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Abstract

We report for the first time the genetic and biological characterization of 10 HIV-1 primary isolates representing
CRF28_BF and CRF29_BF together with additional unique BF recombinant forms (URFs) obtained by PBMC
cocultivation. Recombination is an important factor promoting the increase in the genetic diversity of HIV-1.
Notably, more than 20% of HIV-1 sequences worldwide were recombinants. Several recombinant viruses were
reported in Brazil, and six circulating recombinant forms (CRFs) have been identified (CRF28_BF, CRF29_BF,
CRF31_BC, CRF39_BF, CRF40_BF, and CRF46_BF). CRF28_BF and CRF29_BF were found to infect almost 30%
of the patients in São Paulo State. The near full-length genomes of these 10 primary isolates were amplified by
nested PCR in three overlapping segments, purified, and sequenced. Three samples were related to CRF28_BF,
three to CRF29_BF, and four were unique recombinant forms (URFs), as determined by their breakpoint profile
determined with the jpHMM program. Additionally, the coreceptor usage of these isolates was investigated
in vitro using GHOST assays, which revealed three dual-tropic (X4/R5) viruses, four lymphotropic (X4) viruses,
and three macrophage-tropic (R5) viruses with different V3-loop motifs, which challenges the notion that
GWGR-carrying viruses are macrophage-tropic only. In sum, we report a much-anticipated well-characterized
panel of viruses representing CRF28_BF, CRF29_BF, and URFs from São Paulo State, Brazil.

Introduction

The intense investigation of HIV-1 genetic diversity
has led to the identification and description of different

subtypes worldwide.1–5 It is believed that much of this vari-
ability results from the lack of proofreading activity of the
viral reverse transcriptase,6,7 along with a high rate of viral
replication.8,9 Additionally, recombination during reverse
transcription is a factor promoting HIV diversity and adap-
tive change,10,11 by allowing advantageous mutations arising
on different genomes to undergo linkage in the same progeny
recombinant genome more frequently than what would be
expected under random mutation alone.12–16 Moreover, in-
tersubtype recombinants have been reported in increasing
numbers in regions of the world where multiple subtypes do
cocirculate to the extent that at least 20% of HIV-1 sequences
worldwide were found to be recombinants.17–19 To date, 49
circulating recombinant forms (CRFs) have been identified
(www.hiv.lanl.gov), and some of these were successful in
causing regional epidemics, e.g., CRF01_AE in Asia20 and

CRF02_AG in Africa.21,22 Likewise, several distinct BF re-
combinant viruses have been described in South America.23

Notably, full genome sequencing of these viruses revealed at
least nine recombinant lineages that fulfilled the criteria of
being recognized as CRFs (CRF12_BF, CRF17_BF, CRF28_BF,
CRF29_BF, CRF38_BF, CRF39_BF, CRF40_BF, CRF44_BF,
and CRF46_BF) (www.hiv.lanl.gov).

Such great diversity of successful CRFs BF (i.e., recombi-
nants between subtypes B and F) could entail an adaptive
advantage for these recombinants, since we can assume that
the emerging recombinant must first overgrow its parental
strain within the coinfected individual to be efficiently
transmitted. Actually, two independent lines of evidence
suggest that BF recombinants may exhibit different biological
behaviors. First, a high rate of population growth was ob-
served for both CRF12_BF and CRF38_BF in Argentina
and Uruguay.24,25 Second, it was demonstrated that the BF
recombinant LTR/Tat complex has higher transcriptional
activity compared to the subtype B complex26 and that BF
Vpu-harboring variants have increased fitness compared to
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subtype B in vitro.27 Nevertheless, it remains to be investi-
gated to what extent these results could be generalized to
other BF recombinants spreading in South America.

Therefore, it is paramount to try to obtain primary isolates
for the most prevalent BF mosaics, such as CRF28_BF and
CRF29_BF, which were already found to infect almost 30% of
HIV-1 carriers in some places in São Paulo State.28,29 Herein,
we report the genetic and biological characterization of 10
HIV-1 primary isolates representing CRF28_BF, CRF29_BF,
and unique BF recombinant forms (URFs) in order to con-
tribute to the construction of a panel of well-characterized BF
recombinant viruses.

