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Abstract We review models of the Baldwin effect, i.e.,

the hypothesis that adaptive learning (i.e., learning to

improve fitness) accelerates genetic evolution of the phe-

notype. Numerous theoretical studies scrutinized the

hypothesis that a non-evolving ability of adaptive learning

accelerates evolution of genetically determined behavior.

However, their results are conflicting in that some studies

predict an accelerating effect of learning on evolution,

whereas others show a decelerating effect. We begin by

describing the arguments underlying the hypothesis on the

Baldwin effect and identify the core argument: adaptive

learning influences the rate of evolution because it changes

relative fitness of phenotypes. Then we analyze the theo-

retical studies of the Baldwin effect with respect to their

model of adaptive learning and discuss how their con-

trasting results can be explained from differences in (1) the

ways in which the effect of adaptive learning on the phe-

notype is modeled, (2) the assumptions underlying the

function used to quantify fitness and (3) the time scale at

which the evolutionary rate is measured. We finish by

reviewing the specific assumptions used by the theoretical

studies of the Baldwin effect and discuss the evolutionary

implications for cases where these assumptions do not

hold.
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Introduction

In theory the evolution of plastic phenotypic traits may lead

to two extreme outcomes where the trait becomes either

genetically fixed (and largely phenotypically invariable)

or it is entirely shaped by environmental influences.

In-between these extremes lies a spectrum of outcomes

where traits contain a genetic component but they are also,

to various degrees, modifiable in response to environmental

influences. A recurring question in evolutionary biology is

how phenotypic plasticity (i.e. the ability to modify phe-

notype in response to external or internal influences—see

‘‘Box’’) may influence the outcome and the rate of evolu-

tion (Price et al. 2003; West-Eberhard 2005; Crispo 2008)

by, for example, creating novel selectable forms that are

entirely environmentally induced when there is not any

genetic basis for such a variant (as in populations that

colonize a novel environment). This question is particularly

relevant in the face of the growing body of evidence that

various forms of plasticity (such as the ability to learn—see

‘‘Box’’) have a genetic basis (Mery and Kawecki 2002;

Dukas 2004) and thus may evolve jointly with the geneti-

cally determined phenotype.

In this article we focus on the hypothesis that adaptive

learning (i.e., learning that improves fitness; see ‘‘Box’’)

facilitates evolution of the genetic basis for phenotypic traits.

This hypothesis has its origins in the arguments put forward

by Mark Baldwin (1896, 1902), a contemporary of Charles

Darwin. These arguments concern a population that finds

itself in a new environment, and thus, presumably, does not

contain a genetic basis for the complete phenotype that

would be optimal in this new environment (i.e. the phenotype

that achieves the highest possible fitness). Baldwin argues

that adaptive plasticity allows sub-optimal individuals to

acquire higher fitness. Hence, learning improves the survival
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of the population of such individuals and thus it facilitates

that the genetic evolution may proceed. Moreover, Baldwin

observes that under these conditions there is direct selection

for the ability to learn adaptively and, simultaneously,

indirect selection for any heritable variation carried by the

plastic individuals favored by direct selection. Clearly, this

scenario applies to the evolution of a behavioral trait that is

performed more than once in individual’s lifetime such that

there is an opportunity for the individual to modify this trait

by learning. The central argument of Baldwin is that selec-

tion for the ability to acquire a fitter phenotype through

learning may coincide with the genetic basis for the fit-

ter phenotype (i.e., these indirectly selected genes provide

a basis for a fitter phenotype). If this condition is ful-

filled, then the selection for improved learning facilitates

adaptive evolution of the genetic basis for the trait. There-

fore, adaptive learning is predicted to accelerate evolution of

this trait.

This hypothesis of Mark Baldwin, known in the litera-

ture as the Baldwin effect (Simpson 1953) has spurred

numerous theoretical studies whose general approach is to

measure the rate of evolution of a genetically determined

trait, given different levels of a non-evolving ability to

learn adaptively. Their results are ambiguous; some studies

provide evidence for an accelerating effect of adaptive

learning on evolution (Hinton and Nowlan 1987; Fontanari

and Meir 1990; Mayley 1997; Ancel 2000—the norm of

reactions models; Lande 2009), yet others show a decel-

erating effect of learning on genetic evolution (Papaj 1994;

Anderson 1995; Ancel 2000—the quantitative genetic

model; Dopazo et al. 2001; Borenstein et al. 2006).

