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Abstract
Dynamic biological systems, such as gene regulatory networks (GRNs) and protein signaling
networks, are often represented as systems of ordinary differential equations. Such equations can
be utilized in reverse engineering these biological networks, specifically since identifying these
networks is challenging due to the cost of the necessary experiments growing with at least the
square of the size of the system. Moreover, the number of possible models, proportional to the
number of directed graphs connecting nodes representing the variables in the system, suffers from
combinatorial explosion as the size of the system grows. Therefore, exhaustive searches for
systems of nontrivial complexity are not feasible. Here we describe a practical and scalable
algorithm for determining candidate network interactions based on decomposing an N-
dimensional system into N one-dimensional problems. The algorithm was tested on in silico
networks based on known biological GRNs. The computational complexity of the network
identification is shown to increase as N2 while a parallel implementation achieves essentially
linear speedup with the increasing number of processing cores. For each in silico network tested,
the algorithm successfully predicts a candidate network that reproduces the network dynamics.
This approach dramatically reduces the computational demand required for reverse engineering
GRNs and produces a wealth of exploitable information in the process. Moreover, the candidate
network topologies returned by the algorithm can be used to design future experiments aimed at
gathering informative data capable of further resolving the true network topology.

1 Introduction
Network identification, or reverse engineering, is an inverse problem that is usually highly
underdetermined in applications in biology due to the complex interactions genetic circuits
possess1–5. Gene regulatory networks (GRNs) prove difficult to reconstruct using
computational tools and high-throughput data such as microarray gene expression data6.
This difficulty is a bottleneck in determining the causal relationships buried within high-
throughput data, in part, due to overwhelming traditional methods for network identification.
Thus, there exists a need for new systematic tools to aid in the identification of the
underlying architecture of networks like GRNs7.

Initial efforts to develop reverse engineering methodologies for GRNs focused on clustering
genes into hierarchical functional units based on correlations in expression profiles8. Of
these, time-lagged correlation analysis is the most common method to infer causal
relationships from time series gene expression data9,10. Other identification methods such as
genetic algorithms11, neural networks12, and Bayesian models13 have also been developed.
Moreover, several methods have been suggested to infer GRNs from expression data using
prior knowledge of the GRN, perturbation responses, and other techniques14–17. To deal
with data shortages and computational inefficiency, a method using singular value
decomposition (SVD) of linear models has been developed18 and integrated with a genetic
perturbation strategy to provide an experimental protocol for deducing network topology19.
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These methods for network reconstruction have used specific assumptions and
simplifications to deal with the inherent under-determination problem of network inference.
Most methods rely on linear relationships to reconstruct the network without considering
any combinatorial effects, noise or time delays. As a result, these approaches fail to capture
the inherent nonlinearity of the interactions and interdependencies within the network20.

To capture complex dependencies (e.g. nonlinearities) in gene expression patterns, methods
using general measures of dependency based on mutual information (MI) have been
proposed. The simplest one, Relevance Network (RN), infers the regulatory interactions
when the MI is larger than a given threshold21. Other methods include Algorithm for the
Reconstruction of Accurate Cellular Networks (ARACNE)22, Context Likelihood of
Relatedness (CLR)23, Maximum Relevance/Minimum Redundance Network (MRNET)24,
and most recently, Conservative Causal Core (C3NET)25. Because these methods do not
give interaction direction, one has to use MI with caution in drawing biologically
meaningful conclusions. Moreover, most of these methods require a significant amount of
initial data which limits their usage to only the most studied gene regulatory networks.