Material and Methods

Ethics statements, clinical samples, and virus isolation

The study was submitted and approved by the Ethics
Committee on Human Research of the University of São Paulo
and informed consent terms were signed by all patients. Ten
patients harboring BF recombinant viruses were selected from
the Viral Genetic Diversity Network (VGDN) program,30

based on their available clinical and epidemiological infor-
mation. HIV-1 isolation was performed by coculture of freshly
harvested peripheral blood mononuclear cells (PBMCs) and
uninfected PHA-stimulated PBMCs according to the ACTG
Virology Manual for HIV Laboratories guidelines.31 Viral
growth was monitored by p24 antigen production using the
Vironostika HIV-1 antigen Microelisa kit (bioMérieux, Neth-
erlands). Positive cultures were further expanded in PHA-
stimulated PBMCs to produce viral stocks.

DNA extraction, polymerase chain reaction (PCR),
and near full-length genome sequencing

DNA was extracted from infected PBMCs using the
QIAamp DNA Blood kit (Qiagen, Germany), according to the
manufacturer’s instructions, and stored at - 80�C until use.
Three overlapping regions of the viral genome were amplified
using nested PCR.32 PCR products were purified with the
QIAquick PCR Purification Kit (Qiagen, Germany). Sequen-
cing reactions were performed using BigDyeTerminator ver-
sion 3.0 cycle sequencing (ABI Prism; PE Applied Biosystems,
Foster City, CA), and the products were analyzed on ABI 3100
automated DNA sequencers (PE Applied Biosystem). Se-
quencing primers are available upon request. Sequence data
were edited and assembled with CodonCode Aligner soft-
ware (Gene Codes Corporation).

Recombination analysis

The available genome sequences were analyzed with the
jumping profile hidden Markov model (jpHMM) pro-
gram,33,34 which uses detailed information on the polymor-
phism of the putative parental populations rather than using
individual parental strains and provides detailed information
on the reliability of the predicted recombination break-
points.35

Genotypic and phenotypic analysis of coreceptor usage

Despite the availability of different methods to predict
coreceptor usage, the geno2pheno algorithm was found to be

the more sensitive to detect CXCR4 variants.36 The V3 se-
quences were analyzed with the geno2pheno[coreceptor] tro-
pism prediction algorithm using the clonal setting and a 20%
false-positive rate (FPR) as the cutoff. This FPR value was
chosen since it minimizes the number of falsely predicted
R5-tropic viruses.36 The phenotypic evaluation of coreceptor
usage was done on GHOST(3) indicator cell lines expressing
CD4 and either CCR5 or CXCR4 (NIH AIDS Reagent Pro-
gram).37 The GHOST cells were grown in DMEM (Invitrogen)
supplemented with 10% FCS, penicillin (50 U/ml), strepto-
mycin (50 U/ml), and l-glutamine (2 mM), and selected with
G418 (500 lg/ml), hygromycin (100 lg/ml), and puromycin
(1 lg/ml). Infection was carried out as previously described.37

Briefly, cells were seeded in 24-well plates 1 day before in-
fection. The following day, the medium was replaced with
200 ll of fresh medium containing polybrene (2 lg/ml) and
300 ll of virus stock. Cultures were incubated overnight,
washed with PBS, and further incubated with fresh medium.
Infected cells expressing GFP were detected 2 or 3 days after
infection by fluorescence microscopic observation. CXCR4
usage was confirmed using the antagonist AMD3100,38–40

added to the cells prior to infection at a concentration of 1 lM.
JM-2987 (hydrobromide salt of AMD 3100) was obtained from
the NIH AIDS Research and Reference Reagent Program.

Results

Clinical features and viral isolation

HIV-1 primary isolates were obtained from each sampled
patient, as confirmed by the p24 antigen capture assay.
Clinical information is summarized in Table 1. Most patients
were men (7/10) and the predominant risk behavior for HIV
infection was unprotected heterosexual intercourse. Six iso-
lates were obtained from patients with CD4 count ranging
from 10 to 693 cells/ml and viral load ranging from unde-
tectable to 150,247 copies/ml (Table 1). The dates of the first
HIV-1-positive test ranged from 1985 to 2003 (Table 1).

