural, functional and biochemical architecture of the brain

toward this goal. These advances have occurred in both the

hardware and software domains, leading to higher spatial and

temporal resolution, improved signal to noise ratio, advanced

multivariate analysis algorithms and new data modalities such as

diffusion imaging (DTI). The objective of the current paper is to

leverage methodological advances towards a diagnostically infor-

mative brain imaging protocol in MDD.

Functional brain imaging has traditionally focused on task-

related disturbances in key regions of interest including regions of

pr efrontal and cingulate cortex, hippocampus, striatum, amyg-

dala, and thalamus [7,8]. Despite vigorous re search in this field,

there do remain apparently disparate findings, such as up- [9,10]

versus down-regulation [11,12] in prefrontal cortex, possibly due

to task subtleties, illness sub-types and other contextual differences.

A growing school of thought, however, suggests that depression is

unlikely to reflect local changes in specific areas, but rather

alterations in distributed network activity across large cortical and

subcortical circuits [13,14] with recent interest focussing on the

default mode network [15,16], in turn reflecting a broader

paradigm shift in neuroimaging science [17]. Subjects are not

required to fulfil specific (often comple x and challenging) tasks,

making resting state data especially attractive for the use with

patient populations.Recently [18] used whole brain resting state

fMRI to identify a decrease in functional connectivity within

medication-free subjects suffering accute depression. Furthermore,

[19] identified the potential to use support vector machines to

accurately classify depression from functional connectivity extract-

ed from fMRI. Research has also shifted from a focus on neuronal

activity evoked by affective or cognitive tasks, toward the analysis

of spontaneous, ongoing ‘‘resting state’’ fluctuations [20].
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In this paper, we use data-driven estimates of resting state

‘‘functional connectivity’’ (statistical correlations between spatially

distinct BOLD fluctuations) to study activity-dependent network

structure in MDD. Changes of resting state functional connectivity

(rsFC) in MDD have previously been described in the mood

regulating cortico-limbic circuit [21–23] - which was first

described by [24] - and for the default mode network (DMN)

[13,25] - a constellation of areas that typically show greater activity

at rest than during cognitive tasks [26].

One challenge facing the use of functional connectivity in

between-group analyses is that a network of N nodes (brain

regions), yields *N2 edges for possible pair-wise comparison.

Although statistical methods have been developed to control the

multiple comparison problem associated with such multiple data

features [27], two computational techniques allow an alternative

approach. The first is to study the overall topological properties of

the whole-brain network, leveraging the tools of graph theory [28]

to reduce the network structure to a few summary measures such

as its path length (the average number of edges between all pairs of

nodes), clustering (tendency of nodes to be form small cliques) and

modularity (the emergence of communities of densely connected

network nodes). Graph analysis of fMRI and EEG data has

revealed altered network topology in a number of neuropsychiatric

disorders such as Alzheimer’s disease [29], ADHD [30] and

schizophrenia [31,32]. Recently, changes in network structure

were identified in resting state fMRI data in patients with MDD

[33]. Three findings were reported: Firstly, whole brain topolog-

ical metrics showed significant between group differences,

specifically the small world index (SWI) and typical path length.

Secondly, using a recent method for detecting changes in the edge

weights of a graph after correcting for multiple comparisons [34],

differences in the functional connectivity of a sub-network of

cortical regions were observed. Thirdly, a number of node-wise

measures of topological organization were reported, although

these were not corrected for type II error. This final question

hence requires further investigation.

A second promising solution to manage the large number of

network edges is to exploit advances in machine learning, such as

support vector machines (SVM) and enter the entire multivariate

structure into an algorithm that is capable of identifying those

features that most informatively predict group membership. SVM

have been shown to be useful in predicting disease classification

from neuroimaging data [35] and, in contrast to traditional

between group analyses of variance, have the advantage in

allowing the classification of individual data sets. For example,

[36] used an SVM to identify individuals who were likely to

progress from an ultra high risk group to psychosis. In a recent

intriguing study of MDD, [37] achieved a high level of disease

classification using SVM trained on the functional connections

amongst a network of 15 key regions of interest. However, the lack

of close matching of ages in the clinical and control groups,

together with the known effect of cortical matura tion on

functional connectivity [38], again underlines the need for further

research in this field.