To circumvent many of these issues, we propose a method that serves as a first step to
unraveling the myriad of possible network topologies comprising GRNs. Its purpose is to
produce candidate networks reconstructed from an initial perturbation data set of the mRNA
profile dynamics. The approach relies on a combination of using both the linear and
nonlinear relationships to account for the expected biological behavior. The linear
information is extracted from gene expression profiles and used to either generate an initial
seed network from which to expand or used to guide a biased search strategy during network
reconstruction. The nonlinear relationships are captured using a generalized equation
governing the degree of control that a set of genes have on the dynamics of a target gene.
Optimal solutions for the network inference problem are difficult to obtain; it is analogous to
finding a needle in a haystack. Furthermore, attempts using optimization algorithms tend to
result in suboptimal solutions due to the large, non-convex solution space. Methods that can
capture different possible solutions enhance the robustness of the predicted interactions and
produce better approximations to the global solution26,27. Our proposed method decomposes
the problem of inferring a network of size N into N different subnetworks, where the goal is
to identify the regulators of one of the genes in the network at a time. We then combine the
results and get the globally optimal solution. This approach dramatically reduces the
computational demand required for reverse engineering GRNs and produces a wealth of
exploitable information in the process. The method can further be expanded and integrated
into the design of optimal experiments.

2 Methods
Our algorithm was tested against several mock, randomly generated networks of 4, 10, 25
and 50 genes. These networks were either obtained from the DREAM database14 or
designed to possess biologically relevant motifs based on the in silico DREAM networks28.
The networks with 4 and 25 genes were generated using these motifs. The networks of 10
genes were from the DREAM4 challenge (insilico_size10_1, insilico_size10_2 and
insilico_size10_3), and the networks of 50 genes were from the DREAM3 challenge
(insilico_size50_Ecoli1, insilico_size50_Ecoli2 and insilico_size50_Yeast1). Three
realizations of each network size were used to gather statistical and performance information
regarding the algorithms reverse engineering capabilities, versatility and scalability. For
each network, gene profile data were simulated using a system of delayed differential
equations approximating mRNA expression dynamics. The model is similar to that used for
the DREAM challenges14. Randomly generated parameter sets were used to produce
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dynamically rich, yet biologically relevant profiles, which were used as input for the
algorithm.

2.1 Model
The governing equation for mRNA level xj is a mass balance:

(1)

with

(2)

where rj(t) is the rate that the jth gene is transcribed, dj is a degradation rate constant and x0j
is the initial condition. Gene transcription is a complex event involving the binding of the
transcriptional machinery and various regulatory proteins. Here we model this process as
governed by competitive binding of activating and inhibiting transcription factors subject to
cooperativity and saturation:

(3)

where IAj and IIj are the sets of indices of variables that act as activators and inhibitors of xj
production. The time delay τ accounts for a delay between mRNA transcription and
translation. (Here τ is assumed a fixed parameter.) The constants KAi,j and KIi,j can be
thought of as binding constants; cooperative, nonlinear binding is assumed with Hill
coefficient n > 1. The constant r0j is the maximal rate of mRNA production and ej accounts
for potential externally stimulated or constitutive transcription that is not brought about
directly through the explicit model variables. We define pj = {KAi,j, KIi,j, r0j, ej} as the set of
all adjustable parameters pertaining to the jth subnetwork.

The adjustable model parameters are optimized using a global approach followed by local,
gradient-based search. For the global optimization, a custom algorithm was used. This
algorithm consists of a simple random walk in parameter space. The best parameter set
obtained from the global search is then used as the starting point for the local optimization.
For the local approach, MATLAB's fmincon was used with the default settings.

2.2 Network Reconstruction
The goal of our algorithm is to determine the network topology of systems such as that
illustrated in Figure 1 based on measurements of model variables without any prior
knowledge of the network. In this way, the algorithm serves as a means to deconvolve the
complex interactions observed in dynamical data. It is designed to minimize the number of
false negatives and thus is biased towards producing false positives. This approach is useful
because the results generated by the algorithm can be used to design future experiments (e.g.
gene knockout (KO) experiments) targeted at pruning and modifying the reconstructed
network. (It is easier to remove a false positive than correct a false negative in the context of
network inference.) A unique key to our algorithm's efficiency is that candidate networks
associated with activation and inhibition connections to an individual gene are
independently generated and tested. To do this, Equation (1) is integrated for state variable j
with other variables i (≠ j) determined by a smooth interpolation of the data. This way, a
subnetwork for a gene in the network is a one-dimensional problem. One-dimensional
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systems representing each gene can then be probed on independent processors of a
distributed system, making the algorithm trivial to parallelize.

