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Abstract

Variation in the mammalian dentition is highly informative of adaptations and evolutionary
relationships, and consequently has been the focus of considerable research. Much of the current
research exploring the genetic underpinnings of dental variation can trace its roots to Olson and
Miller's 1958 book Morphological Integration. These authors explored patterns of correlation in
the post-canine dentitions of the owl monkey and Hyopsodus, an extinct condylarth from the
Eocene. Their results were difficult to interpret, as was even noted by the authors, due to a lack of
genetic information through which to view the patterns of correlation. Following in the spirit of
Olson and Miller's research, we present a quantitative genetic analysis of dental variation in a
pedigreed population of baboons. We identify patterns of genetic correlations that provide insight
to the genetic architecture of the baboon dentition. This genetic architecture indicates the presence
of at least three modules: an incisor module that is genetically independent of the post-canine
dentition, and a premolar module that demonstrates incomplete pleiotropy with the molar module.
We then compare this matrix of genetic correlations to matrices of phenotypic correlations
between the same measurements made on museum specimens of another baboon subspecies and
the Southeast Asian colobine Presbytis. We observe moderate significant correlations between the
matrices from these three primate taxa. From these observations we infer similarity in modularity
and hypothesize a common pattern of genetic integration across the dental arcade in the
Cercopithecoidea.
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Introduction

Fifty years ago Olson and Miller published Morphological Integration (1958), developing
the intellectual foundation for much of the current research exploring the relationship
between genotype and phenotype (Mitteroecker and Bookstein 2008). In honor of the fiftieth
anniversary of Olson and Miller's seminar publication, we discuss their contributions to
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dental morphological evolution specifically and follow with our study of the genetic
underpinnings of morphological integration in the primate dentition, a study inspired by the
1958 book.

Olson and Miller (1958) noted that “character changes occurring in evolution of species
could not be considered to be independent of each other... the interrelationships of changing
characters [is] a primary point of interest” (p. 1). They divided these interrelationships into
p-groups and pF-groups, the former being correlations of a particular level, and the latter
being correlations that result from a common function. The authors then provide several
examples of how these correlations can elucidate morphological evolution.

The size and shape of the dentition is of fundamental importance in vertebrate evolution, as
teeth are highly informative of an animal's diet, foraging strategy, interactions with
conspecifics, and phylogenetic relationships. Additionally, teeth are primarily inorganic and
thus survive well in the fossil record. For many vertebrates, all we know of them is what
their teeth looked like.

Olson and Miller (1958) recognized the importance of the dentition in vertebrate evolution
and consequently dedicated more than 20% of Morphological Integration to a discussion of
p- and pF-groups within tooth size variation. They studied linear measurements for all post-
canine teeth of Aotus trivirgatus (the small South American owl monkey) and the extinct
condylarth Hyopsodus from the Eocene of North America. Despite the former being a
primate and the latter a primitive ungulate (Gingerich 1974), they have similar dental
morphologies.

Olson and Miller concluded that the post-canine dentition, as a whole, is poorly integrated,
but that each tooth is highly integrated. They were also the first to note that these results
were difficult to interpret, largely, they state, because there are no “guiding principles” for
how to frame these results (1958, p. 182). They elaborate,

Evidence from studies of the genetics of dentition is virtually non-existant, and
until the situation is remedied the uncertainties inherent in purely inferential
interpretations cannot be removed. If, however, it is possible to gain additional
insight into the scope of the selective unit, some progress can be made toward an
understanding of the subordinate dental characters that are so important to studies
of fossil mammals. Investigations directed toward this end fall within the domain of
the concept of morphological integration. (1958, p. 182)

One of the most significant sources of genetic insight since 1958 has been developmental
genetics. We have learned a considerable amount about the genes necessary to make a tooth,
and how they interact during odontogenesis (reviewed in Jernvall and Thesleff 2000; Stock
2001; Tucker and Sharpe 2004). Our current understanding of tooth development is largely
derived from gene expression and knock-out studies on mice. However, the few comparative
analyses done to date demonstrate that the genetics of tooth organogenesis are likely to be
highly conserved across mammals (e.g., Kerdnen et al. 1998; Kapadia et al. 2007; Lin et al.
2007; Miyado et al. 2007).

The next step towards achieving Olson and Miller's goal of identifying a “guiding principle”
is to translate what is known about tooth developmental genetics to our understanding of
how teeth vary within a population, and how this has evolved through time—connecting the
genetics of organogenesis to population-level phenotypic variation (e.g., Nemeschkal 1999;
Stern 2000; Hlusko 2004; Colosimo et al. 2005). This has become a productive research
direction within biology (Koentges 2008), though by no means facile or straightforward
(Weiss 2008).
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The concept of moaularity provides an essential tool for exploring the relationship between
the genotype and phenotype, often referred to as genotype—phenotype mapping (Wagner
1996; Schlosser and Wagner 2004; Wagner et al. 2007). Modularity in the vertebrate limb is
a successful example, primarily because of the patterned function and expression of Hox
genes. Hox gene expression patterns have been demonstrated to correspond to
morphological modularity within vertebrate autopods (Wagner and Vargas 2008), forelimbs
(Reno et al. 2008), and entire limbs (Shubin et al. 1997; Shubin 2002).

However, Hox genes are not expressed in the first branchial arch from which the dentition
derives (James et al. 2002), and therefore do not similarly pattern the dental arcade. Instead,
the patterning of the dentition may be due to a combinatorial code of the Barx, DIx, Msx,
and Pitx gene families (Cobourne and Sharpe 2003). The applicability of this odontogenic
combinatorial code model to non-mouse taxa, however, remains to be determined (for
alternatives see Weiss et al. 1998; Stock 2001).

Another approach for identifying the genetic underpinnings of morphological integration is
quantitative genetics. Lande (1979, 1980); Cheverud (1982, 1989, 1995, 19964, b),
Cheverud and colleagues (e.g., Cheverud et al. 1983; Marroig et al. 2004), and numerous
others (e.g., Schluter 2000) have demonstrated the power of quantitative genetics for
identifying shared genetic effects between traits (e.g., pleiotropy), and understanding how
these genetic correlations can affect morphological evolution.

