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Abstract
Understanding the functions of biomolecules requires insight not only from structures, but from
dynamics as well. Often, the most interesting processes occur on time scales too slow for
exploration by conventional molecular dynamics (MD) simulations. For this reason, alternative
computational methods such as elastic network models (ENMs) have become increasingly
popular. These simple, coarse-grained models represent molecules as beads connected by
harmonic springs; the system’s motions are solved analytically by normal mode analysis. In the
past few years, many different formalisms for performing ENM calculations have emerged, and
several have been optimized using all-atom MD simulations. In contrast to other studies, we have
compared the various formalisms in a systematic, quantitative way. In this study, we optimize
many ENM functional forms using a uniform dataset containing only long (> 1 μs) all-atom MD
simulations. Our results show that all models once optimized produce spring constants for
immediate neighboring residues that are orders of magnitude stiffer than more distal contacts. In
addition, the statistical significance of ENM performance varied with model resolution. We also
show that fitting long trajectories does not improve ENM performance due to a problem inherent
in all network models tested: they underestimate the relative importance of the most concerted
motions. Finally, we characterize ENMs’ resilience by tessellating the parameter space to show
that broad ranges of parameters produce similar quality predictions. Taken together our data
reveals that choice of spring function and parameters are not vital to performance of a network
model and that simple parameters can by derived “by hand” when no data is available for fitting,
thus illustrating the robustness of these models.

1 Introduction
Structural changes in proteins are vital to activation and regulation, and many proteins
function via conformational rearrangements that involve displacing large pieces of the
molecule. These concerted or global motions often occur on the microsecond to millisecond
time scale, making their study by all-atom computational methods intractable to all but a few
research groups with highly specialized resources.1–3 However, insight into protein
dynamics is valuable, and even approximate interactions can help guide experiments and
tailor hypotheses. For this reason, elastic network models (ENMs) have become very
popular.4 ENMs are a class of simple models for protein motion, where the system is
represented as a network of beads inter-connected by harmonic springs with lengths
matching those found in the protein’s native state; usually, the system is coarse-grained by
only representing the Cα’s of a protein. By applying normal mode analysis (NMA) to this
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model, one can extract the collective motions of the system with minimal computational
investment. Network models have garnered much attention due to their success in predicting
global motions.5–13 They can also be a practical aid in designing and addressing the
feasibility of experiments; for example, these models have proven useful in evaluating the
functional motions of proteins6–9,14–16 as well as refining structural data.17–19 Notably,
because the normal modes of motion are solved analytically, there is no statistical error in
their predictions, a problem that generally plagues molecular dynamics.20

ENMs’ ease of implementation and computational efficiency makes them a suitable starting
point for many structural studies; however, their utility is limited in some areas due to their
simplicity.19,21,22 To counter this lack of detail, numerous groups have developed features
designed to augment the predictive power of ENMs.23–34 We explore several such methods
of improving ENMs while utilizing long molecular dynamics (MD) trajectories to evaluate
each model’s efficacy. Specifically, we examine the performance of different spring
functional forms and resolutions, systematically analyzing their performance after fitting to
simulation. For this study we will use the anisotropic form of the network model first
described by Atilgan et al.23

Historically, the performance of ENMs has been validated by comparison to
crystallographic B-factors. However, this is a limited comparison since B-factors at best
describe the flexibility of different regions of the proteins, usually isotropically. By contrast,
the ENM-NMA provides far more information, describing the set of coherent motions
available to the system, as well as their relative amplitudes. For this reason, we prefer to
compare to molecular dynamics simulations, applying principal component analysis (PCA)
to the trajectories to extract analogous information;35 the eigenvectors have an analogous
meaning in PCA and ENM-NMA. The eigenvalues have different meanings — magnitude in
PCA and frequency in ENM-NMA — but given the harmonic nature of ENMs, one can
simply invert the frequencies obtained from ENM-NMA to give a unitless measure of the
relative magnitude of motion. In the current study, we will compare harmonic NMA and
quasi-harmonic PCA eigendecompositions15,36,37 (details of this comparison are outlined in
Section 2.2).

Recently, there have been many articles aimed at refining the functional form of the spring
contacts in network models using MD. This is a worthwhile undertaking as all-atom MD is
considered the gold-standard among molecular simulation techniques. However, in each
case short simulations were used, leading to concern about the statistical quality of the
data20,35,38–40 as well as systematic errors.35 For this evaluation, we chose to use a smaller
parametrization set of three proteins for which we had long trajectories available (each
greater than 1 μs in length). We hypothesized that fitting long trajectories was vital since it
is precisely the slow motions that we extract from the NMA of ENMs. In a recent
publication, however, Liu et al. suggested that simulations spanning a range of two orders of
magnitude produce similar dominant motions.41 This is an interesting result that cannot be
overlooked; however, they consider only the most dominant motion, as opposed to
comparing the whole fluctuation space, which was done in the current study. We previously
showed that fitting to short simulations leads to systematic errors which manifest in the
eigenvalue spectra.35 This result will be further explored in the present manuscript.