The aim of the present study is to combine the graph theoretical

analysis of resting state fMRI with machine learning techniques to

pursue two objectives: (1) To predict clinical status using network

measures of functional connectivity, and (2) Identify those network

features that are most diagnostically informative. Although we

calculated a broad suite of graph theoretical measures, we focus on

those related to the community structure of the network as it has

been recently identified as a sensitive marker for organization in

brain networks [39]. The most salient of these is the participation

index (PI) which is low for nodes embedded within local

communities and high for those which connect different modules.

We believe this is due to the more subtle nature of depression as

opposed to schizophrenia, which has been shown to have graph

metric alterations at a global scale [32]. We first report between

group analyses of the participation index, using a false discovery

rate to control for repeated measures. We then enter the entire

suite of network metrics into a multivariate classifier to investigate

which aspects of functional network structure are most informative

for clinical diagnosis, hence comparing PI to a range of more

frequently used measures.

Methods

Subjects
Twenty-two subjects with an acute MDD episode were

recruited from the inpatient and outpatient department of

psychiatry at the University of Magdeburg. Diagnosis was

confirmed by a structured interview by a trained clinician,

according to the ICD-10 criteria [40]. Four of the subjects were

experiencing their first depressive episode, while the remainder

consisted of recurrent MDD patients with a mean disease onset

approximately 6 years prior to the study. The exact number of

previous depressive episodes is not available for all patients. The

length of the current episode was between one and twelve months,

with a mean duration of 4.8 months. Due to the high level of

misdiagnosis in the community, clinical staff with a high level of

expertise in diagnosing mental health disorders performed the

diagnosis of all subjects. Exclusion criteria were major medical

illness, history of seizures, medication with glutamate modulating

drugs (ketamine, riluzole, etc.) or benzodiazepines, prior electro-

convulsive therapy (ECT) treatments and pregnancy, as well as all

contraindications against MRI. Specific psychiatric exclusion

criteria consisted of atypical forms of depression, any additional

psychiatric disorder, and a history of substance abuse or

dependence. All patients were rated by the Hamilton depression

scale (Mean score 15.75, SD 4.84). Twenty-two healthy subjects

without any psychiatric, neurological, or medical illness were self-

referred from study advertisements. All volunteers completed the

mini-international neuropsychiatric interview (MINI) to ensure the

absence of any ICD-10 psychiatric disorders [41]. The study was

approved by the institutional review board of the University of

Magdeburg and all subjects gave written informed consent before

inclusion. All subjects underwent an identical fMRI paradigm. All

patients were medicated using SSRI, NRI, and SNRI alone or

with new generation antidepressants including agomelatine or

lithium. The composition of the sex- and age-matched groups after

exclusion of one depressed female subject because of extensive

head movement is described in Table 1. There was no significant

difference in age (t-test, pw0:15) or gender between the control

and clinical groups.

Table 1. Subject cohort.

Healthy Controls Depressive Patients

Number 22 21

Male/Female 13/9 13/8

Mean Age 34.55 37.86

Standard Deviation (SD) Age 6.16 11.37

HAM-D (SD) - 15.8 (+24.8)

doi:10.1371/journal.pone.0041282.t001
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Data acquisition
The functional Magnetic Resonance imaging (fMRI) data were

acquired on a 3 Tesla Siemens MAGNETOM Trio scanner

(Siemens, Erlangen, Germany) with an eight-channel phased-array

head coil. For acquisition of the resting-state fMRI data, the

subjects were told to lie still in the scanner with their eyes closed.

Functional time series of 488 time points were acquired with an

echo-planar imaging sequence. The following acquisition param-

eters were used: echo time = 25 ms, field of view = 22 cm,

acquisition matrix = 44 44, isometric voxel size = 5 5 5 mm3.

Twenty-six contiguous axial slices covered the entire brain with a

repetition time of 1250 ms (flip angle = 70). The first five

acquisitions were discarded to reach steady state and limit T1

effects. High resolution T1-weighted structural MRI scans of the

brain were acquired for structural reference using a 3D-MPRAGE

sequence (TE = 4.77 ms, TR = 2500 ms, T1 = 1100 ms, flip

angle = 7, bandwidth = 140 Hz/pixel, acquisition matrix = 256

256 192, isometric voxel size = 1.0 mm3).