Genomic characterization and recombination patterns

The near full-length genomes of all primary isolates were
successfully amplified and sequenced. The sequences were
8.8 kb in length on average, with intact open reading frames.
To allow the amplification of all open reading frames of each
provirus, we had to avoid pairs of primers that would amplify
only a single LTR. Therefore, 140 base pairs were not ampli-
fied by our strategy. It is worth mentioning that no other
research group reports this stretch of proviral sequence,
possibly for the same reason. Additionally, to check the pos-
sibility of contamination among samples, the sequenced ge-
nomes were compared using the Blast2Seq tool of NCBI,41

which revealed that no cross-contamination appeared to have
occurred. Three samples were classified as CRF28_BF
(0614SV, 0679SV, and 0744SV) and three as CRF29_BF
(0063SP, 0264RI ,and 0647SV), according to the breakpoints
profile, summarized in Fig. 1 and Supplementary Table S1
(Supplementary Data are available online at www.liebertonline
.com/aid). The estimated breakpoints for these isolates were
slightly different from those originally described for CRF28_
BF (B: 832–1322, F1: 1323–2571, B: 2572–9432) and CRF29_BF
(B: 823–1322, F1: 1323–2571, B: 2572–3682, F1: 3683–5462, B:
5463–9432).42 The remaining four isolates (0008SP, 0341RI,
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Table 1. Clinical Data of Sampled Patients

Patient ID Sex Risk behavior Year of diagnosisa CD4 (cells/ml) Viral load (copies/ml) Antiretroviral treatment

0008SP Female HT 1996 595 450 NRTI + NRTI
0063SP Male HT, IDU, BT 1985 10 45,600 NRTI + NRTI + PI
0264RI Male MSM, IDU 1995 632 22,000 None
0341RI Female HT, BT 1995 554 54,500 NRTI + NRTI
0614SV Male HT 1998 499 < 50 NRTI + NRTI + PI
0632SV Male HT 2003 169 150,347 NRTI + NRTI + PI
0647SV Male HT 1995 442 12,284 None
0679SV Male HT 1995 202 5,665 NRTI + NRTI + PI
0736SV Male MSM, IDU 1992 693 890 NRTI + NRTI
0744SV Female HT, BT 2003 na 22,395 NRTI + NRTI

aPatient reported date of first positive HIV test.
IDU, injecting drug user; MSM, men who have sex with men; HT, heterosexual; BT, blood transfusion; na, not available; NRTI, nucleoside

reverse transcriptase inhibitor; PI, protease inhibitor.

FIG. 1. Near full-length genome
map of the 10 BF recombinants pri-
mary isolates. Breakpoints and sub-
type composition of isolates revealed
mosaic structures related to CRF28_BF
(3), CRF29_BF (3), and URFs (4).
Recombination breakpoints were de-
termined with the jpHMM algorithm
available online at the GOBICS server
(http://jphmm.gobics.de/jphmm.html).
Fragments related to subtype B are
shown in dark gray and to subtype F1
in light gray.
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0632SV, and 0736SV) were classified as URFs (Fig. 1). Inter-
estingly, two of them (0008 and 0736) shared some break-
points with CRF28_BF or CRF29_BF. The recombination
pattern of isolate 0008SP was quite complex, sharing break-
points with CRF29_BF at position 3748 – 45. The isolate
0736SV also had a breakpoint located at position 1300 – 78,
resembling the profile of CRF28_BF, but had a second one at
2317 – 34, which is 200 bp away from the predicted,23 which
indicates that this recombinant virus is possibly an example of
a ‘‘second generation’’ recombinant (i.e., recombinant prog-
eny involving at least one distinct parental CRFs). It was
noteworthy that the isolate 0632SV had the same mosaic
structure and breakpoints (6583 – 20–7659 – 30, Supplemen-
tary Fig. S1) as a previously published sequence (DQ358806/
02BR005) sampled in São Paulo.43