Quantitative genetic analyses test the hypothesis that environmental, or non-genetic factors
alone can account for the phenotypic similarities seen among family members. A significant
heritability estimate for one phenotype, or a genetic correlation between two phenotypes,
indicates that environmental effects by themselves cannot account for the pattern of
phenotypic variation seen in a population of related individuals, and as such, the degrees of
interrelatedness contribute to the phenotypic similarities (i.e., genes shared due to a common
ancestor, estimated via the kinship coefficient).

We employed this method to identify the genetic underpinnings of morphological
integration by determining how much of a phenotypic correlation between two phenotypes
results from the genetic correlation between them. In other words, we explore Olson and
Miller's (1958) p-groups as genetic correlation groups—this is now most commonly
presented in matrix form.

Phenotypic variation (\Vp) is the sum of the genetic (\Vg) and environmental variances (Ve),
such that Vp = Vg + Ve. Therefore, it is evident that the higher the heritabilities of the
phenotypes included in a matrix (i.e., the greater the proportion of the phenotypic variance
that is due to the additive effects of genes), the more the phenotypic correlation matrix, P,
will reflect the genetic correlation matrix, G (e.g., Cheverud 1988). Numerous studies have
demonstrated this phenomenon, that phenotypic correlation matrices reflect the underlying
genetic correlations (e.g., Cheverud 1988; Arnold 1992; Roff 1995, 1996; Koots and Gibson
1996).

The gold standard for evolutionary quantitative genetic analyses is to estimate genetic
correlations for phenotypes in all populations studies (e.g., Arnold and Phillips 1999;
Phillips and Arnold 1999; Steppan et al. 2002; Caruso et al. 2005; Colosimo et al. 2005),
and ultimately tie these to gene expression studies (e.g., Nemeschkal 1999). But given the
difficulty of establishing pedigree structure, this is not possible for most populations or
species, especially those that are extinct. However, a number of other researchers have
demonstrated that cautiously exploring the phenotypic correlation matrix as a proxy for the
genetic correlation matrix of a population is a productive means through which to study the
evolution of modularity, or morphological integration as Olson and Miller predicted in 1958
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(e.g., Cheverud et al. 1989; Ackermann and Cheverud 2000, 2002; Mezey et al. 2000;
Magwene 2001).

Within primates, this type of research has largely focused on the cranium (e.g., Richtsmeier
et al. 1984; Kohn et al. 1993; Cheverud 1996b; Ackermann and Cheverud 2002; Marroig et
al. 2004; Roseman 2004; Marroig and Cheverud 2005; Wolf et al. 2005; Ackermann 2007;
Mitteroecker and Bookstein 2008; Sherwood et al. 2008), all identifying morphological
integration in the cranium, and demonstrating that cranial evolution follows predictable
trajectories described by the pattern of genetic correlations (e.g., Marroig and Cheverud
2005).

Although the application of quantitative genetic methods to primate dental variation is not
new, the majority of published studies have analyzed data from humans (reviewed in Rizk et
al. 2008). We have undertaken the most extensive quantitative genetic analysis of dental
variation in a non-human primate to date, employing a captive pedigreed breeding colony of
baboons housed at the Southwest National Primate Research Center (Hlusko 2004; Hlusko
et al. 2002, 20044, b, 2006; Hlusko and Mahaney 2003, 20074, b, 2008).

Here we report on a quantitative genetic analysis of maxillary tooth size variation in this
pedigreed population of baboons. These analyses reveal, for the first time, the genetic
architecture of population level tooth size variation in Papio hamadryas. Patterns of high
genetic correlations are hypothesized to underlie modularity in tooth size variation across
the dental arcade. Given the highly conserved nature of most of dental developmental
genetics noted above, these modules may be present in other baboons, other Old World
Monkeys (OWM), primates more broadly, and possibly even other mammals.

In order to test the hypothesis of common modularity, we undertake a series of matrix
comparisons. First, we compare the matrix of genetic correlations to the matrix of
phenotypic correlations within the same pedigreed population to determine the degree to
which the latter reflect the former in these baboons. We then compare the genetic correlation
matrix to the phenotypic correlation matrices for non-related baboons and the more
evolutionarily distant Southeast Asian colobine Presbytis to assess the degree to which the
genetic underpinnings of odontometric modularity detected in the captive baboons might
also be detected in other cercopithecoids.

Data for the genetic analyses were collected from a large captive, pedigreed breeding colony
of baboons (>3000) housed at the Southwest National Primate Research Center (SNPRC) at
the Southwest Foundation for Biomedical Research in San Antonio, Texas. This colony is
comprised largely of Papio hamadryas anubis with some P. h. cynocephalus, and P. h.
hamadryas (as defined in Jolly 1993).

The colony is maintained in pedigrees with all mating opportunities controlled. Genetic
management of the colony was started over 20 years ago and allows for data collection from
non-inbred animals. All non-founder animals in this study resulted from matings that were
random with respect to dental, skeletal, and developmental phenotype. The female to male
sex ratio is approximately 2:1. Genetic marker maps were made for 694 individuals (Rogers
et al. 2000), making QTL analyses for these data possible (in preparation).

All pedigree data management and preparation was facilitated through use of the computer
package PEDSY'S (Dyke 1996). The animals from which data have been collected (/7= 630)
are distributed across 11 extended pedigrees that are 3-5 generations deep. The mean
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number of animals with data per pedigree is 44; these individuals typically occupy the lower
2-3 generations.

All SNPRC odontometric data were collected from high resolution plaster dental casts made
from living animals while they were anesthetized (for details see Hlusko et al. 2002) or from
skeletal remains curated at the University of Washington under the direction of J. Cheverud.
The Institutional and Animal Care and Use Committee, in accordance with the established
guidelines (National Research Council 1996), approved all procedures related to the
treatment of the baboons during the conduct of this study. The dental data were collected
either with calipers (incisors and premolars) or from digital photographs (molars) of the
casts (protocol described in detail elsewhere, Hlusko et al. 2002).