The algorithm, with overall architecture illustrated in Figure 2, works by constructing trial
subnetworks to compare using kinetic data on the individual variables. This is a standard
approach to reverse-engineering biological networks. Trial networks are perturbed by adding
or subtracting randomly chosen network connections, and a fitness function is evaluated to
determined whether or not to accept the proposed network structure. The fitness function
used in the algorithm is based on a modified estimator of the likelihood of a given model
explaining the data:

(4)

where E is the mean-squared error between model prediction and the data (given optimal
parameter values) and np is the number of adjustable parameters. The term α lnnp represents
a penalty that is proportional to the number of structural parameters; in practice the value of
α is set according to the expected mean-squared errors that provide satisfactory fits to the
data. For example, when the expected mean-squared errors are small, α is also set at a
relatively small value so that the fitness is not dominated by either the error or structural
penalty. Since in most examples presented herein, we do not explicitly model the expected
noise contribution for data sets used, we set the acceptability threshold at an extremely small
value. That said, the approach is robust to noise-corrupted data when the noise is on the
order of the expected biologically induced variability. To demonstrate this, we added a
relative 10% Gaussian noise (N(0, 0.1)) to represent this biological variability to one of the
data sets and compared the results generated from the corresponding noise-free data set. The
only change made to the algorithm to address noisy data is that the threshold for determining
an acceptable fit to the data and the structural penalty parameter is accordingly adjusted to
populate the list of candidate subnetworks. A candidate subnetwork is defined as a
subnetwork that enables simulation results to reproduce the available data.

When searching for candidate subnetworks, trial subnetworks are tested against the current
best subnetwork using two cascading iteration loops. When a trial subnetwork's fitness is
greater than the current best subnetwork, it then becomes the current best subnetwork, and
the search is continued until the current best subnetwork is deemed acceptable or the
maximum number of iterations is met. The outer iteration loop controls the acceptability
criteria while the inner iteration loop keeps track of the number of trail subnetworks tested
per outer loop iteration. The acceptability criteria checks whether or not the mean-squared
error of a model supported by a candidate subnetwork is sufficiently small. A subnetwork is
deemed acceptable when it's mean-squared error is less than the value of the acceptability
threshold, which is determined by the outer loop counter. This check prevents wasting
computational resources for diminishing returns. The quality of the data determines the
value of these search-based parameters, i.e. the larger the measurement uncertainty, the
more lax the acceptability criteria; and the more difficult it is to find a candidate
subnetwork, the higher the values attained by the loop counters. This iterative strategy is
essentially an evolutionary approach to the network inference problem and provides a
practical method for constructing candidate subnetworks.

Two different methods for initializing the network and two different methods for perturbing
the network are employed. For non-biased initialization, the initial network is assumed to
have an external activator and no other network activation or inhibition edges. The non-
biased perturbation algorithm selects, with equal probability, to either add or remove an
edge in the trial network at each perturbation iteration. If an edge is added, that edge is
assigned to be either an activator or inhibitor, with equal probability.
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The biased initialization and perturbations strategies are based on the time-lagged
correlation matrix of the data:

(5)

where gi(t) is the level of the ith mRNA transcript at time t. The correlation coefficients for
each column of C, represents a potential measure of the degree of influence the ith gene has
on the mRNA dynamics of the jth gene after time lag τ. The gene selection probabilities are
computed using their relative contribution to the sum total of the correlation coefficients.
These probability intervals are computed using

(6)

where pSk is the kth element of a probability interval for selecting which gene to connect to
the current network and ND is the set of the disconnected genes.