We also evaluate the effects of varying model resolution. ENMs were originally developed
as a lower-resolution alternative to all-atom NMA.37,42,43 Each residue is typically
represented by one bead placed at the Cα position, but occasionally system size or level of
detail restrains this decision. Several models exist for altering resolution,19,26,44 but for this
study we decided on two simple variations to extract a trend. While performance varied, the

Leioatts et al. Page 2

J Chem Theory Comput. Author manuscript; available in PMC 2013 July 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



new resolutions were capable of predicting motions with a similar fidelity to the standard
model.

2 Methods
Many variants of the basic ENM method have been published, including a variety of
functional forms to define the spring constants,24,25,27,30–33,45 several levels of
resolution,19,26,44 and methods of interfacing with the surrounding environment.21 There
have also been many attempts to refine these models based on crystallographic B-
factors16,28,46 and by comparison to all-atom MD.30–33,35,36 In the present work we
parametrize spring functions using only long MD simulations.

2.1 Elastic Network Models
ENMs are constructed from a network of beads connected by Hookean springs. These beads
are typically located at the Cα’s of each residue when studying proteins. In the current study,
average structures were calculated from the MD trajectories using an iterative alignment.47

Formally, this network of interactions is described by the following potential:

(1)

where Ri j is the distance between two particular beads, i and j,  is their equilibrium

distance, and  is a variable spring function. The input structure is designated as the
relaxed position of all the springs, making it the global minimum by definition. The

functional form of , or the spring function, can be defined by one of several
formalisms. In addition to the descriptions below, explicit definitions of all spring functions
can be found in the supplemental text.

In the standard ENM, this spring function simply identifies connections. Two beads are
designated as connected if they are within a cutoff distance, Rc, and not connected
otherwise. Formally, this is defined by the Heaviside function:

(2)

This is the simplest spring function, but it has a few significant weaknesses. First, we
intuitively expect that the interactions between distant residues should be weaker than
interactions between adjacent ones. Although this is captured in an approximate way by the
use of a simple cutoff, one could arguably improve the behavior by dispensing with the
cutoff and making the spring constant a smoothly varying function of the minimum energy

distance, . Moreover, this resolves a numerical instability found in the pure cutoff
approach: if the cutoff is too short then certain beads may not have enough interactions
resulting in underdetermined dynamics. In that case, the resulting eigendecomposition will
fail.23

One example of a spring that varies smoothly is an exponentially distance-dependent
function:

(3)
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Here a is an adjustable scaling factor. This function connects all beads in the model while
weighting the “stiffness” of the spring by the distance between beads. Several network
models use this form (in part), including those introduced by Hinsen,48 Kovacs,25 Smith,30

Voth,31 Orozco,33 and Yang.32

A similar, more detailed model was proposed by Hinsen and coworkers.24 In this formalism,
referred to as HCA, beads closer than the distance Rc are connected by a linearly distance-
dependent spring, while beads outside the cutoff are scaled by a power decay:

(4)

Here the parameters a,b,c, and d in addition to Rc are all adjustable.

Other methods explicitly take the chemical structure of the molecule into account by using
different spring functions for virtual “bonded” interactions — those between residues
adjacent in sequence — than for “non-bonded” interactions. An example similar to that of
Hinsen et al. would be:

(5)

Here, one other small difference was introduced; instead of scaling “bonded” terms by
distance they are all given the same stiffness, k1. In addition, multiple levels of connectivity
can be implemented. For instance, the REACH30 method uses virtual bonds, angles, and
torsions, connecting first, second, and third nearest neighboring Cα’s, respectively, followed
by a non-bonded term.

Any of the above spring functions can be applied to Eq. (1), defining the potential energy
between two beads. This is done for all pairs of beads in the system and the resulting
Hessian is then computed. The normal modes of this system can be solved by an
eigendecomposition; the eigenvectors represent the directions of motion, and the
eigenvalues represent their associated frequencies. A more detailed description of this
diagonalization has been outlined previously (see for example refs. 4,23,49). In this work,
all network models were implemented using the LOOS “ElasticNetworks” package (freely
available at http://loos.sourceforge.net).50,51 LOOS is a lightweight structure analysis library
that reads all major MD model and trajectory file formats.

2.1.1 Varying the Resolution of ENMs—While network models are generally
abstracted to Cα resolution, we implemented and validated a higher and lower resolution as
well. These can be used to fit the scope of a particular project, either looking for more subtle
details19 or predicting the motions of a very large system.6–8,14

Our higher resolution model incorporates a second bead per residue positioned at each side
chain’s center of mass (CoM) as previously employed by Bahar & Jernigan52 and Zheng.19

The lower resolution model uses a single bead for every two residues placed at the center of
mass of the pair. Throughout this manuscript we will refer to these as the two-bead per
residue model and one-bead per two-residue model, respectively.
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We applied each of the spring functions discussed above to all three resolutions. For models
that take connectivity into account, we included bonds between neighboring Cα’s and from
each Cα to its side chain bead.