Data Preprocessing
Functional data were corrected for differences in slice acquisi-

tion time, motion-corrected using a least squares approach and a

six-parameter (rigid body) linear transformation and spatially

normalized [42]. The dataset of one female patient was excluded

because of excessive head movement. The data were linearly

detrended. An additional regression of nuisance covariates was

applied during which the functional data was corrected for global

mean signal as well as for white matter and cerebrospinal fluid

signal. Data were preprocessed using spm5 (Wellcome Trust

Center for Neuroimaging, London, England) as executed in the

processing assistant for resting-state fMRI (DPARSF, [43]).

The resulting volumes were parcellated into 95 nodes using a

modified version of the automatic anatomic labeling (AAL) atlas

[44] containing a higher level of parcellation for the cingulate

cortex [45–47] and insular cortex (anterior and posterior insula

[48]). In contrast to the original AAL template where the cingulate

regions are separate for left and right hemisphere, we combined

both sides to finally obtain regions that stretch across the midline

of the brain. This customization allowing co-registration with

MRS voxels of interest (to be reported later) leads to 95 instead of

originally 90 regions of interest (ROI). To compute the resting

state functional connectivity (rsFC) of the ROIs, the fMRI time

course of every ROI was extracted and Pearsons correlation

coefficient was calculated pair-wise for all pairs of ROI’s. The

Figure 1. Correlation coefficients (a) uncorrected and (b) corrected for distance by the distance penalty equation (Appendix S1 A).
Entries marked in red denote bilateral connections between the same region, e.g. Hippocampus left and right.
doi:10.1371/journal.pone.0041282.g001

Resting State Connectivity Changes in Depression

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e41282



correlation coefficient reflects zero-lag undirected statistical

relations of the BOLD time courses in the specific ROIs.

Correlation coefficients close to 1 imply that the time courses

are nearly identical, whereas those near 0 are nearly uncorrelated.

Graph Theoretical Analysis
Resting state functional connectivity graphs were created by

correlating the time series of all regions pair-wise in a 95 by 95

matrix (figure 1a). As in [49], these correlations show a monotonic

reduction in magnitude as a function of inter-areal distance,

trending toward a mean of zero, although with considerable

variance (figure 1a). As this (approximately logarithmic) back-

ground trend reflects non-specific neuronal correlations between

spatially adjacent neuronal populations [50], we choose to adjust

the correlations as a function of distance (figure 1b), effectively

regressing out these background effects and emphasising those

particular correlations that are strong in magnitude relative to

their spatial proximity (see Discussion for further consideration of

this step). There were no significant differences in the residual

errors after adjusting for distance between groups (pw0:8). For

example, this emphasises homologous inter-hemispheric pairs and

other long range connections over numerous shorts-range

connections between spatially proximate - although functionally

unrelated - brain regions. The mathematical details of this

regression are provided in Appendix S1 A.

Community structure, the focus of the current report, was

determined according to the algorithm of [51]. In contrast to the

other graph metrics (see below), this technique does NOT require

thresholding because it does not depend on the presence or

absence of connections, but rather seeks an arrangement of node’s

into large modules such that positive weights lie within each

module and the negative weights determine module boundaries.

The participation index (PI) is a feature of each nodes connectivity

relative to the modularity decomposition of the entire network:

Nodes with a low PI share connections with other members of the

same module, whereas those with a high PI serve as connectors

between modules. In all subsequent analysis, the PI scores have

been rank-ordered from lowest to highest PI within each

individual to remove intersubject variance. That is, a node with

the lowest PI is assigned as rank 1 whilst that with the highest PI

(the strongest ‘‘connector’’) is ranked 95.

The other graph-theoretical metrics require the underlying

globally connected networks to be rendered sparse through

thresholding. Graphs were hence reduced to a sparse matrix by

recursively removing edges, starting with the weakest weights and

progressing unt il only 12% of edges remained. No negative

connections were retained after thresholding. Any edge that would

cause the graph to disconnect by its removal was retained, even in

the case of a low weight. Thresholding was performed at 12%

based on prior analysis that found that such sparsity was close to

optimal in terms or retaining the most informative network edges

whilst ensuring that disconnection is rare. Networks with fewer

edges tend to have multiple disconnections (unless many bridging

edges are retained), whereas the inclusion of more edges tends to

introduce weaker, noisy effects obscuring between-group effects

[32]. We hence derived the following network metrics from these

sparse, weighted, non-directed graphs: Path length (PL) which

captures the average distance between all possible pairs of nodes;

Betweenness centrality (BC) which is a measure of the number of

shortest paths that traverse a given node; Clustering coefficient

(CC) which reflects the tendency of nodes to form local cliques,

small w orld index which measures the ratio between CC and PL,

and local and global efficiency (LE and GE) which captures the

information capacity of the network considered as a distributed,

parallel system [52].