For each gene present in the network, an ensemble of candidate subnetworks are sought until
the frequency distributions of network edges (connections between genes) converges. When
the subnetwork ensembles for all genes have converged, the significant connections are
pooled together, and the topology for the entire GRN is generated based on a consensus.

Significant connections are based on the number of times a given connection appears in the
ensemble of candidate subnetworks. When this number exceeds a certain threshold (i.e.
appears in 45% of the candidate subnetworks), the connection is assumed to be significant
and is stored in the consensus topology. In cases where no connection exceeds the threshold,
the most frequently occurring activator and inhibitor connection are assigned in the
consensus topology, as long as their respective frequencies of appearance exceeds some
minimal threshold (i.e. 25%). In some cases, time-lagged mRNA expression profiles are
significantly correlated with other profiles. The thresholds were set to capture most of these
correlations in order to cover as many subnetwork topologies capable of supporting data-
consistent simulations. This leads to dense networks in order to maximize coverage.
(Coverage is defined as the percent of true edges recovered by the algorithm.) This approach
enables the entire network dynamics to be reproduced when the ensemble network is
simulated for the examples studied below. Future experiments can then be designed based
on the consensus network topologies to shape these dense networks into their true
topologies.

3 Results and Discussion
Figure 1 presents the reconstruction results generated by the algorithm from dynamical
expression data simulated from a biologically inspired network of 4 genes. The algorithm is
able to generate candidate subnetworks, as pictured in Figure 1C, capable of fitting the
mRNA expression profiles with arbitrary accuracy, as demonstrated in Figure 1B. The
algorithm successfully predicted all of the real connections, erroneously predicted two false
positives (gene 3 activating gene 1 and gene 2 inhibiting gene 3) and generated zero false
negatives as shown in Figure 1A. These results demonstrate the intrinsic, non-unique nature
of the problem at hand. Although all the simulated trajectories pass through the data points,
there is insufficient information in the data to discriminate between the candidate
subnetworks returned by the algorithm. Despite this, the algorithm achieves its primary
objective: to search out the topological network space and identify potential networks that
produce simulations consistent with the experimental data while minimizing the number of
false negatives.
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Figure 3A shows the consensus subnetwork topology associated with one gene (gene 4) in a
10 gene example. The dark lines represent connections identified by the algorithm, while the
gray dashed lines are the connections present in the real network missed by the algorithm.
An ensemble of 58 candidate subnetworks were needed to converge for this gene; the
average number of candidate subnetworks needed for convergence was over 130 for this 10
gene network. In general, a minimum of 50 candidate subnetworks were required for
subnetwork convergence in order to prevent an undersampling bias. In Figure 3B, the
simulated mRNA trajectories demonstrate that despite only two of the four connections
present, the subnetworks are capable of explaining the experimentally observed dynamics.
Note that the mRNA trajectories were simulated using the different subnetworks from the
ensemble of this gene. This further highlights the need for additional information in order to
identify the connection between various genes in a regulatory network. In terms of the
fraction that each gene appears as an activator or inhibitor for the target gene, it is clear that
gene 8 serves as an activator and gene 3 serves as an inhibitor as shown in Figure 3C and
3D, respectively. The solid black line in the bar graphs represents the 45% cutoff value used
to determine significant connections. What is not clear is the regulatory role genes 2 and 7
play in the dynamics for the target gene. Although the activation frequency for gene 7 did
not make the cutoff threshold, it ranked second among the list of potential activators.
Likewise, for gene 2, it appeared fourth in the list of potential inhibitors for the target gene.
In cases like this, KO experiments may prove useful to identify the role these two genes play
in the regulation of the target gene dynamics.