Phenotypic data consisted of standard linear size measurements of the maxillary dentition:
mesiodistal length and labiolingual width for incisors, mesiodistal length and buccolingual
width for premolars, mesiodistal length and mesial and distal buccolingual width for the
molars. Measurements were not available for the canines as the canines are clipped or pulled
for the animals’ safety in captivity.

Phenotypic data for the non-pedigreed populations are from the National Science
Foundation-sponsored on-line free access database of Old World Monkey dental metrics,
PRIMO (http://www.nycep.org/primo/). We used two samples from this database. The first
consists of 186 Papio hamadryas (34 categorized as P. h. anubisand 152 as P. h. ursius). The
second sample is a smaller collection of Presbytis (n= 25). These specimens are all housed
in museum collections (American Museum of Natural History, British Museum of Natural
History, Florida State Museum, National Museum of Natural History, Senckenbergische
Anatomie, and C. Jolly's collection). The same maxillary linear measurements were used for
the SNPRC and the PRIMO samples; all PRIMO data were collected with calipers. Figure 1
shows a typical baboon dentition.

Analytical Methods

Statistical genetic analyses were conducted by means of a maximum likelihood based
variance decomposition approach implemented in the computer package SOLAR (Almasy
and Blangero 1998). The phenotypic covariance for each trait within a pedigree is modeled

as Q=200 +Io -, where ® is a matrix of kinship coefficients for all relative pairs in a
pedigree, ag is the additive genetic variance, /is an identity matrix (composed of ones along
the diagonal and zeros for all off-diagonal elements), and aﬁ is the environmental variance.

The components of the phenotypic variance are additive, such that 0'§+0'é+0'§, enabling us

to estimate heritability, or the proportion of the phenotypic variance attributable to additive
o2

genetic effects as hz:ﬁ. Phenotypic variance attributable to non-genetic factors is estimated

as & = 1 — /2. The mean effects of sex and age were tested in the analyses and included in

all subsequent analyses if found to significantly contribute to the phenotypic variance of a

trait.

Using extensions to univariate genetic analyses that encompass the multivariate state
(Hopper and Mathews 1982; Lange and Boehnke 1983; Boehnke et al. 1987), we modeled
the multivariate phenotype of an individual as a linear function of the measurements on the
individual's traits, the means of these traits in the populations, the covariates and their
regression coefficients, plus the additive genetic values and random environmental
deviations (described in detail in Mahaney et al. 1995).
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From this model, we obtained the phenotypic variance—covariance matrix from which we
partitioned the additive genetic and random environmental variance—covariance matrices,
given the relationships (kinship coefficients) observed in the pedigree. From these two
variance—covariance matrices, we estimated the additive genetic correlation, pg, and the
environmental correlation, pg, between trait pairs. Respectively, these correlations are
estimates of the additive effects of shared genes (i.e., pleiotropy) and shared environmental
(i.e., unmeasured and nongenetic) factors on the variance in a trait.

We use the maximum likelihood estimates of the additive genetic and environmental
correlations to obtain the total phenotypic correlation between two traits. pp, as

Pp= \/%\/%PG‘F \/(1 - h%) \/(1 - h%)PE. The genetic correlation between trait pairs was
estimated using multivariate extensions to the basic variance decomposition methods

implemented in SOLAR (Almasy and Blangero 1998).

Significance of the maximum likelihood estimates for these parameters was assessed by
means of likelihood ratio tests. Twice the difference of the maximum likelihoods of a
general model (in which all parameters are estimated) and a restricted model (in which the
value of a parameter to be tested is held constant at some value, usually zero) are compared.
This difference is distributed asymptotically approximately as either a ¥2:% mixture of XZ
and a point mass at zero for tests of parameters like /7 for which a value of zero in a
restricted model is at a boundary of the parameter space, or as a XZ variate for tests of
covariates for which zero is not a boundary value (Hopper and Mathews 1982). In both
cases degrees of freedom is equal to the difference in the number of estimated parameters in
the two models (Boehnke et al. 1987). However, in tests of parameters like /2, whose value
may be fixed at a boundary of their parameter space in the null model, the appropriate
significance level is obtained by halving the ~value (Boehnke et al. 1987).

For bivariate models in which genetic correlations are found to be significantly greater than
zero, additional tests are performed to compare the likelihood of a model in which the value
of the genetic correlation is fixed at 1 or 0 to that of the unrestricted model in which the
value of the genetic correlation is estimated. A significant difference between the likelihoods
of the restricted and polygenic models suggests incomplete pleiotropy, i.e., not all of the
additive genetic variance in the two traits is due to the effects of the same gene or genes.

Genetic correlations between traits can result from either pleiotropy or gametic phase
disequilibrium (Lynch and Walsh 1998). The degree of gametic phase disequilibrium (or
linkage disequilibrium, LD) is a function of a population's genetic history and demography:
e.g., it will be lower in outbred populations with many unrelated founders as recombination
exerts its affects each generation, higher in populations undergoing rapid expansion from a
small number of founders and those resulting from recent admixture. Given a conducive set
of population characteristics, the likelihood of genetic correlation between two traits being
due to LD is higher for simple traits, with monogenic (or nearly so) inheritance. However, if
variation in a pair of traits is attributable to the effects of multiple alleles at multiple loci, LD
is not likely to be a major contributor to the genetic correlation (Lande 1980; Lynch and
Walsh 1998). Therefore, we are cautiously confident that significant additive genetic
correlations estimated in our analyses on pairs of complex, multifactorial dental measures
from our non-inbred, extended baboon pedigrees are primarily indicative of pleiotropy
rather than LD. Ongoing and planned whole genome screens and LD analyses in this
population will help confirm this.