Together these metrics capture the basic topological features of

the whole brain functional connectivity. In order to control for any

putative differences in overall connection strength, each metric

was normalized (subject-wise) to reference random graphs. All

metrics were calculated using the graph theoretical toolbox [53]

implemented in MATLAB. Mathematical details are provided in

Appendix S1 B.

Statistical analysis
The PI of a given node is dependent on its connectivity and the

modularity decomposition of the entire network. The modularity

algorithm produces a goodness of fit score (Q) for every possible

community structure. There are, in fact, a multitude of modular

decompositions for each subject with near optimal goodness of fit

(Q) scores. For a single subject, it is sufficient to find the single

decomposition with the highest Q score and calculate the node-

wise PIs using this structure. At a group level, however, these

decompositions inevitably differ considerably in structure (and

even number of modules) from subject to subject, presenting a

challenge for group analyses. We addressed two distinct questions

using the modularity structure: Firstly, are there any group

differences in the PI of individual nodes for clinical versus control

subjects; Secondly, can we identify group membership of clinical

versus control individuals based on all graph metrics, and how

does the PI contribute to this. We hence adopted two distinct,

pragmatic solutions to the variability of modular structure for each

of these problems.

We constrained the first question (between group analyses of

node-wise PI), by ensuring that the modularity decomposition is

the same for all subjects (Appendix S1 C). This means that any

putative between-group differences relate exclusively to the

relationship of individual nodes to this structure, and not

differences in the decomposition itself. This involved an iterative

procedure to identify the decomposition that gave the most

cohesive group modularity structure, weighted to the Q score for

individual subjects (a mathematical definition of this process

together with pseudo-code is provided in Appendix S1 D). Node-

wise PI scores were then extracted - relative to this modular

structure - in each subject and entered into traditional between

group statistical comparisons. All p-values were corrected for

multiple testing using a resampling based approach to control type

II error [54] based on the false discovery rate by [55].

For the second technique we sought to leverage advances in

machine learning algorithms to predict group membership based

on node-wise graph theoretical metrics. This question does not

require that all individuals have the same community structure

because between group comparisons are not performed between

corresponding nodes, but rather using the entire multivariate data.

We hence identified, in each subject, the single decomposition

with the best Q score. Node-wise PI values were then extracted

using each subjects best modularity decomposition and entered

into a machine learning algorithm, together with all other graph

metrics, for group classification.

Support vector classification
A linear support vector machine was trained to predict healthy/

depressed group membership, identifying the subset of the features

available that maximally identified correct group membership

with minimal redundancy between features [56]. The objective of

feature selection is to select the optimal set of features from a

dataset that optimally differentiates between groups. As the

number of possible features increases, an exhaustive search quickly

Resting State Connectivity Changes in Depression
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becomes unfeasible. The minimum redundancy, maximum

relevance (mRMR) algorithm [57] uses information about each

features individual predictive power, as well as the amount of

mutual information with other features that have been selected to

define a list of the most relevant features. mRMR produces results

similar in accuracy to an exhaustive search, without the increase in

time cost for ordering the feature list. Due to the combination of

low computational cost, as well as high accuracy, mRMR was used

for feature selection, with the results compared to a list produced

by recursive feature elimination (RFE) [58].

Data was randomly split into two groups, with half used for

training and the other half used for testing. Random splits where

the clinical/control ratio was by chance either w70% or v30%
were discarded from the analysis. To improve robustness, the

training/testing sets of data were reshuffled 1000 times, in a

technique commonly known as bagging.