Model-based network inference algorithms must overcome the difficulty of adequately
reproducing the experimental data before they can be used to deduce a candidate network
topology. Moreover, as the dimension of the network increases, the likelihood of
successfully fitting the experimental data significantly diminishes due to the rapidly
expanding list of candidate models. Analyzing individual subnetworks versus the entire
network removes this hurdle and dramatically reduces the computational burden. By
decomposing the network and solving the subnetwork architecture before reconstructing the
network, it then becomes possible to fit the entire dynamical data using the consensus
network topology. This is demonstrated for the behavior of a 50 gene network as shown in
Figure 4. Each gene profile was reproduced well when individually optimized, as shown by
the gray lines. Moreover, using the consensus network, the entire network was optimized
and also able to simulate the experimental data, as shown by the black lines.

These results are better appreciated when focusing on the degree simplification the
decomposition allows. For this example, the consensus network possessed only 859 edges of
5000 possible edges of the full network; the resulting parameter search space is effectively
one sixth the dimension of the maximum parameter space. Moreover, the information
obtained from the independent subnetwork optimizations was used to generate a starting
point for a simple gradient-based, local optimization for the entire network. The entire
parameter space was 1009-dimensional (including all kinetic constants), very large in the
context of dynamical modeling, and the results demonstrate that the consensus network was
able to support data-consistent simulations. If desired, it is possible to further reduce the
consensus network topology and produce a minimal model capable of reproducing the
experimental data with near equal fidelity. This requires removing the “weak” gene-gene
interactions where a “weak” interaction is defined by the value of the binding constants
(KAi, j and KIi, j). For example, the network topology of a reduced consensus network
consists of only 423 edges for this example; however, the coverage drops from 50% to 37%.
Although it is possible to condense the network topology, the highly underdetermined nature
of the problem at hand impedes post-analysis significance testing. Specifically, the
sensitivity matrix is not of full rank, and precise parameter estimation is not possible. As the
goal of the algorithm is to determine putative models that can explain the data, a unique
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model and associate parameter set are not sought. Thus, the approach is suited to inform
future experimental design. Generally, it is better to begin iterative and model-driven
experiments using a network with the fewer number of false negatives at the cost of an
increased false positive count. Additional data could then be used to prune the consensus
network and drive down the false positive count without increasing the number of false
negatives.

The computational demand of our approach scales with the square of the number of genes in
a network. This scaling is achievable as a result of the decomposition of the entire network
of size N into N subnetworks. Assuming that the chance of finding candidate subnetworks
scales with N, the overall search for a consensus network scales with N2. To demonstrate
this property, the algorithm was tested on a series of randomly generated mock networks of
varying sizes. Figure 5 shows that as the number of genes in the network is increased, the
time it takes to generate the consensus network is of O(N2). (Here, every single model
evaluation during the network reconstruction is reported, where the majority of
computations are perfumed during the optimizations.) This manner of scaling with network
size for a network inference algorithm is a substantial improvement over other inference-
related algorithms, which report computational costs of at least O(N3) for deterministic
model-based inference19 and at least O(N2 logN) for information theory-based approaches
to realistic problems24,29. Additionally, the algorithm facilitates searching for candidate
subnetworks in parallel further enhancing its capabilities.

Including a biologically relevant amount of noise on top of the data does not impact the
overall results, as is illustrated in Figure 6. The effect of the added noise can be seen by
comparing the different subnetwork profiles for the noise-free and noise-corrupted data sets.
In order to populate the list of candidate subnetworks and balance the fitness function, the
acceptability threshold and structural penalty were both increased for the noisy case.
Although the biased approaches were affected via differences in the time-lagged correlation
coefficients, the ensemble candidate subnetwork topologies recovered by the algorithm were
very similar. After applying the threshold cutoffs, the consensus networks for both the noise-
free and noise-corrupted data sets were identical. Despite the same underlying network
topologies supporting the model, the mRNA expression profiles were different for some
genes due to the noise-corruption. Overall, the algorithm was able to generate a consensus
network capable of supporting data consistent simulations regardless of the presence of
biologically relevant noise levels.