Genetic correlations between all possible pair-wise comparisons of the SNPRC dental linear
metrics were used to construct a G matrix. We then calculated the elements of the P matrix
for this sample of related individuals using the identity presented above. To assess the
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degree of similarity between the G and P correlation matrices for this pedigreed population,
and between these matrices and the phenotypic (Pearson's) correlation matrices constructed
for the PRIMO data, we employed the Mantel test (Mantel 1967; Cheverud 1989),
implemented in the statistical software packer R© (http://www.r-project.org/).

The Mantel test is a statistical test of correlation between two or more dissimilarity (e.g.,
distance) or similarity (correlation) matrices of equal rank. We assessed the significance of
correlations estimated by this method empirically from this distribution of correlations
obtained after permuting the rows and columns of the matrices 1000 times. This procedure
reduces our reliance on assumptions concerning the statistical distributions underlying the
two matrixes and mitigates the effects of non-independence of elements within the matrices.

Heritability estimates for the SNPRC population are reported in Table 1. All maxillary tooth
linear measurements are heritable (P < 0.05) except for the mesiodistal length of the left
third molar, probably the result of the relatively small sample (7= 234).

Additive genetic correlations for all possible pair-wise comparisons are presented in
Appendix. Figure 2 is a visual composite of the right and left side results. The only
phenotype pairing that did not yield a significant result on either side of the dental arcade is
the width of the third premolar and the distal width of the third molar.

We found that 4 of 6 incisor:incisor correlations are significantly different from zero, with
three pg > 0.80. Only five of the 52 possible incisor:post-canine pg estimates are
significantly different from zero and all but one of these is below 0.50. All possible
premolar:premolar pg estimates are significantly different from zero; three are not
significantly different from one. Eleven of the 36 pre-molar:molar analyses returned genetic
correlations that are not statistically different from zero; the rest (67%) indicate significant
shared genetic effects. Only 6 of the molar: molar correlations are not statistically different
from zero.

A visual inspection of the SNPRC P and G matrices (Fig. 2) reveals a similar overall pattern.
Mantel's similarity test yields 7= 0.873 for the left P versus G matrices and = 0.717 for the
right P versus G matrices (P< 0.001) (for comparison, SNPRC left versus right P matrices
returned an estimate of r=0.795, < 0.001). These matrices are also statistically similar to
the PRIMO Papio P matrix (SNPRC G matrix, = 0.36, < 0.001; SNPRC P matrix, r=
0.35, P=0.004). The SNPRC and PRIMO Papio matrices are also statistically similar to the
PRIMO Presbytis P matrix (SNPRC G matrix, r=0.474, P< 0.001; SNPRC P matrix, r=
0.436, P=0.005 (right) and r=0.5792, £< 0.001 (left); PRIMO Papio matrix, r= 0.346, P
=0.016).

Discussion

Two fundamental questions in biology concern the relationship between genes and anatomy.
How does the genotype effect the phenotype and how has this relationship influenced
morphological evolution as seen through the fossil record? We are currently pursuing these
two research questions using the baboon dentition as a model system. The results presented
here are part of this larger project.

We have undertaken a quantitative genetic analysis of dental variation in the SNPRC baboon
population to establish the genetic architecture of dental variation. We find that the G and P
matrices of SNPRC dental size variation correlations are significantly similar with a
relatively high rvalue (r=0.639; £< 0.001). This estimate is on the higher end of rvalues
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reported for comparisons of G and P correlation matrices (Table 1, Cheverud 1988),
indicating that the G matrix is highly predictive of the P matrix, as was expected and as has
been reported for other populations (e.g., Cheverud 1988, 1995; Arnold 1992; Roff 1995,
1996; Koots and Gibson 1996).

The results of our comparisons of the odontometric phenotypic correlation matrices for these
three cercopithecoid species represent the first step towards determining whether or not this
genetic architecture is characteristic of other Old World Monkeys, extant and extinct (using
the fossil record of OWM evolution in Africa). The phenotypic correlation matrices required
for these analyses require large sample sizes, which are still being acquired. However, we
were able to use already-collected data from the PRIMO database to undertake some
preliminary analyses.

The Papio hamadryas ursinus/anubis and Presbytis P matrices are significantly similar to the
SNPRC G matrix although the restimates are not high (~0.35) compared to the SNRPC P
and G matrix comparison. While we find it intriguing that these matrices do show
statistically significant similarity, we are cautious in the biological interpretation of these
results, given that the rvalues are low. Further analyses, larger sample sizes, and more
control over data collection methods (these data were not collected by the authors and
followed different protocols) are needed to adequately test the hypothesis that the structure
of the G matrix estimated for the SNPRC population is characteristic of the P matrices of
other Old World Monkeys.

With that caveat in mind, we propose the hypothesis that these initial results reveal genetic
modularity within dental variation of Old World Monkeys, and perhaps of primates and
mammals more generally. While speculative at this point, there is evidence from the
developmental side that bolsters this interpretation.

At the end of the 19th century, Bateson (1892, 1894) compared the variation of serially
homologous structures to Chladni figures, frequency interference in wave patterns. Butler
(1939, 1956) adapted this concept to the dentition and proposed that classes of teeth derive
from one ‘type,” proposing that tooth shape variation results from identical tooth primordia
reacting to different concentrations of morphogens. This is known as the field theory and is
characterized by ultimate tooth shape being determined by extrinsic factors expressed within
three separate fields (incisor, canine, post-canine).

An alternative is the clone theory, proposed by Osborn (1978). In this hypothesis, each tooth
in a class is produced by the replication of the original type or polar tooth (i.e., the first
molar for the molar field). Morphology is therefore predetermined by intrinsic factors.

The concept of dental fields has been explored primarily through analyses of phenotypic
correlation (e.g., Dahlberg 1945; Van Valen 1961; Henderson and Greene 1975; Lombardi
1975). However, none of these phenotypic correlation analyses is particularly conclusive
and can be argued to support both theories. The resolution between the clone and the field
theories for explaining dental patterning has been hindered by the same lack of genetic
information that complicated Olson and Miller's (1958) interpretations.