V3 loop characteristics and coreceptor usage

As shown in Fig. 1, the 0632SV had a subtype F1 V3 se-
quence, whereas the remaining sequences had a subtype B V3
loop. The predicted amino acid alignment showed a great
diversity of tetrameric amino acid motifs at the tip of the V3
loop (Table 2). Overall, we found seven different motifs, with
GWGR (3/10) and GPGR (2/10) being the most common. The
GWGR motif was present in two out of three isolates of
CRF28_BF and in one isolate of CRF29_BF. This contrasts with
previous findings showing that the GWGR motif was not
commonly present in CRF_BF isolates.44 Actually, this low
frequency of GWGR variants was observed even when we
analyzed all BF genomes available from the Los Alamos HIV
database in which only 4 out of 137 have a GWG motif (data
not shown). Furthermore, the length of the V3 loop was var-
iable among our isolates (ranging from 34 to 37 aa). In par-
ticular, isolate 0008SP had a deletion at position 11, which is a
wel- known determinant of cell tropism.45 To exclude the
possibility of defective provirus amplification or sequenc-
ing artifact, both PCR and sequencing steps were repeated,
confirming this was indeed a true deletion (Supplementary
Fig. S2).

We then investigated the coreceptor usage of these isolates,
using both genotyping and phenotyping methods. Initially,
we did a preliminary in silico analysis using the Geno2pheno
algorithm. As shown in Table 2, seven isolates were predicted
to use CXCR4 as their entry coreceptor, including the afore-
mentioned isolate 0008SP, while the remaining three were
predicted to use CCR5 exclusively. We then checked the iso-

lates tropism in vitro using the GHOST(3) cell assay (Table 2).
All three isolates predicted as CCR5-tropic replicated in
GHOST(3)-CCR5 cells but did not replicate in cells expressing
CXCR4, conforming that they were exclusively macrophage-
tropic (i.e., used CCR5 as entry coreceptor). The remaining
seven isolates that were predicted by Gene2pheno to use
CXCR4 replicated in GHOST(3)–CXCR4 cells. Nevertheless,
three of them (0341SV, 0614SV, and 0647SV) also replicated in
GHOST(3)–CCR5 cells and were defined as dual-tropic viru-
ses (Table 2). Since GHOST(3) cell lines express low levels of
endogenous CXCR4, these results were further confirmed by
blocking the CXCR4 coreceptor with the antagonist
AMD3100. As expected, only those viruses previously clas-
sified as CCR5-tropic or dual-tropic were able to infect
GHOST–CCR5. Despite the limited number of isolates de-
scribed here, there was no relationship between clinical status
and the presence of CXCR4-tropic variants.

Discussion

We performed for the first time the isolation and charac-
terization of CRF28_BF and CRF29_BF viruses, which are
highly prevalent among our HIV-1-infected population. It is
noteworthy that clinical data showed that one of the sampled
patients, harboring a CRF29_BF (0063SP) virus, was first
diagnosed in 1985. This suggests that this CRF has been
cryptically circulating at least 14 years before its description,
in patients sampled between 1999 and 2002,42 even before
the first description of an HIV-1 recombinant in Brazil in
1992.46 Alternatively, this patient could have been infected
with another subtype at the time of the first HIV-1-positive
diagnosis and later reinfected by the recombinant form iso-
lated here. However, sequencing several distinct PCR
products obtained after limiting dilution (which effect
mimics cloning) did not reveal any evidence of dual infection
in PBMCs from this patient (data not shown). Also, the ob-
served date of 1985 agrees with an independent estimate for
the origin of Brazilian BF recombinants, ranging from 1984 to
1991.47 Taken together, these results provide an independent
estimate for a lower boundary for the origin of CRF 29 at
around 1985.

We have also identified two URFs sharing breakpoints with
CRF28/29, which may constitute evidence for a so-called
second generation of BF recombinants. Alternatively, these
URFs may have convergent breakpoints as a consequence of
shared recombination hotspots. Nevertheless, the existence of

Table 2. Genotypic and Phenotypic Characterization of Coreceptor Usage

of Primary Isolates of HIV-1 BF Recombinants

Sample Acession number Genome subtype env subtype V3 tetramer Geno2pheno GHOST assay AMD sensitivity