Workflow
rsFC data is acquired from subjects in a single session. This is

preprocessed using SPM5, regressing out head motion, grey

matter percentage, CSF, global mean signal and parcellated into

95 nodes using a modified version of the AAL atlas. A distance

dependent penalty was added to the resulting connectivity

matrices and the analysis split into groupwise analysis and

classification. For the groupwise analysis, a groupwise modularity

structure was identified, while for the classification analysis, an

individual based modular structure was selected. Graphs were

thresholded and other graph metrics were calculated in the same

manner for both analyses.

FDR corrected p-values were calculated for all metrics and

these are reported in the between group analysis section. Feature

extraction was performed on all the features including the

individual modularity and a support vector classifier was trained.

A bootstrap approach with 1000 iterations was used to increase the

robustness of the classifier and the average accuracy was reported

in the classification section. This workflow has been visualised in

figure 2.

Results

Between group analysis
We first investigated between-group effects for the traditional

‘‘whole brain’’ topological metrics including the clustering

coefficient, path length and small world index. In order to control

for any putative differences in overall connection strength, each

metric was normalized (subject-wise) to reference random graphs.

There were no significant differences between controls and

subjects in these metrics between control and the clinical subjects,

nor any suggestion of a trend effect for the path length (pw0:36),

clustering coefficient (pw0:95) or small world index (pw0:49) at

12% connectivity. In order to replicate the analysis of [33], we also

tested global measures across a range of thresholds from 10 to

35%. No significant group differences were present at any

threshold across the entire range, nor when the measures were

pooled across all thresholds into a single ROC quantity (figure 3).

We then studied the between group differences in community

structure. The modularity function used has an inbuilt stopping

criteria for identifying the number of modules based on both

positive weights within modules and negative weights between

modules. All subjects’ functional networks exhibited distinct

community-like structure with most modules forming bi-laterally

(figure 4c). For all subjects, the optimal number of modules was

either 4 or 5 (the mean number of best-fitting modules across both

groups was 4.6 and the mode was 5). There was no between-group

difference in this optimal number (pw0:39). We then examined

the individual goodness of fit statistics (Q-scores) as an index of

how well the functional connectivity matrices show a modular

structure. There were no between group differences in the Q

scores (pw0:19). This was also true (pw0:73) if the decomposition

was confined in all subjects to have 5 modules (the most frequent

number).

Previous studies have also suggested 5 modular decompositions

for resting state fMRI analysis [49,59]. We found significant

similarities in modular decomposition in temporal and parietal-

(pre)motor modules. We also had a large amount of overlap

between the occipital and frontal modules found by [49], however

in our study these two modules appeared together. One difference

of particular note is in our study that the prefrontal cortex is

separated from the frontal module. Included in the prefrontal

module are sections of the parietal lobe. We believe the differences

between our work and the earlier studies are due to the

introduction of the distance dependent penalty.

All further analyses was hence based on a 5 module

decomposition. After adjusting for repeated measures, there were

substantial differences in node-wise PI between the healthy and

depressed subjects (Figure 5b). In particular 29 of the 95 nodes

showed a significant difference in their participation index

surviving FDR correction. Several features of these differences

are noteworthy. Firstly, the shift from healthy to clinical subjects is

from low PI (red) in 20 nodes, whilst to high PI (blue) in only 9

nodes. That is, nodes which tend to be deeply immersed within

their local communities in healthy subjects instead frequently

showed functional connections to other modules in major

depression. Secondly, there was a striking spatial distribution of

these effects (figure 5a). In particular, nodes whose relative PI

dropped significantly in the clinical subjects (red) were distributed

bilaterally through posterior and inferior regions predominantly in

occipital, temporal and inferior-frontal regions. Nodes whose PI

jumped in ranking in the clinical subjects (blue) were distributed

through superior and anterior regions predominantly in frontal

and parietal temporal regions in such a way that these two effects

occur in quite distinct spatial partitions (infero-posterior versus

antero-superior) of the brain.

To ensure our results are do not reflect the potential

confounding influence of global signal regression (a preprocessing

step we employed), we undertook an additional between-group

analysis of the global signal (Figure 6). There is neither a trend or a

significant between group effect (pw0:15).