The field and clone models described above, and the odontogenic combinatorial code
outlined in the introduction, all propose various levels of modularity within the dentition.
With that in mind, it is not surprising that we find modularity in our quantitative genetic
analysis. The genetic architecture of the SNPRC baboon maxillary dentition provides
evidence for at least three modules that affect tooth size variation: incisors, premolar, and
molar. The incisor module is genetically independent of the entire post-canine dentition,
whereas the premolar and molar modules have overlapping genetic effects.
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While the three developmental models outline above are distinct from each other to various
degrees, our results accord with elements of each. For example, the odontogenic
combinatorial code proposed for patterning the mouse dentition (Cobourne and Sharpe
2003), if found to be common to all mammals, would suggest at least two modules within
the dentition: an incisor and a molar module. Our analyses demonstrate significant genetic
independence between the incisors and molars, supporting Cobourne and Sharpe's
hypothesis. The odontogenic code does not address premolars, as mice lack premolars and
canines.

Under the clone model, where factors intrinsic to each tooth primordium determine tooth
size and shape, we would hypothesize that modules do not covary. The genetic
independence we found between incisors and molars also supports this model. Additionally,
the lack of a genetic correlation between premolars and incisors in the SNPRC baboons
accords with this prediction.

However, we find that premolar size variation does have overlapping but non-identical
genetic effects with molar size variation. Additional research is needed to explore this in
more detail, but this result does accord with the field theory, as extrinsic factors influencing
tooth size along the post-canine dentition could result in incomplete pleiotropy. Data from
developmental genetics also supports applying elements of the field theory to our
understanding of how premolars and molars are genetically interrelated (e.g., Kassai et al.
2005; Salazar-Ciudad and Jernvall 2002), as does a phenotypic analysis of seal tooth shape
(Jernvall 2000).

After 50 years, Olson and Miller's predictions are now being realized. Genotype—phenotype
mapping provides a useful framework for understanding morphological evolution. Here
specifically, we have shown that a quantitative genetic analysis of tooth size variation may
well provide insight, or a “guiding principle” for how to identify and conceptualize
morphological integration within the dentition of primates, and possibly mammals more
broadly.

We hope to track the evolution of these genetic modules through time by exploring the P
matrices of various taxa within the Old World Monkey fossil record. Ultimately, we may be
able to reconstruct the phenogenetic evolution (Weiss 2005) of the primate dentition by
revealing how the genotype has responded to selective pressures placed on the phenotype,
by correlating phenogenetic changes with possible selective pressures (such as climate
change and/or environmental and habitat shifts).

The integration of developmental genetics with what may be called “microevolution” is
challenging but productive if small-scale modules are studied using a combination of
developmental genetics, quantitative genetics, and morphology (e.g., Nemeschkal 1999;
Stern 2000; Hlusko 2004; Colosimo et al. 2005). Our study represents a step towards
achieving this larger goal, following on the path first outlined by Olson and Miller 50 years
ago.
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Appendix

Table 2

Bivariate statistical genetic analyses: Maximum-likelihood estimates of genetic and
. . a
environmental correlations

Phenotype pair N Correlations (MLEs)  Significance of correlations P(Hypothesis)

PG PE pc=0 los| =1
Baboon right maxillary
111l v I11md 481 0.322 0.269 0.055 <0.0000001
111 v 1211 492 0.893 0.215 <0.0001 0.003
1111 v I2md 492 0.863  -0.236 <0.0001 0.005
1111 v P3I 529 0.804  -0.246 0.008 0.28
1111 v P3w 542 0.437 0.004 0.039 0.0008
1111 v P4l 564 0.168 0.353 0.277 <0.0000001
1111 v P4w 563 0421  -0.012 0.012 <0.00001
1111 v M1l 548 0461  -0.039 0.002 <0.0000001
1111 v M1Imw 543 0.017  -0.195 0.926 <0.0000001
1111 v M1dw 543 -0.246 0.086 0.175 0.0000001
1111 v M2l 575 0.330 0.159 0.030 <0.0000001
1111 v M2mw 576 -0.192  0.0125 0.288 0.0000001
1111 v M2dw 572 -0.265 0.117 0.159 0.000002
1111 v M3l 531 0.169 0.598 0.548 0.018
1111 v M3mw 564 -0.046 0.196 0.821 <0.0000001
1111 v M3dw 549 -0.164 0.080 0.540 0.049
11md v 1211 492 0.314  -0.160 0.050 <0.0000001
11md v 12md 492 0.450 0.022 0.006 0.0000001
11md v P3I 536 0.046 0.294 0.865 0.012
11md v P3w 545 0.048 0.345 0.801 0.00007
11md v P4l 566 0.021 0.295 0.901 <0.0000001
11md v P4w 565 0.149 0.260 0.404 <0.0000001
11md v M1l 552 0.112 0.398 0.483 <0.0000001
1lmd v Mlmw 547 0.059 0.295 0.752 <0.0000001
11md v M1dw 547 -0.034 0.284 0.851 0.0000001
11md v M2l 576 0.129 0.399 0.399 <0.0000001
11md v M2mw 577 —-0.042 0.274 0.813 <0.0000001
11md v M2dw 573 0.175 0.089 0.342 0.0000004
11md v M3l 535 0.200 0.489 0.422 0.021
1lmd v M3mw 567 -0.132 0.251 0.485 0.0000009
11md v M3dw 553 0.125 0.070 0.642 0.061
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Phenotype pair N Correlations (MLEs)  Significance of correlations P(Hypothesis)
PG PE pc=0 log| = 1