In this article we analyze the theoretical studies of the

Baldwin effect with the aim of explaining how learning

yields these two contrasting effects. In order to do so we

analyze how—in these studies—learning influences the

relationship between different phenotypes and fitness and

thereby influences the evolutionary response to selection. In

fact, it is one of the underlying assumptions of the Baldwin

effect that learning changes relative fitness differences

among phenotypes such that it confers a larger fitness

increase to those phenotypes (as well as underlying geno-

types) that are already relatively closer to the fitness peak. In

effect, the selection for the ability to acquire fitter phenotype

through learning coincides with the genetic basis for the

fitter phenotype. Moreover, we emphasize that the theoret-

ical studies model two distinct evolutionary stages that are

characterized by different evolutionary end-points in the

Baldwin effect. The Baldwin effect concerns the evolution

of a phenotypic trait towards a single and distant fitness

peak; this process is initially realized through the selection

of plastic phenotypes but it is finalized when these plastic

phenotypes are substituted by a genetically determined and

optimal phenotype (presumably because learning has a

fitness cost; Baldwin 1896; Simpson 1953). Hence, the

theoretical studies of the Baldwin effect generally estimate

the amount of time (in generations) needed for the com-

pletion of this entire process, but they also allow to sepa-

rately analyze (1) the number of generations until the first

genetically determined and optimal phenotype appears in

the plastic population, and (2) the number of generations

until this genetically determined optimal phenotype replaces

the plastic phenotypes (which represents the general idea of

staging the Baldwin effect, as first proposed by Simpson

1953). These two evolutionary stages may have different

time scales and evolutionary dynamics. Therefore, it is

reasonable to derive conclusions about the effect of learning

on evolution separately for these two evolutionary stages.

We focus on theory pertaining to the first phase of the

Baldwin effect, i.e. the evolution of genetically determined

behavior towards a distant fitness peak, given that this

behavior can be modified by learning. For the review of the

second phase, i.e. genetic assimilation of learned behavior,

we refer to Crispo (2007). Empirical evidence for the effect

of adaptive learning on the rate of evolution is virtually

absent, with the exception of the work by Mery and

Kawecki (2004) on artificial selection on food preference in

the presence or absence of learning opportunities. Our

review of the theory aims to identify key assumptions about

the nature of genetically determined behavior, the ability to

change this behavior by learning, and the fitness cost of this

ability. In doing so, we hope to stimulate empirical work on

cognitive ecology and evolution. Empirical scrutiny of the

often arbitrary assumptions underlying theory may prove

relevant to the understanding of the evolutionary process.

In the next section, we begin by analyzing the results of

the theoretical studies of the Baldwin effect, grouped with

respect to the concepts of adaptive learning (or adaptive

plasticity in general) and the assumed fitness function (see

‘‘Box’’). We compare the evolutionary rates in the first

phase of the Baldwin effect (as defined above) obtained in

these studies, whenever these rates are available. By this

review we aim to highlight that learning influences the rate

of evolution by changing the fitness differences among

phenotypes in a population. This in turn determines how

the response to selection and thus the rate of evolution is

affected by learning. Theoretical models differ in the way

they allow learning to change relative fitnesses of different

phenotypes in the population, and these differences explain

their contrasting predictions.

Models of the Baldwin Effect: The Concept of Adaptive

Learning and the Choice of Fitness Function

The hypothesis on the Baldwin effect states that evolution

of an innate trait (see ‘‘Box’’) proceeds faster in populations
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that harbor plastic individuals, than in populations that

harbor none of such individuals. Therefore, the general

approach in published studies of the Baldwin effect is to

measure the rate of evolution of an innate trait given dif-

ferent levels of a non-evolving ability to learn. However,

these studies vary with respect to assumed fitness functions;

the fitness landscapes (see ‘‘Box’’) they describe range from

a single-peak ‘needle-in-haystack’ type to a single-peak

landscape with a gradual slope, or a rugged landscape that

contains many fitness peaks of varying heights. Moreover,

although they all model adaptive learning (i.e., learning that

leads to a change of phenotype in the direction of increased

fitness) the reviewed studies of the Baldwin effect use dif-

ferent methods and assumptions to achieve such an effect of

plasticity in their model systems. In this part we discuss

these various modeling aspects and argue that the results of

the studies are determined by the way they model adaptive

learning; the models may be structured such that adaptive

learning, in combination with assumed fitness function,

tends to either reduce or increase fitness differences among

modeled phenotypes. The degree of fitness differences due

to phenotypic variation determines the degree of response to

selection (Rice 2004), where reduced variation is associated

with weaker response and increased variation with stronger

response. This relationship provides a connection between

the effect of adaptive learning on phenotype and the rate of

evolution. To show how contrasting predictions may

emerge, below we analyze the modeling approaches of

different studies in terms of the effect of learning on the

relative fitness of phenotypes.