0008SP JF804805 URF B GPGR X4 X4 Yes
0063SP JF804806 CRF29 B GSGR X4 X4 Yes
0264RI JF804807 CRF29 B GRGR X4 X4 Yes
0341RI JF804808 URF B GLGR X4 R5/X4 No
0614SV JF804809 CRF28 B GPGR X4 R5/X4 No
0632SV JF804810 URF F GPGK R5 R5 No
0647SV JF804811 CRF29 B GWGR X4 R5/X4 No
0679SV JF804812 CRF28 B GWGR R5 R5 No
0736SV JF804813 URF B GVGR X4 X4 Yes
0744SV JF804814 CRF28 B GWGR R5 R5 No
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these URFs may constitute important evidence that superin-
fection may be a common event, which agrees with reports on
the high frequency of reinfection among HIV carriers.48 In-
deed, the large number of unique BF recombinants found in
South America23 strongly supports the notion that different
genotypes may be circulating and reinfecting hosts. Together
these findings stress a pivotal role of cocirculation and su-
perinfection in the emergence of new recombinant forms. This
could be the case of isolate 0632SV, which may be a new
CRF_BF circulating in São Paulo State, since it shares all the
recombination breakpoints with a previously published se-
quence from a nearby location.49

Most previous in silico analyses characterizing HIV re-
combinants have been done with bootscanning methods.
Even though this methodology is efficient in recombination
detection, it is largely dependent on the choice of parental
strains, which affect the accuracy of the breakpoint prediction.
In our case, the use of jpHMM provided a better resolution of
breakpoints, which is crucial for the proper identification of
CRFs (Supplementary Table S1). Most likely, this was a con-
sequence of an improved accuracy in breakpoint prediction
available in more recent versions of the jpHMM algorithm
and the increasing availability of near full-length genome
sequences used as references.35 Recently, an extensive re-
assessment of public database HIV sequences using jpHMM
also described such discordant breakpoints, and reassigned
two reference sequences, CRF28_BF (DQ085874) and
CRF29_BF (AY771590),23 as URFs.

The V3 loop in the gp120 protein is considered the major
viral determinant for cellular tropism45 and also a preferential
target of humoral50 and cellular51 responses. Accordingly, we
observed among our isolates considerable variability at the
tetrapeptide motif at the V3 loop. Furthermore, we did not
find any relationship between tetrapeptide motif and cor-
eceptor usage, in line with a previous work that also described
GWGR isolates as being capable of using CXCR4 as an entry
coreceptor.52 We would argue that our finding was relevant,
since it provided empirical evidence against the belief that
variants carrying the GWGR tetramer would exclusively use
the CCR5 coreceptor.53 Crucially, these findings provide
further biological evidence that this motif (GWGR) alone does
not determine the coreceptor usage.54 Moreover, CXCR4-
tropic viruses were more common than CCR5-tropic viruses
(7 and 3, respectively), regardless of the recombination profile
and patient clinical status. Furthermore, despite our limited
sample size but because both in vitro and in silico procedures
converged on CXCR4 usage determination, it is worthwhile to
try to determine in greater detail whether the Geno2pheno
algorithm may indeed increase accuracy in coreceptor usage
prediction. This information is of relevance for patient treat-
ment with CCR5 antagonists, which is a drug class recently
approved for extensive use in Brazil.

We report a unique and well-characterized panel of viruses
representing CRF28_BF, CRF29_BF, and URFs BF. We also
present evidence that at least CRF29_BF may have been cir-
culating around 1985, at the beginning of the AIDS epidemic
in Brazil, which dates at least 20 years before its detection in
samples from 2002.42 Moreover, we found a high number of
URFs (4:10) compared with that of CRFs (6:10), which high-
lights the fact that superinfection may be frequent enough to
merit in-depth studies of its intrahost and epidemiological
relevant factors. In sum, we believe that the isolates we

present could be useful to advance our knowledge of well-
established BF recombinants of growing epidemiological
importance. It is quite relevant to consider that BF recombi-
nant viruses constitute the majority (11 out of 49) of the CRFs
described to date (Los Alamos). Moreover, BF viruses that
originated in Brazil may have a far reaching effect on HIV
pandemics, since they have already been isolated in Asia and
Europe.55

Sequence Data

Sequences are deposited in GenBank under accession
numbers: JF804805–JF804814.
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