2.2 Validating Against Molecular Dynamics Simulations
To evaluate the normal modes of the network models, we compared them to microsecond-
scale all-atom MD of three G protein-coupled receptors (GPCRs): rhodopsin (RHOD in
figure legends), β2 adrenergic receptor (β2AR), and cannabinoid receptor 2 (CB2). These
simulations were published separately and were also used in our prior ENM studies.35,53–56

Briefly, the rhodopsin simulation contained 49 1-stearoyl-2-docosahexaenoyl-
phosphatidylcholine (SDPC), 50 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine
(SDPE), and 24 cholesterol molecules and was conducted using the NVE ensemble. The
simulation of β2AR contained 99 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) lipids
and was conducted using the NVT ensemble. The CB2 simulation contained 123 POPC and
38 sn-2-arachidonoylglycerol molecules and was conducted using the NVT ensemble. All of
these simulations were performed using the CHARMM27r force field for the lipids,57,58 and
the CHARMM22 force field for the protein.59

In addition, simulations of two other proteins were used just for testing our results.
Specifically, we analyze a pair of ≈1 μs trajectories of the A2A adenosine receptor (A2A) in
a POPC bilayer, run by Lyman and coworkers.60 For this analysis, we concatenated the two
simulations, for a total simulation time of 2.2 μs. Additionally, we considered a 472 ns
trajectory of opsin (the apo form of bovine rhodopsin), containing 123 SDPE lipids; further
details of the simulation can be found in the supplemental text.

As in previous work, we performed principal component analysis (PCA) on the trajectories
taking advantage of the fact that PCA produces information analogous to that acquired from
ENMs. While the PCA of a simulation depends on the covariance matrix and is explicitly
not harmonic, its similarity to harmonic analyses like NMA have been extensively studied in
the literature.15,36,37 The eigenvectors have analogous physical meanings in the two
formalisms: the direction of motion associated with a particular eigenvalue. The eigenvalues
produce similar, although not identical information. In the case of simulation PCA, they
represent the relative amplitude of motion as sampled from a thermalized trajectory, while in
network model NMA they represent the relative frequencies of the motion. Because ENMs
are explicitly harmonic in nature, the frequencies can simply be inverted to get effective
amplitudes. In light of the similarities between these two analyses, we will use the quasi-
harmonic PCA of a simulation to parametrize ENM-NMA results. We compare the results
of PCA and ENM-NMA using the same methods used to compare two PCA results. In
particular, we used the covariance overlap, because it uses the eigenvalues to account for the
relative contribution of each eigenvector:35,38

(6)

Here λ represents the eigenvalue associated with the eigenvector, ν. For the ENM-NMA
normal modes, the eigenvalues were inverted to produce quantities proportional to relative
amplitude. The superscripts A and B denote the two results being compared while the
subscripts i and j indicate this summation is over all 3N-6 modes (excluding the three purely
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translational and three purely rotational modes which have zero frequency). The inverted
eigenvalues are normalized across a single eigendecomposition prior to application of Eq.
(6), such that the total amplitude of predicted motion is identical. This metric scales from 0
to 1, where 0 indicates that the eigenvectors are orthogonal and 1 indicates complete overlap
of the eigenspace. It is worth noting that this measure reduces to something close to the
subspace overlap61 if one assumes the eigenvalue spectrum contains only ones and zeroes.
The parameters obtained from our fitting (using a Nelder-Mead Simplex62 optimization) are
documented (for all resolutions and spring functions) in Supplementary Table S4.

2.2.1 Estimation of Equivalent MD Trajectory Length—The physical significance of
a particular covariance overlap value is difficult to interpret in the absence of context.
Therefore, in order to better understand the comparison between ENM-NMA results and
PCA, we compare the performance of our ENM-NMA results to the sampling of an MD
trajectory. To do this, we combined the covariance overlap with a block averaging approach
as in previous work.35,40 Block averaging allows assessment of the sampling quality of a
small contiguous piece of the trajectory relative to the full simulation. Briefly, this entails
splitting the trajectory into many contiguous blocks and computing the principal components
of each block individually. The average covariance overlap between the principal
components of these blocked trajectories and the full simulation PCA describes how well the
short simulations reproduce the conformational space explored by the full simulation. As the
length of the blocks increases, the sampling improves, resulting in higher covariance
overlaps.

This method facilitates appraisal of a network model’s predicted motions relative to
increasing block lengths. The block averaged covariance overlap is plotted as a function of
block size and the covariance overlap between the ENM-NMA and our gold-standard (the
full-length simulation PCA) is then overlaid.35,40 The intersection of the block averaging
curve and the ENM-NMA is the point where they have the same covariance overlap.
Following this value to the x-axis gives an estimate of the simulation time required before
the trajectory would predict the system’s motions as well as the ENM.

2.2.2 Comparing Different Resolution ENMs—In calculating covariance overlaps of
different resolution models, we noticed that the dimensionality of the system intrinsically
altered the covariance overlap; physically, this is related to the fact that in higher
dimensional spaces it is harder to find two vectors with large dot products. Thus, we needed
to find a means to compare models with varying resolution on an equal footing.

Our first idea was to compute a Z-score, comparing the eigendecomposition from a given
ENM to that of a number of randomly generated covariance matrices. However, the random
matrices tended to produce very flat eigenvalue spectra, as opposed to the rapidly decaying
ones produced by ENM-NMA and simulation PCA. The eigendecompositions from the
random matrices gave large covariance overlaps with each other, as they would with any
other eigenset (set of eigenpairs), invalidating their use as a control.