In their seminal model reviving interest in the Baldwin

effect, Hinton and Nowlan (1987) track the changes in the

frequency of the alleles associated with fitness pay-off. The

increase in the frequency of the allele associated with

superior fitness is taken as a yardstick of adaptive evolu-

tion. In particular, genotypes are modeled as byte strings

that consist of a number of loci. These loci can contain one

of two types of alleles and the genotype that is completely

homogeneous with respect to one particular type of the

allele is taken to be the optimal one (i.e. confers the highest

fitness). The assumed fitness landscape, therefore, is of the

unimodal ‘needle-in-haystack’ type. Adaptive learning is

introduced by another allele which is not fixed, but can be

switched to the type that confers higher fitness based on a

learning algorithm, and individuals are allowed to search

for the correct setting of these alleles in a number of trials

during their lifetime. The individuals that learn the optimal

phenotype are preferentially selected for mating (where the

probability of being selected for mating increases with

decreasing the number of trials the individuals need to

learn the optimal phenotype) and thus have more offspring.

The model shows that such learning dramatically speeds up

evolution in the population of individuals capable of

learning, a result corroborated by Fontanari and Meir

(1990) who analyze evolution on the same fitness land-

scape, using the same learning protocol but assuming

asexual reproduction. In fact, the population lacking an

allele for learning (i.e. the ‘unspecified’ alleles that get

fixed by learning) cannot find this evolutionary end-point.

The explanation for these results is that at least some

individuals harbor the set of fixed alleles that is not too

different from the optimal one and hence they have a

higher chance of finding the correct setting of all

‘unspecified’ alleles by learning within the time specified

for learning. In other words, thanks to learning these

genotypes (that are already closer to the fitness peak) gain a

relatively higher fitness than do the plastic genotypes with

fewer correct setting of alleles. These findings are also

consistent with the argument of Baldwin that learning

confers higher fitness gain to those genotypes that are

already closer to the fitness peak and thus accelerates

evolution of the genetic basis for the optimal phenotype.

Nevertheless, the other observation of the model by Hinton

and Nowlan is that ‘unspecified’ alleles are not entirely

out-selected and remain in the population, indicating dif-

ferent evolutionary dynamics once the population evolves

to the vicinity of the fitness peak. However, this result may

also be attributed to the fact that learning in this model has

no fitness cost.

The study by Mayley (1997) provides evidence that the

cost of learning plays a critical role in the interplay

between learning and genetic evolution. It also examines in

more detail the relationship between the complexity of a

fitness landscape and the effect of learning on evolution. In

particular, the author compares the movement of a plastic

population on unimodal and rugged (i.e. many fitness peaks

of varying height) fitness landscapes. In his model, a

genetically determined phenotype, represented by a point

on the fitness landscape, is considered to evolve if it moves

in the direction of the fitness peak. Mayley finds that there

is no evolution on a unimodal fitness landscape if learning

is cost-free because the optimal phenotype is acquired

entirely by learning. Adaptive evolution on a unimodal

fitness landscape is only possible, when there is a cost of

learning. Yet, on a rugged fitness landscape the population

evolves irrespective of the cost of learning. Mayley’s

results demonstrate that learning is more likely to facilitate

evolution on a rugged fitness landscape, i.e. where there is

more than one fitness peak and/or, initially, learning allows

the phenotypes to reach only the local fitness peaks but not

the global fitness peak (i.e. modifies the phenotype such

that it has the highest possible fitness). Moreover, in both

the unimodal and rugged fitness landscapes the cost of

learning is critical for the convergence of the population on

the single optimal genotype, i.e. the genotype whose fitness

cannot be improved by learning.
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Borenstein et al. (2006) constructed a rugged fitness

landscape characterized by a number of local fitness peaks

of steadily increasing heights and one global fitness peak.

In their model the population continues evolving towards

the global optimum by crossing the intermediate fitness

valleys and converging on local fitness peaks. The authors

measure the rate of evolution as the time it takes the

population to reach the global fitness peak and they

approximate adaptive learning through the application of

an algorithm which allows a learning genotype to repeti-

tively explore the fitness landscape and to modify its

phenotype according to the detected fitness gains. This

learning process stops when continuation of sampling and

learning cannot secure further fitness gains (i.e. the geno-

type has found the local fitness peak). As a consequence of

this learning process all genotypes of the population

acquire the same fitness, determined by the local fitness

peak, because they all are equally capable of learning. This

way of modeling the phenotypic effect of learning is more

akin to the way learning is modeled in a series of models

due to Hinton and Nowlan (1987) and Mayley (1997). One

feature characteristic to this approach is that genotypes

capable of learning can sample potentially large areas of

the fitness landscape and modify their phenotypes accord-

ingly. In the model of Borenstein et al. the learning process

effectively smoothes the fitness landscape, i.e. it reduces

fitness differences among genotypes. Model simulations

carried out by Borenstein et al. confirm that such an effect

of learning is associated with slower evolution on a uni-

modal fitness landscape. However, on a rugged fitness

landscape the learning process results in faster evolution

because the reduced fitness differences among genotypes

help the population to cross fitness valleys, thereby

allowing evolution towards the global fitness peak. At the

same time, a population of individuals that cannot learn

may never be able to cross the fitness valley and find the

global optimum. These results prompt Borenstein et al. to

conclude that the complexity of the fitness landscape, i.e.,

the presence of multiple fitness peaks and fitness valleys,

determines whether the effect of learning on evolution is

accelerating or decelerating.

