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Abstract
Accumulation of all-trans-retinal (all-trans-RAL), reactive vitamin A aldehyde, is one of the key
factors in initiating retinal photodamage. This photodamage is characterized by progressive retinal
cell death evoked by light exposure in both an acute and chronic fashion. Photo-activated
rhodopsin releases all-trans-RAL which is subsequently transported by ATP–binding cassette
transporter 4 and reduced to all-trans-retinol by all-trans-retinol dehydrogenases located in
photoreceptor cells. Any interruptions in the clearing of all-trans-RAL in the photoreceptors can
cause an accumulation of this reactive aldehyde and its toxic condensation products. This
accumulation may result in the manifestation of retinal dystrophy including human retinal
degenerative diseases such as Stargardt’s disease and age-related macular degeneration. Here, we
discuss the mechanisms of all-trans-RAL clearance in photoreceptor cells by sequential enzymatic
reactions, the visual (retinoid) cycle, and potential molecular pathways of retinal photodamage.
We also review recent imaging technologies to monitor retinal health status as well as novel
therapeutic strategies preventing all-trans-RAL-associated retinal photodamage.

Introduction: All-trans-RAL in vision
Visual perception is established by sequential signal transduction via various neural cells
from the outer retina to the visual cortex of the brain (http://webvision.med.utah.edu/). The
ability to adapt to variations in environmental light conditions are controlled by two-classes
of photoreceptor cells; the rod and cone of the retina (1). Rods and cones show distinct
response kinetics and sensitivity covering a wide range of intensities and selected
wavelengths of light ranging from ~360 to 620 nm. Visual pigments in the outer segments of
rods and cones absorb light, which triggers the phototransduction cascade (2,3). To sustain
visual perception, rapid restoration of the pre-illuminated physiological state is required.
Dark-adapted photoreceptors carry 11-cis-retinal (11-cis-RAL), a light-sensitive visual
chromophore derived from vitamin A. Production of 11-cis-RAL is conducted by several
enzymatic reactions, called the retinoid visual (retinoid) cycle, occurring between
photoreceptor cells and adjacent retinal pigmented epithelial cells (RPE) (4). All-trans-RAL
is a major intermediate of the visual cycle. Continuous regeneration of the 11-cis
chromophore from all-trans-RAL is essential for the renewal of light-sensitive visual
pigments and determines photoreceptor survival in the vertebrate retina (4,5). Whereas
deficient 11-cis-RAL production leads to congenital blindness in humans, accumulation of
the photoisomerized chromophore, all-trans-RAL, also can be detrimental (6,7). Many
biological problems occur when all-trans-RAL is not efficiently cleared from the internal
membranes of retinal outer segment discs (8). Recently, our group provided evidence that

†This invited paper is part of the Symposium in Print “Retinal Photodamage”
*Correspondence to: Akiko Maeda, M.D., Ph.D. Phone: +1-216 368 0670, Fax: +1-216 368 3171, aam19@case.edu.

NIH Public Access
Author Manuscript
Photochem Photobiol. Author manuscript; available in PMC 2013 November 01.

Published in final edited form as:
Photochem Photobiol. 2012 November ; 88(6): 1309–1319. doi:10.1111/j.1751-1097.2012.01143.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://webvision.med.utah.edu/


transient accumulation of all-trans-RAL by delayed clearance from the retina is one of the
key mechanisms in light-induced retinal degeneration (8–10). In this review, we discuss the
pathological impact of delayed all-trans-RAL clearance in the retina using transgenic mice,
focusing on two processes, translocation and reduction, that govern all-trans-RAL clearance
in the retina. Additionally, we describe recent innovations in in vivo imaging of the retina as
well as discuss novel pharmacological interventions against retinal photodamage mediated
by all-trans-RAL.