Table 1 lists of performance statistics for each network analyzed. It includes standard
network inference metrics such as the F-score; percentage of true positives (TP), false
positives (FP), false negatives (FN) relative to the maximum number of possible edges
(2N2) and the coverage. The F-score equals 2pr/(p + r) and is a measure of the algorithms
accuracy that includes the algorithms precision p and recall r where p = TP/(TP + FP) and r
= TP/(TP + FN). As the size of the network increases, the F-score falls due to the increase in
the number of false positives and false negatives; however, the growth of the false negatives
with network size is mitigated as intended. Moreover, the coverage is remarkably stable
towards relatively large N. Thus, the algorithm may be applied in the design of optimal
experiments making the algorithm an attractive means to decipher network topology and
design useful knockout and perturbation experiments.

The consensus network from a 25 gene exemplar network as shown in Figure 7 is used to
demonstrate how the predicted consensus networks may be used to design experiments
capable of extracting useful information. Figure 7A shows the connectivity matrix for this
system, where a gene in row i regulates a gene in column j. The highlighted columns
represent the top ranked genes that regulate the most genes in the network (the highest
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degree of outgoing edges). In the context of experiment design, these top regulatory genes
could be the focus of experiments aimed at validating the consensus network topology. For
example, here gene 3 is the top ranked regulatory gene. This gene has no outgoing edges in
the real network, but its time-lagged profile is highly correlated with other profiles in the
network as seen in Figure 7B. This causes it to enter the consensus network and appear to
regulate many other genes. In this case, a KO experiment would produce data enabling the
removal of up to 21 FP's from the consensus network. Similarly, the other top ranked genes
(genes 1, 13, 14 and 15) could be useful experimental targets to further reduce the consensus
network topology. Interestingly, the consensus network topology for genes 1 and 13 each
contain at least 1 FN, so the effect of removing them from the network could produce
additional rich data sets capable of correcting for these FN's. Experiments could be designed
based on the expansion of this list or experiments could be performed and the data fed back
into the algorithm to produce a new consensus network. This process can then be repeated in
the spirit of traditional model-based design of optimal experiments.

Evidence points to the best approach to network inference being a consensus based strategy
that utilizes information obtained from a variety of methodologies14,30,31. In our approach,
each strategy outlined above was specifically designed to work together in a such
complimentary manner. This consensus-based strategy is a central part of the algorithm
proposed herein. Specifically, the gene-gene interactions one strategy misses may be caught
by another strategy in a manner that avoids excessive computational resources. For example,
the biased strategies are based on linear relationships inferred from the time-lagged
correlation matrix. Using these relationships dramatically speeds up the time to identify
candidate subnetworks, but these relationships can be misleading. Moreover, it is well
understood that nonlinear relationships are also present in biological systems, so the biased
strategies are supplemented with strategies not influenced by these potential linear
relationships. The combination of these strategies allows for the most robust approach to the
network inference problem.

Many investigators have found that biological GRNs are scale-free and that their
connectivity is best approximated by a power-law32,33. Our algorithm builds the candidate
subnetworks in a random fashion but focused towards minimizing the false negative rate and
maximizing the coverage at the expense of the false positive rate. This leads to the
construction of dense consensus networks which are more characteristic of an exponential
network. The algorithm may be modified to bias searches toward scale-free and power-law
frameworks.