A separate class of models using the quantitative

genetics framework to measure the rate of phenotypic

evolution assumes a unimodal fitness landscape (i.e. con-

taining a single fitness peak), given by a Gaussian function

(Anderson 1995; Ancel 2000—quantitative genetics

model). These studies introduce an adaptive effect of

learning by an increase in the selection variance. Thus the

learning process modeled is equivalent to (a small) adap-

tive shift of the genetically determined trait value of all

sub-optimal individuals. This combination of the fitness

function and the way of modeling learning results in

decreased phenotypic variance and decreased fitness

differences among different phenotypes. Moreover, this

evolutionary scenario approximates the second stage of the

Baldwin effect: the stabilizing selection acting on the

population in the vicinity of the fitness peak. Characteris-

tically, these two studies show that learning extends the

time required for convergence of the population on the

optimal genotype as compared to the evolution in a pop-

ulation with individuals that cannot learn, thus supporting a

decelerating effect of learning on evolution.

The same conclusion is drawn by Papaj (1994) in a

model that measures the time required for the population to

evolve a genetically determined, optimal phenotype (i.e. a

genotype that has a highest possible fitness without any

learning). This study also assumes a unimodal fitness

landscape that is provided by a negative quadratic function

(shape of inverted parabola) and, as a consequence of

adaptive learning, different phenotypes eventually con-

verge on the single fitness peak. Thus, in this study learning

also effectively decreases the phenotypic variance and fit-

ness differences among the phenotypes.

Another class of studies involves modeling adaptive

plasticity as a norm of reactions. Ancel (1999, 2000), in her

norm of reaction model, explicitly addresses the rates of

evolution in the two stages of the Baldwin effect, while

varying the degree of plasticity reflected in the width of the

norm of reaction. The mid-point of the norm of reactions

represents the genetically determined trait value (i.e., the

innate trait) while the phenotype with highest fitness within

this range (based on the fitness function) represents the

phenotype acquired through learning. Thus, all phenotypes

are able to express the optimal phenotype if the norms of

reaction of these phenotypes are wide enough to contain

the fitness peak (as might be the case when the population

is already in the vicinity of this fitness peak), even though

there is variation in the innate value in such a population.

On the other hand, setting the initial width of norms of

reactions such that they do not contain the optimum,

models a scenario where a population evolves towards a

distant fitness peak. Ancel (2000) examines how this

plasticity affects the rate of evolution in two types of

unimodal fitness landscapes: (1) a spiked landscape where

a single genotype scores the highest fitness and all the other

genotypes score the same flat fitness (also referred to as the

‘needle-in-the-haystack’ landscape, as in Hinton and

Nowlan (1987), and (2) a Gaussian fitness function.

The novel aspect of Ancel’s model is that the width of

the norm of reaction is allowed to evolve such that the

upper and lower bounds of the norm of reactions may shift

from one generation the next. For the two settings of the

fitness function, Ancel shows that costly adaptive plasticity

generally accelerates the first stage of the Baldwin effect,

i.e., it shortens the time required for the first optimal

genotype to emerge in the population (Ancel 2000). This
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effect is associated with the initial selection for the wider

norms of reactions (Ancel 1999). In contrast, plasticity

decelerates the second stage of the Baldwin effect, i.e., it

extends the time between the emergence of the optimal

genotype and population convergence on this genotype

because the wide norm of reaction effectively allow all

individuals to learn the optimal phenotype (Ancel 2000).

These results of Ancel provide further evidence that

adaptive learning accelerates evolution in the initial stages

of the Baldwin effect, i.e. evolution towards a distant fit-

ness peak. However, the decelerating effect of learning

prevails in the second and final stage of the Baldwin effect.

The results of Ancel obtained for the two stages of the

Baldwin effect are corroborated by the study of Lande

(2009) where plasticity is also modeled as a reaction norm

evolving under the Gaussian fitness landscape. These two

studies are a notable exception in the theory of the Baldwin

effect by allowing phenotypic plasticity to evolve jointly

with the innate trait (see also studies in the framework of

artificial life/intelligence, e.g., Watson and Wiles 2002;

Suzuki and Arita 2004).