Classification
The individual based modularity, which is used for the machine

learning section of this paper was carried out by selecting the 5

module decomposition with the best Q value (Figure 4a) and the

participation index for each node was calculated using a

thresholded matrix (Figure 4b). mRMR was used to identify an

optimal feature set for group classification by a support vector

machine. Of the top 25 features, 15 were from the participation

metric with the rest coming from degree, betweenness centrality

and efficiency metrics (Figure 7). A support vector machine was

trained on the best two features for illustrative purposes and shows

how the two groups are separable with 90% accuracy by using

only these two features (Figure 8). When the number of features

used to train the SVM kernel is increased from 2 to 6, the

algorithm was able to identify depressed/healthy status of

individuals with an accuracy above 99% (Table 2). Only a small

further improvement was hence possible by adding more than 6

features (Figure 9).

Resting State Connectivity Changes in Depression
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The top 25 informative features (nodes and the relevant graph

metrics) are listed in table 3. As stated above, 15 of these were the

PI of differing regions. The probability of any one of the graph

metrics to occupy 15 or more of the top 25 data features was

estimated, through resampling, to be pv1e{6, suggesting that

there is a significant restructuring of the modular structure

between groups.

Discussion

The goal of the present study was to investigate topological

features of resting state functional connectivity in major depres-

sion, and to explore the potential utility of using these features to

predict diagnosis. In contrast to [33], we do not observe between

group differences in whole brain measures of functional organi-

zation, namely path length and small world index. We do,

however, observe a significant reorganization of the community

structure of these networks that is a difference in the topological

structure of resting state fMRI at a hierarchical level below that of

the whole brain changes reported in [33]. We observed a strong

pattern of increased inter modular crosstalk for superior frontal

and parietal regions in MDD, while the majority of changes

referred to increased within module connections of a inferior

occipital parietal and subcortical set or regions. Importantly, the

graph representation based on a standard anatomical template

yielded a highly accurate classifier distinguishing patients and

controls based on their network topology, without the need of a

priorily defined regions of specific clinical interest. Participation

Figure 2. Workflow for data processing, statistical testing and machine learning in this study. All steps are described in detail in the
methods section of this paper. Two analysis types were used, one for groupwise comparisons, and one for machine learning classification. The
difference in modularity identification was selected so no groupwise information would influence the data used for machine learning. Thresholding
and the calculation of all metrics with the exception of modularity was identical between the two analysis types.
doi:10.1371/journal.pone.0041282.g002

Figure 3. Global metrics for subjects (blue) and healthy controls (red) across a range of thresholds for connectivity sparsity from
10% to 35% in 1% increments. Inserts in each figure are the area under the curve (AUC) statistics for each metric.
doi:10.1371/journal.pone.0041282.g003
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indices in comparison to other topological measures were by far

the strongest measures to contribute to group differentiation

suggesting future investigations of this measure.

On the whole, we find that connector nodes in healthy subjects

become locally embedded in their communities in major

depression. Finally, we find that these measures provide promising

diagnostic information when used in a machine learning

algorithm. Just 6 measures are required to yield a very high

diagnostic accuracy in our cohort. Moreover, node-wise partici-

pation indices dominate amongst all node-wise measures when

ranked according to a minimum redundancy, maximum relevance

algorithm.

Previous studies have shown alteration of whole brain metrics in

schizophrenia (SZ) [32] and Alzheimer’s disease [29]. These

psychiatric disorders are associated with severe, often incapacitat-

ing disorders of cognition so it is perhaps not a surprise to find

strong disturbances of global metrics in these disorders, in contrast

with lack of a between group effect in our depressed cohort.

Cognitive disturbances in schizophrenia are typically more

significant (eg. visual/auditory hallucinations, paranoia and

disorganised thinking) than in MDD where symptoms often

predominate in a rather emotional domain (eg. feelings of

worthlessness, helplessness and inability to experience pleasure).