1211 v 12md 475 0.816 -0.144 <0.0001 0.0001

1211 v P3I 520 —-0.060 0.183 0.811 0.011

1211 v P3w 531 0.151 0.182 0.435 0.00006

1211 v P4l 553 -0.160 0.738 0.272 <0.0000001

1211 v PAw 554 0.228 -0.063 0.171 <0.0000001

1211 v M1l 550 0.287 -0.211 0.049 <0.0000001

121l v M1Imw 543 -0.117 -0.318 0.483 0.0000001

121 v M1dw 544 -0.314 -0.063 0.059 0.0000001

1211 v M2l 573 0.112 0.483 0.457 <0.0000001

1211 v M2mw 575 -0.276 0.104 0.109 0.0000010

1211 v M2dw 571 -0.198 0.086 0.264 0.0000007

1211 v M3l 519 0.335 0.065 0.180 0.028

1211 v M3mw 564 —-0.085 0.204 0.632 0.0000002

1211 v M3dw 537 -0.249 0.161 0.320 0.048

12md v P3I 528 0.221 0.174 0.387 0.015

12md v P3w 538 0.163 0.162 0.414 0.00004

12md v P4l 560 —-0.006 0.564 0.968 <0.0000001

12md v P4w 559 0.199 0.053 0.259 <0.0000001

12md v M1I 552 0.301 0.059 0.055 <0.0000001

12md v M1mw 545 -0.094 0.024 0.595 0.0000003

12md v M1dw 546 -0.226 0.275 0.188 <0.0000001

12md v M2| 575 0.174 0.244 0.261 <0.0000001

12md v M2mw 576 -0.007 -0.124 0.968 <0.0000001

12md v M2dw 572 0.168  -0.185 0.363 0.0000006

12md v M31 529 0.520 0.175 0.053 0.046

12md v M3mw 567 0.184 -0.052 0.318 <0.0000001

12md v M3dw 547 0.477 -0.147 0.085 0.127

P3I v P3w 336 0.706 0.102 0.041 0.116

P3I v P4l 403 0.917 0.038 0.00005 0.321

P3l v P4w 421 0.580 0.094 0.026 0.041

P3lv M1l 505 0.729 -0.152 0.002 0.059

P3l v M1mw 502 0.385 0.334 0.208 0.009

P31 v M1dw 503 0.430 0.211 0.171 0.023

P3lv M2I 547 0.640 0.192 0.005 0.019

P3l v M2mw 548 0.076 0.409 0.794 0.012

P31 v M2dw 542 0.158 0.472 0.641 0.035

P3lv M3I 358 0.859 0.018 0.009 0.272

P3l v M3mw 494 0.546 0.128 0.052 0.014

P31 v M3dw 393 0.732 0.184 0.033 0.123

P3w v P4l 406 0.576 0.120 0.001 0.000015

P3w v P4w 423 1.000 -0.098 <0.00001 nc

Evol Biol. Author manuscript; available in PMC 2012 August 21.

Page 11



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hlusko and Mahaney

Page 12

Phenotype pair N Correlations (MLEs)  Significance of correlations P(Hypothesis)
PG PE pc=0 log| = 1
P3w v M1l 517 0.313 0.584 0.091 0.00001
P3w v M1mw 515 0.358 0.233 0.119 0.00004
P3w v M1dw 516 0.051 0.757 0.821 0.00002
P3w v M2l 551 0.612 0.052 0.0003 0.00001
P3w v M2mw 554 0.477 0.207 0.025 0.00008
P3w v M2dw 547 0.514 0.163 0.028 0.0009
P3w v M3l 391 0.437 0.142 0.202 0.0431
P3w v M3mw 510 0.469 -0.012 0.045 0.0026
P3w v M3dw 428 0.049 0.303 0.882 0.0653
P4l v P4w 432 0.556 0.155 0.0003 <0.0000001
P4l v M1l 537 0.569 0.141 <0.0001 <0.0000001
P4l v M1mw 535 0.536  -0.316 0.001 <0.0000001
P4l v M1dw 535 0.445 0.066 0.0096 0.0000002
P4l v M2I 556 0.729 0.262 <0.0001 <0.0000001
P4l v M2mw 559 0.468 0.167 0.003 <0.0000001
P4l v M2dw 555 0.474 0.218 0.004 <0.0000001
P4l v M3l 439 0.646 0.253 0.001 0.010
P4l v M3mw 529 0.384 0.165 0.017 <0.0000001
P4l v M3dw 468 0.610 0.171 0.012 0.113
P4w v M1l 538 0.438 0.233 0.007 <0.0000001
P4Aw v M1mw 536 0.528 0.218 0.003 <0.0000001
P4w v M1dw 537 0.345 0.348 0.069 <0.0000001
P4w v M2l 557 0.534 0.197 0.0007 <0.0000001
P4Aw v M2mw 561 0.580 0.179 0.001 0.0000004
P4w v M2dw 557 0.519 0.150 0.007 0.000005
P4w v M3l 449 0.433 0.200 0.144 0.016
P4w v M3mw 534 0.577 0.032 0.001 0.00005
P4w v M3dw 479 0.404 0.264 0.194 0.071
M1l v M1mw 458 0.591 0.112 0.00017 <0.0001
M1l v Mldw 473 0.565 0.061 0.0008 0.0000004
M1l v M2l 547 0.918 -0.044 <0.0001 0.119
M1l v M2mw 548 0.485 -0.003 0.0036 <0.0001
M1l v M2dw 547 0.371 0.211 0.033 0.0000007
M1l v M3I 495 0.744 0.400 0.0023 0.054
M1l v M3mw 555 0.578 0.073 0.0007 0.00005
M1l v M3dw 523 0.280 0.242 0.207 0.009
Mimwv Mldw 445 0.933 0.492 <0.0001 0.0008
Mimw v M2l 543 0.555 -0.127 0.0004 <0.0001
Mlmwv M2mw 543 0.865 0.362 <0.0001 0.0019
Mimwv M2dw 541 0.761 0.312 0.00004 0.0005
Mimw v M3l 482 0.544 -0.063 0.065 0.037
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Phenotype pair N

Correlations (MLEs)

Significance of correlations P(Hypothesis)