Thus, the theoretical studies indicate that the effect of

learning on evolution is not constant as the population

evolves on a fitness landscape towards a distant fitness

peak. Therefore it is reasonable to conduct a comparative

analysis of the theoretical studies of the Baldwin effect on

the studies that measure evolution within the same evolu-

tionary stage (and at the same time scale). In fact, any long-

term measure of evolutionary rate (such as, e.g., the time

until a first genetically determined optimal phenotype

appears in a population) is a net effect of the evolutionary

responses occurring at each generation during evolution

towards an evolutionary end-point. It is informative,

therefore, to analyze how learning may influence this short-

term rate of evolution occurring from one generation to the

next. This is the approach used in the recent model by

Paenke et al. (2007) who study the rate of evolution as

determined by the degree of fitness differences due to

phenotypic variation. In this way, they directly demonstrate

the effect of learning on relative fitness and the rate of

evolution. In the next section of this article we analyze the

approach and results of this model.

Adaptive Learning and the Response to Selection

Paenke et al. (2007) explore how a population0s response to

directional selection changes with improved adaptive

learning (or some forms of developmental noise). To this

end, the authors analyze how the relationship between

phenotype and fitness changes as adaptive learning is

improved. In particular, the authors compare the rate of

evolution of the innate trait at two different and fixed levels

of plasticity and analytically demonstrate that improved

adaptive plasticity strengthens the response to selection

(and thus accelerates evolution) when it magnifies fitness

differences among phenotypes: this is reflected in the

steeper relationship between phenotype and fitness. Con-

versely, improved adaptive plasticity weakens the response

to selection (and thus decelerates evolution) when it

reduces fitness differences among phenotypes: this is

reflected in the lower slope of the function relating phe-

notype and fitness.

By assuming a non-evolving learning ability, the authors

entirely focus on the evolution of the innate trait (although

in this model the evolution of adaptive learning may also

be incorporated, thus introducing a second axis for the

evolution of the phenotype). This allows them to derive a

correspondence between their general result as presented

above and specific properties of the fitness function

(evaluated only in the direction of innate trait) reflected in

the shape of the fitness function. In particular, the authors

predict that learning magnifies fitness differences among

phenotypes when the fitness landscape (evaluated in the

direction of the innate trait) is convex. Conversely, adap-

tive learning reduced fitness differences among phenotypes

when this fitness landscape is concave. The authors extend

this analysis by assuming various specific functions for the

innate phenotype and non-evolving adaptive plasticity,

such as used in Ancel (2000) or Anderson (1995) to

demonstrate that there exists a fitness landscape on which

adaptive learning, as it is modeled, accelerates evolution.

The predictions of Paenke et al. (2007) are derived

under the assumptions that the selection is directional (i.e.

fitness consistently increases with the value of the innate

trait) and non-evolving learning equally modifies different

phenotypes (the authors point out that a form of learning

that is dependent on the distance of the innate phenotype

from the fitness peak may lead to novel predictions). Other

assumptions of this framework include the assumption that

there are no non-additive or dominance effects shaping the

expression of the phenotype, or that there is no genetic

covariance between the innate trait and adaptive plasticity.

The approach in the study of Paenke et al. (2007) pro-

vides an elegant demonstration of how adaptive learning

influences the short-term rate of evolution, i.e., the

response to selection measured from one generation to the

next when learning is kept fixed. However, allowing the

evolution of adaptive learning ability may change the long-

term dynamics if the curvature of the fitness landscape is

not overall uniform (which is assumed in the model of

Paenke et al. 2007).

In summary, the results of Paenke et al. (2007) allow for

the conclusion that the effect of adaptive learning on

evolution depends on the shape of the fitness function as

well as the model of adaptive learning. In particular,
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adaptive change due to learning that is large relative to the

distance of the innate trait from the fitness peak (such that

optimal (or nearly optimal) phenotype can always be

learned), is more likely to decelerate evolution of the innate

trait irrespective of the curvature of the fitness landscape.

This theoretical possibility may be unlikely, however,

given that in a population adapted to an old environment

(that is distant from the new fitness peak as argued in the

Baldwin effect), low levels of plasticity are expected

(Lande 2009), particularly if plasticity has a fitness cost.

There may be selection to maintain high levels of plasticity

in a population if there are frequent changes of environ-

ment (Stephens 1991). However, in such a theoretical sit-

uation the environment (and thus a fitness landscape) is

dynamical, while the theoretical studies of the Baldwin

effect generally assume a constant environment (and thus a

constant fitness landscape).

Discussion

The effect of adaptive learning on evolution of genetically

determined traits is the subject of a long-standing debate

and the theoretical treatments of this question provide

contrasting results. Here, we discussed how these con-

trasting results can be partly explained from the different

ways in which the theoretical studies measure the evolu-

tionary rate. The traditional end-point of the Baldwin effect

is the complete convergence of a population on an initially

distant fitness peak associated with reduction in the level of

adaptive learning. Adaptive learning is considered to

accelerate evolution if it helps to reach this end-point

faster. This measure however may fail to adequately

describe the effect of learning on evolution if this effect is

not constant but changes as the population evolves on a

fitness landscape (particularly, a rugged fitness landscape).