However, a significant between group effect in these whole brain

Figure 4. Modular structure of one healthy individual, where brown, green, cyan, yellow and dark blue represent the 5 different
modules. Connections are drawn in the color of the modules if it connects nodes from the same modules, otherwise in black. Negative connections
are marked in red. (a) is a fully connected graph, where correlation coefficients are modified by the distance penalty described in Appendix S1A, (b)
and (c) have been thresholded to retain only 12% of edges.
doi:10.1371/journal.pone.0041282.g004
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metrics was recently reported by [33]. In order to replicate their

approach, we extended our analyses across a range of thresholds

from 10 to 35% for these metrics. No significant group differences

were present in our data at any threshold across the entire range,

nor when the measures were pooled across all thresholds into a

single ROC quantity. Interestingly, the small (but non-significant)

group mean differences in path length and small world index

diminished as the threshold was increased, consistent with an effect

of introducing increasingly noisy effects into the analysis. Given

that we used the same pre-processing steps as [33], the contrasting

findings may be instead due to more severely depressed subjects in

their study (their clinical subjects average HAM-D scores were

24.1 compared to our 15.8). Alternatively their clinical subjects

were drug naı̈ve nature compared to our cohort of medicated

subjects. It is possible that the normalizing influence of the

pharmacotherapy (or the disorders natural history) was associated

with a normalization in these whole brain metrics, suggesting that

the intermediate modularity scale may be more sensitive to milder

illness. Ethnic or cultural differences (a Chinese versus a German

cohort) may also influence the classification or expression of

depression between these populations and may have influenced

this result.

As the objective of our paper was to investigate the potential for

resting state metrics to provide diagnostically informative infor-

mation, and not to focus on pathophysiology per se. At this stage it

may be premature to link the list of informative data features to

prior theories of brain dysfunction in depression. This is firstly

because modularity decompositions are quite new to the f ield and

Figure 5. ROIs that changed in rank order between HC and MDD (pv0:05, FDR corrected). Higher PI scores in the HC and MDD columns
represent nodes which contain a higher porportion of connections within the module they belong to.
doi:10.1371/journal.pone.0041282.g005
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Figure 6. Global mean signal for healthy (left) and clinically depressed (right) subjects.
doi:10.1371/journal.pone.0041282.g006

Figure 7. Top 25 features for classification using SVM obtained using mRMR. Metrics included are participation index (PI), local/global
efficiency (LE/GE), local efficiency (LE), degree (Deg) and betweenness centrality (BC).
doi:10.1371/journal.pone.0041282.g007
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relate to a level of organization between regional and global:

There is hence no theoretical framework to make strong lin ks

between prior (local and regionally focussed) studies and our

approach. Importantly, functional characterisations of core

regions are normally derived from direct activation studies, which

then would best let us interpret abnormal task elicited responses.

Here the PI would not describe the focal change in activation but

rather its different implementation into functional modules, which

may be highly dependent from nodal connectivity changes in other

structures. Secondly, our study numbers are relatively modest such

that replication in a larger, independent data set would be

advisable before inferring pathophysiology.

The reorganization of community structure in MDD and its

putative diagnostic use our primary findings were achieved by

restricting the number of modules in all subjects to 5. Although

many different modular systems of the brain have been presented

recently including 6 modules [60], 5 modules [61] and v5
modules [62] our study shows a modular decomposition of the

same order as [61] while using a modularity algorithm that

utalized fully connected graphs by simultaneously maximizing

positive and minimizing negative connections within modules. The

main benefit of this apporach is that no thresholding of

connectivity matrices is required, removing a potential confound-

ing factor that other methods rely on. It should also be noted that

many of the modularity based analyses performed so far are based

on structural scans, and although there is evidence that structural

and functional abnormalities can be linked [63], it is reasonable to

believe that this relationship will not be exact and the resulting

modules will have some variation.

Figure 8. Support vector machine classification algorithm using the top two features for segregation between groups. Data points
marked with an ‘x’ are used for training, while points marked as ‘o’ were used for testing.
doi:10.1371/journal.pone.0041282.g008
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Objective classification of MDD has been a goal of mental