PG PE pc=0 log| = 1
M1lmwv M3mw 535 0.770 0.042 <0.0001 0.00055
Mimw v M3dw 502 0.208 0.448 0.49 0.037
M1ldw v M2l 544 0.466 -0.297 0.0027 <0.0001
Mldwv M2mw 543 0.790 0.152 <0.0001 0.00018
Mldwv M2dw 542 0.737 0.298 0.00005 0.000007
M1ldw v M3l 485 0.167 0.267 0.638 0.022
Mldwv M3mw 534 0.583 0.064 0.002 0.00008
Mldwv M3dw 523 0.286 0.232 0.192 0.009
M2l v M2mw 536 0.693 0.202 <0.0001 0.000006
M2l v M2dw 535 0.619 0.296 0.00011 <0.0001
M2l v M3l 514 0.947 0.346 <0.0001 0.303
M2] v M3mw 551 0.673 0.084 0.00005 0.0003
M2l v M3dw 548 0.267 0.476 0.212 0.012
M2mw v M2dw 531 0.821 0.734 0.00001 0.0000005
M2mw v M3| 542 0.625 0.180 0.031 0.060
M2mw v M3mw 552 0.880 0.335 <0.0001 0.068
M2mw v M3dw 549 0.397 0.576 0.303 0.154
M2dw v M3| 321 0.520 0.681 0.113 0.007
M2dw v M3mw 543 0.523 0.487 0.011 0.0000005
M2dw v M3dw 539 0.709 0.596 0.031 0.117
M3I v M3mw 453 0.608 0.669 0.018 0.012
M3l v M3dw 321 0.520 0.681 0.113 0.007
M3mw v M3dw 446 0.564 0.716 0.048 0.015
Baboon left maxillary
1111 v 11md 471 0.447 0.233 0.007 <0.0001
1111 v 1211 484 0.921 0.332 <0.0001 0.067
111l v 12md 471 0.654 -0.08 <0.001 0.0017
1111 v P3I 531 0.626 -0.131 0.065 0.19
1111 v P3w 537 0.524 -0.090 0.076 0.049
1111 v P4l 565 0.177 0.174 0.347 <0.0001
1111 v P4w 568 0.519 -0.228 0.008 0.0004
1111 v M1l 557 0.080 0.339 0.67 <0.0001
111l v M1Imw 550 -0.318 0.142 0.104 <0.0001
111l v M1dw 549 -0.280 0.185 0.145 <0.0001
1111 v M2l 580 0.340 0.098 0.031 0.0000003
111l v M2mw 579 -0.303 0.178 0.126 0.000012
1111 v M2dw 469 1.000 0.987 <0.0001 nc
1111 v M3l 538 0.511 0.097 0.131 0.132
111l v M3mw 566 -0.174 0.108 0.532 0.0062
1111 v M3dw 549 -0.280 0.185 0.145 <0.0001
11md v 1211 485 0.367 -0.053 0.018 <0.0000001
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Phenotype pair N Correlations (MLEs)  Significance of correlations P(Hypothesis)
PG PE pc=0 log| = 1
11md v 12md 485 0.482 0.109 0.004 0.0000073
11md v P3I 533 0.0346 0.297 0.907 0.0576
11md v P3w 539 -0.070 0.250 0.780 0.0071
11md v P4l 566 0.129 0.389 0.423 <0.0000001
11md v P4w 568 0.372 -0.146 0.014 <0.0000001
11md v M1l 557 0.133 0.484 0.353 <0.0000001
11md v MImw 550 0.149 0.087 0.335 <0.0000001
11md v M1dw 549 0.085 0.235 0.561 <0.0000001
11md v M2l 580 0.226 0.466 0.076 <0.0000001
11md v M2mw 579 0.108 0.260 0.470 <0.0000001
11md v M2dw 575 0.348 -0.067 0.022 0.0000001
11md v M3l 540 0.991  -0.333 0.001 0.491
11md v M3mw 567 0.194 0.043 0.379 0.002
11md v M3dw 548 0.446 -0.079 0.067 0.047
121l v 12md 471 0.660  -0.079 0.0004 0.002
1211 v P3I 524 0.414 0.024 0.187 0.095
1211 v P3w 534 0.071 0.147 0.792 0.007
1211 v P4l 582 0.001 0.590 0.995 <0.0000001
1211 v P4w 565 0.175 -0.005 0.332 <0.0000001
1211 v M1l 558 0.107 -0.007 0.540 <0.0000001
121l v M1Imw 551 -0.343 0.303 0.059 <0.0000001
121 v M1dw 550 —-0.296 0.349 0.089 <0.0000001
1211 v M2I 579 0.181 0.208 0.226 <0.0000001
121l v M2mw 578 -0.303 0.256 0.096 0.0000004
1211 v M2dw 574 0.022 -0.031 1.00 <0.0000001
1211 v M3l 532 0.113 0.158 0.688 0.054
1211 v M3mw 566 —-0.443 0.242 0.074 0.026
1211 v M3dw 542 -0.438 0.548 0.087 0.029
12md v P3I 529 0.250 0.217 0.459 0.069
12md v P3w 536 0.223 0.064 0.430 0.0061
12md v P4l 583 0.362 0.410 0.054 0.0000004
12md v PAw 565 0.243 -0.034 0.218 0.0000001
12md v M1l 559 0.230 0.064 0.228 0.0000014
12md v M1mw 553 —-0.088 0.108 0.663 0.0000003
12md v M1dw 552 -0.076 0.070 0.694 0.0000001
12md v M2l 580 0.093 0.517 0.566 0.0000001
12md v M2mw 579 -0.130 0.296 0.498 0.0000003
12md v M2dw 575 0.103 0.134 0.600 0.0000001
12md v M3 538 0.595 0.022 0.129 0.224
12md v M3mw 567 0.131 0.045 0.624 0.002
12md v M3dw 547 0.350 0.137 0.207 0.016
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Phenotype pair N Correlations (MLEs)  Significance of correlations P(Hypothesis)
PG PE pc=0 log| = 1
P3l v P3w 348 0.517 0.329 0.201 0.055
P3I v P4l 428 0.554 0.207 0.036 0.023
P3l v P4w 465 0.568 0.454 0.013 0.006
P3lv M1l 519 0.514 0.177 0.066 0.056
P3l v M1mw 516 0.511 0.190 0.065 0.026