To work around the covariance overlap’s sensitivity to the shape of the eigenvalue spectrum,
we randomly scrambled the eigenvectors such that they were associated with different
eigenvalues. We then performed a bootstrap-like analysis, generating 10,000 eigensets in
this manner and computing their covariance overlap to the full trajectory. This was used to
compute the mean (Ω̄) and standard deviation (σ) of the resulting distribution. Finally, we
calculated the Z-score for the ENM’s eigenset using:

Leioatts et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2013 July 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(7)

3 Results
3.1 Any Spring Function can Perform Well

We quantified the performance of several different spring functions and resolutions of
network models by fitting to MD simulations. In order to determine the robustness of the
parametrization, each spring function was fit to the entire data set (all three proteins) and to
each trajectory individually. The results in Figure 1 and Supplementary Tables S1–S3 show
that all spring functions considered yielded models which predict motions with similar
fidelity. Figure 1A shows the results for spring functions parametrized using the β2AR data.
The covariance overlap between an ENM using the indicated spring function and the PCA
of the MD simulation was plotted. Panels B and C show equivalent data for rhodopsin and
CB2, respectively. In each case, the data is clustered by model resolution.

We found that after fitting, all spring functions for a particular protein and resolution
produced similar overlaps. This result was quite surprising considering the scope of the
literature based on defining and improving spring functions. Comparison of the various
potentials revealed the basis of this similar performance; as shown in Figure 2, all of the
models produce very strong interactions between each bead and the first surrounding shell of
beads, while more distant interactions are roughly an order of magnitude weaker. The
standard anisotropic network model, with spring contacts represented by the Heaviside step
function, also follows this pattern: the fitting produces a very short cutoff such that only
immediately neighboring beads are connected. A close inspection of the literature reveals
this same trend of stiffening close contacts in the initial development of these
methods.24,27,30,31,45 In fact, the original Rouse model only connected beads neighboring in
sequence.63 Specifically addressing ENMs, Hinsen et al. found the transition to be 4.0 Å24

and Moritsugu & Smith gave virtual bonds a stiffness two orders of magnitude higher than
virtual angles.30 The vertical dotted line drawn at 3.8 Å in Figure 2 represents the mean
distance of the first Cα shell.

3.2 Performance is Affected by Model Resolution
In examining Figure 1, it is immediately clear that ENM performance is affected by model
resolution. For example, the two-bead per residue model yielded a lower covariance overlap
in all cases. The overlaps and spring parameters used are completely documented in
Supplementary Tables S1–S4. The lower overlap appears to be due to three phenomena.
First, a higher dimensional system attempts to predict the dynamics with higher detail, in
effect giving the ENMs a tougher problem to solve. Second, side chains often have more
than one rotameric minimum and thus do not obey the underlying harmonic assumption
characteristic of network model normal modes. Finally, working in a higher dimensional
space intrinsically reduces the dot products between vectors, since the entropic penalty for
making two vectors parallel increases dramatically.

This shows up in the PCA results from the MD as well; Figure 3 shows that the block
averaged covariance overlap is lower than in the one-bead per residue resolution PCA.
However, the drop in ENM overlap when changing resolution outpaced the new block
averaging result. This is illustrated in Figure 4, which shows how the various ENMs perform
for rhodopsin. In panel A, the similarity to MD of the one-bead per residue models is plotted
over the block averaging result. With standard resolution, the ENM normal modes sample
approximately as well as a 400–450 ns simulation. This contrasts with panel B, which shows
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the two-bead per residue result where the ENMs reproduce the dominant fluctuations with
the accuracy of about 350 ns of simulation. For all spring functions tested the higher-
resolution model produced modes less similar to the MD.

3.2.1 Resolution Impacts Significance of Covariance Overlap—To assess the
statistical significance of the lower covariance overlaps, we used a standard measure, the Z-
score. A bootstrapping-like procedure was used to generate a large number of fake data sets
with the appropriate dimensionality and eigenvalue spectrum (see Section 2.2.2 for details).
The Z-score analysis showed that the significance of a particular covariance overlap
increased with model resolution. The aggregate Z-scores are plotted against their respective
covariance overlaps in Figure 5. Here each datum is a particular spring formalism. The
significance, which is plotted as a function of covariance overlap, shows that the same
overlap is more difficult to achieve in the higher resolution models.

3.3 Fitting to a Single Protein is Sufficient
Our next step was to examine ENM dependence on the dataset used for parametrization. To
do so, we performed a cross-validation. Specifically, we fit ENMs to each MD trajectory
individually and used the resulting spring parameters to compute the motions for the other
proteins. For completeness, we also tested the performance of ENMs fit to the 3 trajectories
in aggregate. The results, shown in Figure 6, indicate very little difference in performance
regardless of which data set was used for fitting.

The lack of improvement upon individualized fitting stems from homogeneity in the spring
parameters. As mentioned in Section 3.1, all functional forms tend to favor stiffening the
first shell interactions much more than distal contacts. In fitting Eq. (2) this was realized by
a shortened cutoff distance, which can be seen in Table 1. In all cases, using the new
parameters, increased the covariance overlaps to their respective simulation PCA results.