A measure of short-term evolutionary change as occurring

from one generation to the next may be better suited to

detect the variable effect of learning on evolution. The

recent study by Paenke et al. (2007) provides such a

framework where such a measure is employed to demon-

strate how learning influences fitness differences among

different innate phenotypes, thus either accelerating or

decelerating the evolution of the innate phenotype. By

relating the effect of learning on fitness differences among

phenotypes to the shape of the fitness function (that

determines these fitness differences) the authors demon-

strate how theoretical predictions of the Baldwin effect

depend on the choice of fitness functions. However, our

analysis of this and other theoretical studies of the Baldwin

effect indicates that the model of adaptive learning (i.e.

how learning is modeled to change the innate phenotype)

also matters to the theoretical predictions.

By definition adaptive learning modifies the phenotype

so as to increase its fitness. However, adaptive learning

may be characterized with respect to how much it modifies

the innate phenotype given the distance of this innate

phenotype from a fitness peak. In other words, the mag-

nitude of the phenotypic modification due to learning can

be modeled as either a small or a large step in phenotype

space, depending on the size of the exploratory range

attributed to the individuals. In particular, simulation

models (Hinton and Nowlan 1987; Mayley 1997; Boren-

stein et al. 2006) employ learning which allows the geno-

type to sample large areas of a fitness landscape in search

of a local fitness peak. In this process, phenotypes are

allowed to experience many learning trials during their

lifetime (as in Hinton and Nowlan 1987; Fontanari and

Meir 1990) or adaptive search is repeated until pheno-

typic fitness can no longer be improved (Mayley 1997;

Borenstein et al. 2006). Therefore, the optimal phenotype

can be learned by all phenotypes. In contrast, in another

class of models (Anderson 1995; Ancel 2000—quantitative

genetic model) adaptive learning effectively involves a

relatively small (with respect to the distance of the innate

trait from the fitness peak) adaptive shift of the innate trait

in the direction of increased fitness. Therefore the optimal

phenotype (defined by the fitness peak) cannot be learned

by all phenotypes, at least not in the first phase of the

Baldwin effect (i.e. when the fitness peak is distant to the

position of the population on the fitness landscape). This

distinction between the two ways of approximating adap-

tive learning, based on the potential of learning to modify

the phenotype, is relevant because each of these two modes

of learning has distinct consequences for the relative fitness

of individual phenotypes. We argue that adopting one or

the other mode of learning may be particularly relevant in

the case of evolution on a rugged fitness landscape.

Adaptive learning that has a large potential to modify the

phenotype is exemplified by unconstrained adaptive search

of the fittest options on the fitness landscape. We argue that

the effect of such learning on evolution is less likely to

depend on the local curvature of the fitness slope because it

allows genotypes to sample distant areas of the fitness

landscape. On the other hand, adaptive learning modeled as

a small shift of the phenotype is much less likely to allow

the population to cross fitness valleys and find a global

fitness peak.

One possible end-point of the Baldwin effect is the

emergence of a completely genetically determined pheno-

type, implying the loss of plasticity once at the fitness peak.

Such an extreme outcome however is quite unlikely in the

real world, because the environment varies and thus the

value for the optimal phenotype fluctuates in time. The

ability to adjust behavior by learning may then confer

sufficient fitness benefits. It remains to be explored how
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adaptive learning influences evolution of the genetic basis

for phenotypic traits on a fitness landscape that is dynamic

due to environmental changes (see e.g. Anderson 1995) or

a fitness landscape where the optimal phenotype depends

on the frequency of other phenotypes in the population.

Theory shows that the cost of learning plays a crucial

role in the evolutionary dynamics of traits modified by

learning. Experimental evidence for costs of learning are

only beginning to emerge (Mery and Kawecki 2003; or the

cost of phenotypic plasticity see Auld et al. 2010), yet they

are essential to motivate biologically realistic cost func-

tions in the theoretical models of joint evolution of learning

and innate behavior. Any cost of learning determines the

evolution of learning and, therefore, it will play a partic-

ularly relevant role in any model of joint evolution of

adaptive learning and innate behavior. Another common

assumption awaiting empirical scrutiny is that all geno-

types are equally capable of learning. This, however, need

not be the case and theoretical predictions may change

entirely if the level of learning is variable for different

genotypes (for example, if there is a correlation between

the genetically determined trait value and the level of

learning as discussed in Mery and Kawecki 2004).