P31 v M1dw 516 0.472 0.124 0.136 0.077
P3lv M2I 553 0.517 0.274 0.035 0.037
P3l v M2mw 555 -0.117 0.548 0.67 0.022
P31 v M2dw 550 -0.068 0.484 1.00 0.027
P3lv M3I 374 -0.182 0.577 0.700 0.093
P3l v M3mw 499 -0.002 0.315 0.031 0.996
P31 v M3dw 401 -0.440 0.421 0.487 0.254
P3w v P4l 427 0.416 0.406 0.108 0.009
P3w v P4w 442 0.865 0.487 <0.0001 0.063
P3w v M1l 525 0.505 0.309 0.024 0.002
P3w v M1mw 519 0.550 0.420 0.025 0.013
P3w v M1ldw 519 0.366 0.559 0.140 0.007
P3w v M2l 554 0.451 0.349 0.030 0.0009
P3w v M2mw 558 0.572 0.261 0.008 0.0008
P3w v M2dw 552 0.350 0.284 0.139 0.0009
P3w v M3l 411 -0.527 0.432 0.284 0.237
P3w v M3mw 511 0.411 0.221 0.224 0.004
P3w v M3dw 441 —-0.686 0.436 0.171 0.281
P4l v P4w 451 0.620 0.241 0.0001 <0.0001
P4l v M1l 549 0.663 0.167 <0.0001 <0.0001
P4l v M1mw 548 0.498 0.149 0.003 <0.0001
P4l v M1dw 549 0.520 0.177 0.001 <0.0001
P4l v M2I 561 0.663 0.431 <0.0001 <0.0001
P4l v M2mw 565 0.445 0.108 0.008 <0.0001
P4l v M2dw 560 0.523 -0.042 0.001 <0.0001
P4l v M3lI 463 0.402 0.432 0.122 0.023
P4l v M3mw 537 0.466 0.115 0.035 0.0006
P4l v M3dw 494 0.271 0.384 0.318 0.008
P4w v M1l 550 0.600 -0.128 <0.0001 <0.0001
P4w v M1mw 548 0.773 -0.125 0.0001 0.0001
P4w v M1dw 549 0.665 0.017 <0.0001 <0.0001
P4w v M2l 561 0.628 -0.093 <0.0001 <0.0001
P4w v M2mw 565 0.682 0.060 <0.0001 <0.0001
P4w v M2dw 561 0.515 0.222 0.0019 <0.0001
P4w v M3l 478 0.251 0.250 0.453 0.069
P4w v M3mw 541 0.691 0.255 0.0008 0.0015
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Phenotype pair N Correlations (MLEs)  Significance of correlations P(Hypothesis)
PG PE pc=0 log| = 1
P4w v M3dw 506 0.133 0.458 0.698 0.014
M1l v M1mw 474 0.669 -0.123 <0.0001 <0.0001
M1l v M1ldw 474 0.714 -0.399 <0.0001 <0.0001
M1l v M2l 554 0.928 -0.153 <0.0001 0.093
M1l v M2mw 555 0.602 -0.086 <0.0001 <0.0001
M1l v M2dw 553 0.498 0.104 0.002 <0.0001
M1l v M3I 516 0.896 0.202 <0.0001 0.123
M1l v M3mw 542 0.839 0.023 <0.0001 0.040
M1l v M3dw 537 0.326 0.208 0.145 0.002
Mimwv Mldw 465 0.866 0.705 <0.0001 <0.0001
Mimw v M2l 553 0.627 -0.336 <0.0001 <0.0001
Mlmw v M2mw 553 0.890 0.071 <0.0001 <0.0001
Mimwv M2dw 551 0.801 0.164 <0.0001 0.0013
Mimw v M3l 510 0.675 0.099 0.014 0.125
Mlmw v M3mw 539 0.885 0.181 <0.0001 0.080
Mimwv M3dw 513 0.624 0.008 0.009 0.044
Midw v M2l 553 0.615 -0.539 <0.0001 <0.0001
Mldwv M2mw 553 0.780 0.120 <0.0001 <0.0001
Mldwv M2dw 550 0.800 0.303 <0.0001 <0.0001
Mildw v M3l 509 0.485 0.339 0.117 0.064
Mldwv M3mw 540 0.718 0.259 0.0006 0.005
Mldwv M3dw 513 0.605 0.186 0.010 0.020
M2l v M2mw 548 0.677 -0.029 <0.0001 <0.0001
M2l v M2dw 547 0.604 0.203 <0.0001 <0.0001
M2l v M3I 548 0.828 0.286 0.0003 0.196
M2l v M3mw 552 0.878 -0.012 <0.0001 0.095
M2l v M3dw 551 0.549 0.000 0.0029 0.0011
M2mw v M2dw 541 0.903 0.474 <0.0001 0.0023
M2mw v M3l 549 0.904 -0.041 0.0008 0.342
M2mw v M3mw 557 1.00 0.347 <0.0001 nc
M2mw v M3dw 553 0.746 0.092 0.0001 0.0159
M2dw v M3l 542 0.903 0.064 0.002 0.349
M2dw v M3mw 549 0.867 0.272 <0.0001 0.060
M2dw v M3dw 545 0.914 0.149 <0.0001 0.19
M3l v M3mw 456 0.697 0.505 0.112 0.189
M3l v M3dw 347 0.697 0.508 0.078 0.106
M3mw v M3dw 443 0.457 0.693 0.26 0.0058

Page 16

aMLEmaximum likelihood estimate; P(Hypothesis) probability of the hypothesis (indicated in columns below) being true
given the available pedigreed data; /72c not computable; all phenotypes indicated with * in Table 1 were i-normalized in the

bivariate analyses
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Fig. 1.
Occlusal view of the Papio hamadryas maxillary (/eff) and mandibular (righ? dental arcades
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Fig. 2.

Genetic and phenotypic correlation matrices. Correlations were estimated as described in the

text. The SNPRC genetic correlation matrix is a composite of the left and right sides of the

maxillary dental arcade. The SNPRC phenotypic correlation matrix shows the average
between the left and right side estimates
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