Although this result may be due in part to the similarity of the three proteins used for fitting
(all class A GPCRs), there is some level of generality in fitting network model parameters
— at least among the proteins tested. In order to further validate our parameters, we
compared them to simulations of two additional GPCRs not used for fitting: A2A (2.2 μs in
aggregate) and opsin (472 ns). The opsin case is particularly challenging, since the structure
more closely resembles an active GPCR structure, while the others clearly model the
inactive forms of the protein. Table 1 lists their covariance overlaps using the typical 15 Å
cutoff (before fitting) and the cutoffs we obtained via parameterization. We found that the
covariance overlaps for both proteins behave much as the ones used in the fitting: the fit
parameters perform significantly better than the standard ones in both the one- and two-
beads per residue models, with covariance overlaps comparable to those for the other
proteins. The covariance overlaps of the one-bead per two-residues model were similar
before and after fitting. This is unsurprising, because fitting only shortened the cutoff by ≈1
Å.

3.4 Does the Quality of the Fitting Results Depend on the Trajectory Length?
Our previous work suggested that fitting to short MD trajectories was a flawed strategy
because, in addition to larger statistical errors, short trajectories also differ systematically
from longer ones. Specifically, the eigenvalues computed from PCA on short trajectories
decay more slowly. Physically, this means that short trajectories systematically
underestimate the importance of the largest motions in the system. In that manuscript (ref.
35), we argued that fitting against short trajectories would recapitulate these problems, and
thus should be avoided.
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In the present study, we have shown that the overall quality of the results, as measured by
covariance overlap, does not seem to depend sensitively on the data used in the fitting. To
clarify the apparent contradiction, we explicitly tested ENM performance while varying the
length of the trajectory used for fitting.

To do this, the first microsecond of each long trajectory was split into contiguous pieces,
yielding sets of 25, 50, 100, 250, and 500 ns trajectories. These shorter trajectories were then
used to parametrize the various ENM formalisms in the same manner described in Section
2.2. The resulting parameters were then used to perform ENM calculations that were
compared to the entire trajectory: 1.02 μs for β2AR, 1.6 μs for rhodopsin, and 1.9 μs for
CB2. Surprisingly, ENMs parametrized against short trajectories perform nearly as well as
those fit to long trajectories, as shown in Figure 7.

Following the results of parametrizing with short trajectories we wanted to further explore
why ENM-NMA performance was not affected by the trajectory length used for fitting. We
previously noted that the power spectra from PCA applied to trajectories varied
systematically with the length of the trajectory, as seen in Figure 8.35 Panel A shows that as
the simulation time increases the fractional contribution made by the lowest mode increases.
Note that this is not due to larger motions by the protein itself — the RMSD to the starting
structure plateaus within the first 100 ns — but rather due to the dynamics, as longer time-
scale motions are gradually accessed by the trajectory.

From our previous data we predicted an improvement of ENM power spectra after fitting.
However, in the present work, we found that the difference between ENM power spectra
after fitting a short or a long trajectory is negligible. An example is shown in panel B of
Figure 8, using the HCA formalism. Here, the power spectra averaged over the entire
ensemble were plotted for each of the trajectory lengths tested. This includes ENMs fit to
each of the shorter trajectories along with the those fit to the full trajectory. The error bars
represent one standard deviation from the ensemble average of shorter trajectories. The
fractional contribution of a particular mode to the overall motion is plotted for the first 10
eigenvalues in the ENM-NMA, with modes increasing along the horizontal axis.

Interestingly, the ENM-NMA power spectrum, shown in panel B, is actually slightly
“softer” (the lowest modes contribute less to the overall motion and the contribution decays
more slowly) after fitting to longer trajectories. This trend was seen in all distance-
dependent spring functions. However, the change in fractional contribution of the most
dominant mode is much smaller than the change seen in the PCA of increasingly longer
simulations. By contrast, the power spectrum of a simulation’s principal components (Figure
8A) changes drastically with increasing time. Fitting improved the ENM-NMA power
spectrum, but not enough to keep up with the changes in fractional contribution of the
simulation’s principal components. Thus, it appears that this flaw is fundamental to the
ENM formalism. One possible explanation is that the lowest frequency modes in the MD
trajectories are transitions between similar substates, as opposed to fluctuations about a
single minimum. These motions are intrinsically absent in an ENM-NMA formalism, and
this absence could account for the lack of improvement in their performance.

3.4.1 Low Frequency PCA Modes Show Transitions between Substates—In
order to assess whether transitions appear in the simulation we histogrammed the projection
of our rhodopsin trajectory onto the lowest principal components (also called the right
singular vectors).35,64 The peaks in such a histogram indicate the highly populated
conformational substates along a given mode. Multiple well-distinguished peaks suggest that
there is more than one distinct state along that vector, whereas unimodal histograms indicate
fluctuations about a single state. The latter case is well-modeled by a harmonic
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approximation, while the former is not. As can be seen in Figure 9, time series for the
slowest modes of a one-bead per residue PCA show evidence of structural transitions — the
motions along these modes have multiple peaks. These low-mode transitions indicate the
sampling of separate substates within the most concerted motions in the trajectory. These are
precisely the kinds of anharmonic motions that ENMs are unable to predict; even if they
accurately detect the direction of motion, they will not be “aware” of the second energy
well, and will thus systematically underestimate the amplitude of the motion along the
mode.