Current theory also assumes that learning is a fixed trait,

and hence tends to concentrate on tracking evolution of the

genetic basis alone. This assumption is challenged by the

empirical evidence showing that adaptive learning can be

successfully subjected to artificial selection (e.g. Mery and

Kawecki 2002; Dukas 2004). It remains to be shown how

the current theoretical predictions change if adaptive

learning is allowed to evolve jointly with the genetically

determined trait. Moreover, although not considered in the

theory on the Baldwin effect, the mechanism of learning

may not always be adaptive (as in the case of non-asso-

ciative mechanisms of learning) and may give rise to

entirely different evolutionary dynamics.

To date, empirical evidence for a role of learning in

evolution is virtually absent (but see Mery and Kawecki

2004). An empirical approach requires a model system

where (1) genetic variation for both a behavioral trait and

the ability to learn are demonstrated, and (2) where the

level of learning (Cahill et al. 2001) and the innate value of

the behavioral trait (Samuels 2004) can both be quantified

as separate traits. Evidence is growing that the above

requirements are often satisfied in ecological systems

involving, e.g., parasitoids and their hosts (Wang et al.

2003; Hoetjes et al. 2011; Takemoto et al. 2011) or pred-

atory mites and their prey species (Egas and Sabelis 2001;

Nomikou et al. 2003; Sznajder et al. 2011) or other species

(Dukas and Bernays 2000; Behmer et al.; 2005). Behav-

ioral responses in such ecological systems provide a model

to study the role of learning in evolution as well as in

ecological interactions.

Studies of brood-parasitic indigobirds (Payne et al.

2000) provide an ecological scenario where the first phase

of the Baldwin effect may apply. In this species male

chicks learn to perform the song of their hosts whereas

female chicks learn to prefer the males exhibiting the song

of their host. When a female indigobird lays her eggs in the

nest of a novel host then its offspring will learn and exhibit

host preference different to the preference learned and

exhibited by the parent (Payne et al. 2000). Thus, new

phenotypic variants emerge as a result of learning in the

rearing environment and without a change in their genetic

background. The prediction from theory on the Baldwin

effect is that if genetic variation in the direction of the

learned traits exists (or it subsequently occurs through

mutation) then there is potential for learning to guide the

evolution of the genetic basis for these traits (provided that

they are indeed positively associated with fitness). Fur-

thermore, given the reproductive isolation from the

ancestor (due to different mating preferences mediated by

song preferences) this novel variant may become a new

species through the process of selection acting on new

mutations (ten Cate 2000).

At the core of the Baldwin effect is the notion that

learning changes the rate of evolution by influencing the

way selection acts on the phenotypic variation and thereby

the underlying genetic variation. While adaptive learning

provides one source of phenotypic variation, applicable to

behavioral traits in particular, there is a wealth of studies

that report on other sources of new phenotypic variation

that becomes available to natural selection in novel envi-

ronments. This includes phenotypic plasticity in physio-

logical processes involved in reproduction that provides the

basis for colonization and evolution in novel environments;

for example, timing and length of breeding season or

hormonally regulated modifications thereof in dark-eyed

juncos (Yeh and Price 2004) and house finches (Badyaev

2009). Another example includes phenotypic evolution

driven by changes in diet and foraging habits in birds, as

discussed by Price et al. (2003).

Another critical notion underlying the Baldwin effect is

that new genetic variation emerges in novel environments,

which then becomes exposed to natural selection. Tradi-

tionally genetic mutations are assumed to be the source of

novel genetic variants. However, recent advances point to

new processes. For example, environmental factors such as

stress may induce the expression of hidden genetic varia-

tion (see e.g. Badyaev 2005, 2009, McGuigan et al. 2011).

Other relevant examples come from epigenetic processes

that change the expression of the genetic material thereby

inducing the expression of hidden genetic variation

(Bossdorf et al. 2008, Youngson and Whitelaw 2008) or

that are responsible for some forms of phenotypic plasticity

and parental effects (Bossdorf et al. 2008, Badyaev and
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Uller 2009). This includes transgenerational transmission

of phenotypes induced by e.g. predators (Agrawal et al.

1999) or stress (Badyaev 2005). A framework for the role

of genetic and non-genetic inheritance in evolution is

provided by Day and Bonduriansky (2011).

So far, we did not consider feedback from the phenotype

into its environment. That such feedback exists is postu-

lated within the perspective of niche construction (Day

et al. 2003; Laland and Sterelny 2006). Learning may play

a role in the choice of environment and in the way the

phenotype modifies its local environment (Laland and

Sterelny 2006). If so, there is a feedback from the pheno-

type that would introduce an ever-changing fitness func-

tion, unlike that assumed under the Baldwin effect. Thus,

there is a need to extend current theory on the Baldwin

effect to include niche construction and evolution in non-

constant environments in general.

Box: Explanation of Important Terms

Phenotypic Plasticity

The ability of one genotype to produce more than one

phenotype in response to different biotic and/or abiotic

environments (Scheiner 1993). Under a regime that imposes

(long-lasting) selection on a trait phenotypic plasticity

provides a means for a genotype to express the phenotypic

variant of a trait that is favored by this selective regime.