health research for some time. This has become achievable

through recent technological advances in both data acquisition

(fMRI) and processing (feature selection and classification algo-

rithms) techniques. A recursive feature selection was employed by

[37] to identify a set of correlations between regions (obtained by

fMRI) which were then used to predict MDD using SVM. They

also showed that none of their selected features for the SVM

showed statistically significant differences between groups at the

95% CI (false discovery rate (FDR) adjusted). Since then, the use

of graph theoretical metrics to identify meaningful measures has

become widely available [53]. It has been shown [61] that

significant correlations between a large number of the standard

graph metrics exist. Further to this, increasing the number of

features selected for a SVM to use increases the risk of over-fitting

the data. Therefore a feature selection algorithm that utilises both

feature relevance and mutual information is required. We utilized

mRMR [57] to identify a subset which maximizes predictive

power while minimizing redundant information. The use of a both

well established as well as emerging graph metrics has enabled us

to train a classifier with very high accuracy. This accuracy was

checked by reshuffling training and testing sets 1000 times as well

as randomly shuffling labels, both prior and post training: Our

classifier then performed no better than random chance, arguing

strongly against an over-training effect. The use of subjects who

are currently receiving medication based treatment offers a sample

representative of depression in the wider community. Further-

more, the diverse nature of the medication creates a more

heterogeneous sample, reducing the risk of capturing a subsample

of the population with a machine learning classifier. Although

resting state acquisitions of EEG and fMRI have been increasing

in their use recently [20], there remains active debate on the

optimal preprocessing techniques which should be used. Unre-

Figure 9. Selectivity and specificity for support vector classification using a range of features. Red line illustrates the cutoff chosen for
this analysis.
doi:10.1371/journal.pone.0041282.g009

Table 2. Support vector machine classification accuracy.

Treatment Test/Train Selectivity Sensitivity

Actual

Test 0.9934 0.9931

Train 1 1

Post

Test 0.5263 0.5018

Train 1 1

Pre

Test 0.5291 0.5016

Train 0.5228 0.5024

Bagging results for support vector machine classification accuracy using 6
features and resampling training/testing data 1000 times. Treatment refers to
the labeling of the data where ‘Pre’ and ‘Post’ refer to if the data labels were
shuffled before or after vector training.
doi:10.1371/journal.pone.0041282.t002
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solved issues in preprocessing include the influence of the

parcellation method and global mean regression. We used the

AAL for the basis of our parcellation atlas as it is a commonly used

technique in resting state fMRI studies and is highly reproducible.

However, it is known that the number of regions and their relative

volume used in a parcellation scheme systematically influences the

graph theoretical-derived features [34]. Recently automated fine

grained parcellation techniques have started to be used instead of

traditional, larger atlases [64–66], however no consensus has yet

been reached on how to optimally generate parcellation maps.

This motivated our use of the AAL atlas, with minimal

modifications. Similarly recent research has shown that in

simulated data, anti-correlations can be introduced through global

mean regression where none previously existed [67]. However it is

also well known that fMRI data are confounded by very large

spatial signal fluctuations that arise from a variety of non-neuronal

physiological processes (such as respiration) whose presence

dominates nave correlation matrices derived without global signal

regression. Moreover, because global regression can be shown to

introduce anti-correlations in synthetic data it does not follow that

the same do not indeed occur amongst resting state neuronal

populations as shown in several computational studies [68,69] only

to become obscured by high amplitude, large scale artifacts. The

idea that these negative correlations are biologically relevant was

recently reiterated by [70]. The modularity algorithm employed

leverages negative weighting to identify the modular structure. As

strength also uses negative weighting, but did not rate highly

amongst the features identified with our mRMR algorithm, it

seems that the negative weights do not on their own contribute to

the diagnostic accuracy. To allow comparison with most prior

studies, we employed a global signal regression step. In this

respect, it is important to note that there were no between group

differences in the global signal of our data (Figure 6).

Head motion has also been recently recognised as a potential

confounder in between group analyses of resting state connectivity

[71]. We carefully inspected all data and excluded subjects with

excessive head motion. All remaining subjects had a maximum of

3 mm of movement and 3 degrees of rotation. We additionally

corrected for head motion prior to estimating functional connec-

tivity. This step, as well as the regression of the other nuisance

variables (CSF, white matter) have been suggested as important in

reducing the influence of head motion on between group analyses

[71]. Finally, the potential influence of excessive head motion is a

bias towards short-range connections and away from longer

distance functional connections. In fact we explicitly adjusted our

data for distance-dependent effects (see Methods) mitigating

against such a possible confound.

Future work will include cross-validation in larger, independent

data sets and is required before the present findings could be

considered for translation into the clinical use. Underlying

physiological mechanisms may also be elucidated using multi-

modal data and/or computational models such as network

discovery for DCM [72]. The combination of the present data-

driven functional graph metrics with complimentary information

about structural connectivity (through the use of diffusion

weighted data) and/or synaptic biochemistry (via magnetic

resonance spectroscopy, MRS) would also be informative.
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