3.5 ENMs are Robust to Changes in Parameters
In order to systematically explore the dependence of ENM performance on the chosen
parameters, we explicitly tesselated the parameter space for one model (HCA) using the
one-bead per residue resolution. We found the two most important parameters were the
cutoff distance, Rc, and the exponent weighting, d. Figure 10 demonstrates that the
covariance overlap is quite robust to systematic variation of these parameters. In Figure 10
the value of the exponential (“d” in Eq. (4)) is plotted on the vertical axis and cutoff distance
(“Rc” in Eq. (4)) on the horizontal axis, with the resulting covariance overlap indicated by
the heat map’s intensity. This illustrates that a broad range of parameters (d = 7–14 and Rc =
1–5) yielded similar overlap with the simulation’s principal components. This degeneracy in
parameters partially explains ENM’s robustness to the variations we tested, revealing how
many spring functions and even shorter trajectory fits arrive at such similar results.
Interestingly, at Rc < 3.8 Å nearly all connections are represented by the exponentially
decaying spring. Thus, even changing the spring function does not significantly impact the
overlap.

4 Discussion
Through the use of long trajectories and an eigenvalue-sensitive metric we were able to
quantitatively show and clarify the underlying generality of network model parameters. We
found that this robustness makes network models relatively easy to parametrize and that
choice of spring function makes little difference on performance. Interestingly, we also
found essentially no dependence on the length of trajectory used for parametrization.
However, this was largely because the network models were not able to accurately
reproduce the eigenvalue spectrum of a simulation. Some other variation in the formalism
that is able to better capture this power spectrum might well benefit from being fit only to
long trajectories.

4.1 ENMs Rely on Short-Range Contacts
With the numerous formalisms in print, we set out to measure the accuracy of each ENM
with our set of long simulations. This dataset has the advantage of reproducing fluctuations
on a much longer time scale than was used for earlier ENM parametrizations, so there is a
higher probability of capturing the slow motions predicted by a network model.

As shown in Figure 1 and Figure 4, the choice of spring function has little bearing on the
performance of a network model. Figure 2 brings the reason to light: all spring functions
tend to favor much stiffer springs in the first Cα shell. Interestingly, Tozzini reported this
same trend in a recent review of coarse-grained models for protein motion.65 This evidence
argues against any single functional form and elucidates their most striking commonality,
reliance on the short-range contacts.
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4.2 Higher Resolution Models Show Lower Covariance Overlap
Upon fitting higher resolution models the covariance overlap decreased regardless of spring
function. This decrease was more rapid than that found in block-averaged PCA results. In
order to characterize this dependency on resolution, we implemented a Z-score test (using
decoupled eigenpairs to calculate an average overlap as described in Section 2.2.2).
Although the absolute covariance overlap dropped, the statistical significance generally
improved. Moreover, the simulation time required to produce equivalent covariance
overlaps is longer for the higher resolution models (see for example Figure 3), suggesting
that the higher resolution models do perform well.

4.3 Parameters are Independent from Protein Parametrized
Although our parametrization set consisted of only three simulations, each of a class A
GPCR, the result of cross-validating the parametrization of each protein is important. The
high overlap when cross-validating ENM normal modes with various proteins reveals two
key details. The first is that there is some level of generality within the proteins we tested,
and the results of our parametrization can be used in the future to study GPCRs. To this
effect we tested our shorter Heaviside cutoffs on simulations of two other GPCRs, opsin and
A2A. The results in Table 1 show that the fit parameters perform better than the defaults for
both proteins, although the change is insignificant for the one-bead per two-residues
resolution, and that the performance for these proteins is comparable to that for the ones
used in the fitting. Thus, we conclude that ENMs are robust to variations in spring
parameters, as illustrated by Figure 6 and Figure 10. That said, we believe it is important in
the future to extend this test set to other protein architectures, particularly globular proteins.

Our results explain the ease of finding high overlaps and, considered together with the
rigidity of first shell contacts, show that any ENM can be quickly parametrized “by hand”
by stiffening those contacts. Another method would be to discretely represent the first shell
separately from all other contacts, as in Eq. (5). This is in fact used as part of the REACH30

and edENM33 formalisms, but the separation of more distal contacts presented in these
methods was not found to be critical to ENM performance.

Taken together, these two pieces of evidence demonstrate the robustness of network models.
In light of these results, we plotted the parameter space of the HCA formalism. Figure 10
illustrates the broad range of ENM parameters that yield high covariance overlaps. This
demonstrates ENMs’ insensitivity to choice of parameters and functional form.