Thus plasticity is adaptive if in an altered environment it

allows the genotype to express a phenotype that is fitter in

this environment than the phenotype the genotype would

have had if it were not adaptively plastic (Rice 2004;

Garland and Kelly 2006). If adaptive, phenotypic plasticity

may play an important role in the evolution of traits it

modifies (Via et al. 1995; de Jong 2005; Crispo 2008).

Learning

In terms of its behavioral effects, learning is defined as the

ability of an individual to modify its behavior due to

experience that the individual remembers (Kawecki 2010).

In terms of processes on the neural level, it is the acqui-

sition of neural representation of new information (Dukas

2004). In terms of the effect of learning on Darwinian fit-

ness, which is the focus of this review, learning is adaptive

when it improves individual fitness. By way of illustration,

Dukas and Bernays (2000) demonstrated the adaptive value

of learning by showing in an experiment that grasshoppers

that could employ associative learning for diet choice

experienced higher growth rates than grasshoppers that

were deprived of cues to learn associatively.

Innate Behavior

In this review this term refers to behavior that is genetically

determined (i.e. there are genes that determine what this

behavior is). The terms genetically determined and innate

are interchangeably used in studies of the Baldwin effect to

describe the phenotype that an individual expresses before

it has an opportunity to learn, and to differentiate it from

the phenotype that the individual expresses after it had

learned. Thus an overall net effect of learning on pheno-

type is contrasted with the behavior as determined by genes

alone. It is important to stress that in studies of the Baldwin

effect the behavior under study is considered to have a

genetically determined (innate) component as well as a

learned component (see also Samuels 2004 for a discussion

of the term innate in the context of other biological and

cognitive questions). In summary, theoretical studies of the

Baldwin effect define two components—the genetically

determined one and the learned one, and track the evolu-

tion of the genetically determined component.

Fitness Function

The relationship between the value of a phenotypic trait of

an individual and the fitness of that individual. The fitness

function provides a measure of reproductive success of

each specific phenotypic variant of the trait. Fitness can be

measured as the number of offspring or the growth rate of a

phenotypic variant relative to growth rate of other variants

(Metz et al. 1992; Rice 2004). The values of the fitness

function need not remain constant in time; the fitness of

individuals with a given phenotype may depend on their

frequency in the population (frequency-dependent selec-

tion). Fitness of particular phenotypes may also change as

the environment changes, be it abiotic environment (tem-

perature or humidity) or biotic environment (the pheno-

types of resident population in the case of a rare mutant

that invades this population).

Fitness Landscape

Fitness landscape (a metaphor proposed by Wright 1932) is

a geometric representation of fitness function used to

visualize evolution. In the simple case where phenotype

consists of a single trait, the environment is constant in

time, and the values of fitness are not frequency-dependent,

then the fitness landscape can be evaluated along a single

axis that relates all possible values of this trait to fitness.

In a more realistic case all these simplifying conditions

may not be met, in particular phenotype consists of many

traits; each of these traits is related to fitness by its own

fitness function. The relationship between such a multi-

variate phenotype and its fitness can be visualized as a
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multi-dimensional fitness landscape (where the number of

dimensions equals the number of traits under consider-

ation). The surface of a fitness landscape is said to be

rugged if it has many local fitness peaks of different

heights; fitness peaks represent the optimal trait values (or

the optimal combinations of trait values) i.e. the trait of

higher fitness. If a single trait value has the highest fitness

on a univariate fitness landscape (or a single combination

of traits on a multivariate fitness landscape) then such a

fitness landscape is termed unimodal or single-peak land-

scape. Finally, fitness function may also be expressed as a

relationship between genotype and its fitness, where the

genotype space is given by the set of all possible genotypes

(for a review of the development of the notion of fitness

landscape see Gavrilets 2004).

Fitness Landscape in the Baldwin Effect

In the context of the Baldwin effect, evolution is thought to

proceed on a two-dimensional fitness landscape that is

determined by the relationship between fitness and two

traits: the innate trait and the level of adaptive learning.

A degree of adaptive learning changes the fitness function

for the innate trait as compared to the situation where there

is no learning at all, and therefore learning may influence

the rate of evolution of the innate trait. However, to date a

common approach in the studies of the Baldwin effect is to

keep the level of learning fixed and to track the rate of

evolution of the innate trait only (see this review). This

approach of measuring the rate of evolution of the innate

trait at the presence of a non-evolving learning is at odds

with the growing evidence that the ability to learn itself has

a genetic basis (McGuire and Hirsch 1977; Dukas 2004)

and high and low levels of learning can be selected for

(Mery and Kawecki 2002). The joint evolution of learning

and the innate behaviour is also at the core of the original

argument proposed by Baldwin.
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