4 Conclusions
Overall, the reverse engineering algorithm presented here successfully generates plausible
candidate networks capable of explaining data from biologically relevant networks based on
the DREAM in-silico challenges. This model-based strategy combines both linear and non-
linear methods to produce data consistent simulations. The subnetwork decomposition is
responsible for the efficient computational scaling property, as well as, the ability to trivially
parallelize this network inference method. Consensus networks returned by the algorithm
are designed to minimize the number of false negatives, making them an attractive initial
step in an iterative design process central to the design of optimal experiments paradigm.
Moreover, the algorithm can be supplemented with additional experimental data to further
constrain and enhance the consensus networks capable of supporting data consistent
simulations.
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Fig. 1.
Example network results generated by the algorithm for a network of 4 genes. A) The
consensus network is presented with black arrows signifying edges present in the original
test network and gray edges representing false positives generated by the algorithm. The →
means activation and the ⊣ means inhibition. B) The mRNA expression profiles of the
subnetworks are compared with the data obtained from the test network. The gray lines are
the sets of optimal subnetwork expression profiles from the ensemble of candidate
subnetworks. The individual subnetworks are not necessarily identical despite their
respective mRNA expression profiles being experimentally indistinguishable. C) Isolated
subnetworks associated with the network decomposition are shown with the target gene
displayed in blue and the regulatory genes displayed in green.
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Fig. 2.
Flowchart of the algorithm. Trial subnetworks are constructed and tested against the best
available subnetwork in an iterative manner. For the examples presented herein,  and

 were set to 3 and 100, respectively. The error threshold function was defined as Ethr(I1)
= Ethr0/I1 where Ethr0 was set to 10–3. The value of α for the fitness function was set to
0.035. See the main text for definitions of fitness and error functions, F and E, respectively.
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Fig. 3.
Example subnetwork results generated by the algorithm for a network of 10 genes for gene
4. A) The subnetwork topology identified by the algorithm is pictured where solid black
lines represent edges recovered by the algorithm, and the gray dashed lines are edges present
in the true network topology but missed by the algorithm. B) The optimal subnetwork
mRNA expression profiles compared to the data for the target gene along with the
interpolated mRNA expression profiles of its regulator genes are shown. Note that not all of
the candidate subnetwork topologies are identical; however, they all support data consistent
simulations. The numbers correspond to which profile belongs to which gene. C) and D)
The fractions that these regulatory genes appear in the candidate subnetwork population as
activators or inhibitors, respectively, are shown.
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Fig. 4.
Example network mRNA expression profile dynamics simulated using the consensus
network topology for a network of 50 genes. The optimal parameter set was obtained using a
simple gradient-based search with the initial starting point obtained from the optimal
subnetwork parameter results. The gray lines correspond to the optimal subnetwork
expression profiles while the black lines represents the optimal ensemble network
expression profiles. Note that many of the subnetwork expression profiles are hidden by
their respective network expression profile.
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Fig. 5.
The algorithm complexity is of O(N2). The number of model evaluations required to form
the consensus network as a function of N is presented. A model evaluation is an integration
from t0 to tend in a one-dimensional state variable space; therefore, it is assumed that each
model evaluation takes approximately the same amount of computational time. The circles
represent the convergence results for each of three in silico network realizations for
networks consisting of 4, 10, 25 and 50 genes. The line corresponds to the equation 0.35 ×
106N2.
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Fig. 6.
The effect of 10% relative Gaussian noise (N(0, 0.1)) added on top of the data is compared
to the results generated form the noise-free data for an example 10 gene network. For each
case, the gray lines correspond to the optimal subnetwork expression profiles while the
black lines represents the optimal ensemble network expression profiles. For the noise-free
case, Ethr0 and α were kept at the values stated in the caption of Figure 2 (10–3 and 0.035,
respectively). For the noise-corrupted case, Ethr0 was set to 10–2 and α was set to 0.35.
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Fig. 7.
Example experiment design using the consensus network topology returned by the
algorithm. A) The associated consensus connectivity matrix for an exemplar 25 gene
network is presented with highlighted rows corresponding to target genes for future
experiments designed to gather informative data. B) The optimal ensemble network
expression profiles are presented for the corresponding network.
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Table 1

Algorithm Performance Statistics

Network Size 4 10 25 50

F-score 0.86±0.04 0.76±0.04 0.61±0.01 0.70±0.08

%TP 77±8 61±5 44±1 55±9

%FP 23±7 29±3 53±1 44±9

%FN 0±0 10±3 3±0.5 1.6±0.4

Coverage 100±0 36±18 43±8 46±6
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