4.4 ENMs are Insensitive to Trajectory Length used for Parametrization
The results shown in Figure 7 were surprising. Our previous study showed that the fractional
contribution of motions in MD simulations had a strong time dependence and that network
models better reproduced this curve after fitting.35 While it is clear from Figure 8A that the
power spectrum of a simulation PCA result changes shape with trajectory length, closer
inspection of panel B shows that the power spectrum of an ENM-NMA result still
underestimates the contribution of the first few modes. Also, Figure 8 showed that the power
spectra of ENM-NMAs fit to different length trajectories varied little. Therefore, it appears
that the parametrization improves overlap in a manner independent from the trajectory
actually fit. This revealed a flaw inherent in all network models we parametrized: they were
unable to correctly predict the relative importance of the lowest-frequency modes of long
simulations. One possible explanation is shown in Figure 9. The first three principal
components of the simulations contain transitions (data shown for rhodopsin). ENM-NMA,
which uses a harmonic representation, is unable to predict such motions. In the future, an
ENM that could accurately describe the power spectrum of a long simulation would likely
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benefit from fitting to only long trajectories. In this respect, the “double-native” Gō model
proposed by Zuckerman and co-workers is quite intriguing.66

In addition, incorporating more simulations of diverse molecules into this study without
relaxing our restriction of trajectory length may improve our interpretation. GPCR
transmembrane regions are quite rigid, so including other proteins would further elucidate
the behavior of eigenvalue contributions. Including different classes of proteins would also
be significant as our results showed a very general trend in fitting — namely stiffening the
first shell contacts.

5 Conclusions
We evaluated many formalisms present in the elastic network model literature using a set of
long (each > 1 μs) molecular dynamics simulations. The principal components of these
simulations were the basis for comparison, evaluation, and fitting of network models. Fitting
was preformed using an eigenvalue-sensitive metric, the covariance overlap, in order to
capture the relative amplitude of motions present in both systems. Somewhat surprisingly,
all of the formalisms showed roughly equivalent performance regardless of the data used for
parametrization. This result could be viewed as disappointing — sophisticated efforts to
improve the models are largely unsuccessful — or as informative due to the similarities in
parameters between functional forms. Our results showed that fitting caused all formalisms
to assign strong interactions between first shell contacts and much weaker interactions for
longer range contacts.

This led us to tessellate the parameter space in several models. We found that the spring
parameters were fairly robust with broad ranges yielding high covariance overlaps.
Therefore, we conclude that while significant improvement can come from fitting the spring
parameters, the formalism complexity has little bearing on the actual accuracy of the model.
In addition, a high performance parametrization can likely by obtained easily by assigning
stiff connections between Cα’s neighboring in sequence and much weaker connections to
more distal contacts.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Covariance overlap, Eq. (6), between an ENM result and the full length simulation PCA for
representative spring functions clustered by model resolution. “Heaviside” refers to the
standard distance cutoff method described by Eq. (2). “Exponential” form is defined by Eq.
(3), “HCA” is defined by Eq. (4), and “constant” implies a scalable constant value, for
instance k1 in Eq. (5). Spring names separated by colons (:) represent functions where
explicit bonding was used. Here, Cα’s neighboring in sequence are bonded (n to n+1). When
the two-bead per residue resolution is used each Cα bead is bonded to its own CCoM bead as
well. The hierarchy of explicit levels of bonding takes the form (n to n+1 : n to n+2 : … : n
to non-bonded). All values reported were fit to the full simulation using a Nelder-Mead
Simplex62 optimization to maximize the covariance overlap. Data is shown for (A) β2AR,
(B) rhodopsin, and (C) CB2.
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Figure 2.
Spring stiffness as a function of distance. Several formalisms are shown. “HCA” refers to
the function developed by Hinsen et al.24 and defined here by Eq. (4). “HCA*” is the same
function, but uses values obtained from our parametrization.35 “Exponential” is defined by
Eq. (3), using a = 1.055, which gave the highest covariance overlap in our simultaneous fit
of all three trajectories (see Supplementary Table S4) when using the standard one-bead per
residue resolution. “Constant: Exponential” refers to Eq. (5), after fitting (parameters in
Supplementary Table S4). Lastly, the parameters from the realistic extension algorithm via
covariance Hessian (REACH)30 method are shown. Here, springs are split into four
hierarchical levels; virtual bonds, angles, and torsions and a non-bonded term. The
parameters reported in that study were multiplied by a factor of 10 for easier visualization.
The vertical dotted line drawn at x = 3.8 Å represents mean Cα distance.
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Figure 3.
Block covariance overlap of rhodopsin for all three resolutions. The overlap between shorter
contiguous simulation blocks are plotted against the full length trajectory with block length
increasing along the x-axis. Both the higher and lower resolution models (blue and red
curves, respectively) converge more slowly than the one-bead per residue resolution (green
curve).
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Figure 4.
Rhodopsin simulation block covariance overlap plotted with ENM covariance overlaps. As
in Figure 3, overlap is computed against the full trajectory. Here, ENM covariance overlaps
are overlaid using the same coloring and naming convention as Figure 1. (A) Results of the
standard one-bead per residue resolution, as plotted in Figure 1B, middle column. After
fitting, all spring functions besides the simple distance cutoff achieved a similar overlap
(0.47–0.49) which is equivalent to the block averaging result for a 375–450 ns simulation.
(B) Two-bead per residue resolution (described in Section 2.1.1), as plotted in Figure 1B,
right column. Here the blocked covariance overlap converges more slowly, but the ENM
overlap is also lower than the standard resolution model. The covariance overlaps are again
very similar between ENMs, scoring about 0.41, which was comparable to the average
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overlap of 350 ns trajectory blocks. Again, the distance cutoff method performed slightly
worse than the more sophisticated spring functions.
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Figure 5.
Significance of covariance overlaps are dependent on model resolution. Z-scores are plotted
by their covariance overlap with the full simulation PCA. We first computed the covariance
overlap between ENM-NMA and the simulation PCA. After this the eigenpairs were
scrambled (as described in Section 2.2.2). The new eigenset was then compared to the
simulation PCA. This was done for 10,000 iterations and the mean and standard deviation of
the resulting covariance overlaps was used to calculate a Z-score for the original result. Data
points in red used the one-bead per two-residues resolution, green points represent one-bead
per residue resolution, and blue points represent two-beads per residue resolution. Data is
shown for all three proteins studied: (A) β2AR, (B) rhodopsin, and (C) CB2.
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Figure 6.
Simultaneous fitting yields similar accuracy as individual fitting. Here data is clustered by
the protein tested. The four bars in each cluster represent the different proteins which are
used in parametrization. First, all three proteins are fit simultaneously (black), then
individual fits to β2AR (blue), rhodopsin (red), and CB2 (green) are conducted. In general,
testing with the protein used for parametrization did not achieve a significantly higher
covariance overlap. Simultaneous fitting also produced ENMs that performed almost as well
as individualized fits. The naming convention from Figure 1 is repeated here. Results of (A)
the standard distance cutoff ENM defined by the Heaviside function, Eq. (2), (B) the
exponential function described by Eq. (3), (C) the HCA function defined in Eq. (4), (D) the
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spring function explicitly distinguishing “bonded” terms, Eq. (5), (E) the spring function
distinguishing both “bonded” and “angle” terms from “non-bonded” terms, Eq. (S8).
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Figure 7.
ENM performance does not depend on the length of trajectory used for parametrization. The
first microsecond of each MD Trajectory was broken into short contiguous pieces (of 25, 50,
100, 250, and 500 ns) and then used to fit the various ENM spring formalisms. The average
covariance overlap across an ensemble (±) one standard deviation is plotted as a function of
the trajectory length used to parametrize the model (note log-scaled x-axis). Here data is
shown for rhodopsin using the typical one-bead per residue resolution. Curves show
different spring functions, labelled as described in Figure 1. ENMs fit to longer trajectories
do not have significantly higher covariance overlaps.
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Figure 8.
ENMs fail to accurately reproduce the significance of the lowest modes of motion. The
fractional contribution of the 10 most significant modes (normalized contribution of the 10
lowest frequency eigenvalues) are plotted for (A) the PCA of the simulation and (B) the
HCA formalism using rhodopsin. Data is compiled by averaging the eigenvalues across each
ensemble of short simulations, for a given trajectory length. Error bars indicate one standard
deviation in our ensemble of shorter trajectories. (A) The fractional contribution of the
lowest mode increases with longer simulations. The spectrum from PCA of the full
simulation is shown in orange. The first two modes contribute more to the variance as
simulation time increases. (B) Network models fail to reproduce the significance of the
lowest, most concerted motions. The key denotes the MD trajectory length used to
parametrize each ENM. Data from the HCA formalism24 Eq. (4) is shown. Similar results
were obtained with other functional forms. In all trajectory lengths used for fitting, the ENM
under represents the importance of the lowest modes. In contrast to the molecular dynamics
PCA, fitting longer trajectories appears to decrease the significance of these lowest modes.
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Figure 9.
Histograms of right singular vectors (projection of motions onto the eigenvectors) show
multiple states in the simulation’s principal components. These histograms show the
normalized displacement along a given principal component and were constructed using the
PCA of Cα’s from our rhodopsin simulation. Motions along the (A) first, (B) second, and
(C) third components are shown. In all three plots multiple peaks are present.
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Figure 10.
A broad range of parameters are capable of yielding high overlap with simulation. The
parameters d and Rc of Eq. (4) were systematically varied and compared to the PCA of the
full length simulation of rhodopsin, using the covariance overlap metric, Eq. (6). Data
shown used the standard one-bead per residue resolution. This revealed a large area of high
overlap (from roughly d = 6–14 and Rc < 5 Å).
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Table 1

Covariance overlaps using the standard Heaviside function (Eq. (2)) after parametrization against β2AR,
rhodopsin, and CB2 in aggregate. The data is shown for all three resolutions tested, one-bead/two-residues
(1/2), one-bead/residue (1/1), and two-beads/residue (2/1). A2A and opsin were not parametrized. Covariance
overlaps between these ENM-NMAs and simulation PCA is reported first using a standard 15 Å cutoff
distance and then after using the parameters obtained by fitting the other three proteins (cutoff distances
indicated).

Covariance Overlap

Protein 1/2 1/1 2/1

β2AR 0.442 0.490 0.251

rhodopsin 0.380 0.413 0.358

CB2 0.413 0.380 0.374

Before Fit Rc = 15 Å

A2A 0.361 0.305 0.305

opsin 0.330 0.273 0.222

After Fit Rc = 13.93 Å Rc = 8.636 Å Rc = 8.628 Å

A2A 0.362 0.410 0.410

opsin 0.327 0.363 0.296
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