Key emzymes for clearance of all-trans-RAL
The reaction from all-trans-RAL to all-trans-retinol in the photoreceptor is the first step of
the visual cycle. Clearance of all-trans-RAL is achieved by two steps; 1) translocation of all-
trans-RAL from the intradiscal space to cytoplasmic space across photoreceptor disc
membranes by ABCA4 (11), and 2) reduction of all-trans-RAL to all-trans-retinol by all-
trans-retinol dehydrogenase (RDH), mainly by RDH8 expressed in photoreceptor outer
segment (POS) (12) (Fig. 1).

ATP-binding cassette transporter 4 (ABCA4)
ABCA4 is a member of the ATP-binding cassette transporter family (ABC-transporters)
which comprise one of the largest classes of proteins (13,14). ABC transporters utilize the
energy of ATP hydrolysis to unidirectionally translocate a wide variety of substrates,
ranging from ions to lipids and peptides, across cellular membranes (15). All ABC
transporters share the same basic architecture (13,14). A minimum of four domains is
required for the activity: two transmembrane domains and two nucleotide-binding domains
which are known as ATP-binding cassettes. The function of transmembrane domains is to
bind substrate and form a translocation path, whereas nucleotide-binding domains provide
energy for transport by ATP hydrolysis. To date, 49 ABC transporters have been identified
in the human genome (http://www.genenames.org/genefamily/abc.html). These are
organized into seven subfamilies (ABC-A to ABC-G) (16). ABCA4 is one of 12 proteins of
the ABC-A subfamily. A distinctive feature of family A members is the presence of large
extracellular domains in the N-terminal half of the sequence.

The ABCA4 protein, also known as ABCR, is a ~250-kDa single chain protein localized to
the incisures and margins of the outer segment disks of rod and cone photoreceptors (11).
Preferred substrates for ABCA4 are all-trans-RAL and N-retinylidene-
phosphatidylethanolamine (N-ret-PE). ABCA4 flips these substrates from the inside to the
outside of disc membranes by utilizing energy from ATP hydrolysis. ABCA4 was initially
observed in an electron microscopy study by Papermaster, et al. of immunohistochemically
labeled frog photoreceptors (17). Later, a homologous protein was cloned and classified as a
member of the ATP transporter superfamily, and shown to have the same localization in
bovine outer segments (18). Human ABCA4 gene was initially discovered in Stargardt’s
disease (STGD) patients, located on chromosome 1 at 1p22 (19). However, the presence of
ABCA4 in cone cells was later demonstrated by immunohistochemistry and western blot
(20).

Mutations in the ABCA4 gene have been linked to various retinal dystrophies including
autosomal recessive, cone-rod dystrophy, retinitis pigmentosa and age-related macular
degeneration (AMD) (21–25). STGD1 (Mendelian Inheritance in Man 248200) is a
predominantly juvenile-onset macular dystrophy which is characterized by rapid irreversible
loss of central vision with bilateral atrophy of photoreceptors and RPE cells of the central
retina with an estimated prevalence of 1 in 10,000 (26–28). More than 600 disease-
associated ABCA4 variants have been identified (29). Although the biological role of
ABCA4 and its relevance to retinal degenerative diseases has been discovered, the structural
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and functional properties of ABCA4 remain largely undefined. Recently, Tsybovsky, et al.
identified phosphorylation sites in cytoplasmic domains and investigated their putative
functional implications using ABCA4 mutants. This study indicates that phosphorylation of
these sites may represent a mechanism that modulates the function of ABCA4 although they
are not essential for biological activity (30).

Retinoid dehydrogenases (RDHs)
RDHs belong to the short-chain dehydrogenase/reductase (SDR) family, which catalyzes
NAD(H)-/NADP(H)-dependent oxidation/reduction reactions. The SDR family consists of
functionally heterogeneous proteins involved in the metabolism of retinoids, steroids,
prostaglandins, aliphatic alcohols and variety of xenobiotics (31). NADPH-dependent
reduction of all-trans-RAL in photoreceptor outer segment (POS) is the first step in the
regeneration of bleached visual pigments. Among RDHs which are reported to carry all-
trans-RDH activity in vivo, RDH8 is the major all-trans-RDHs in rod and cone cells (12).
RDH8 (also known as photoreceptor RDH, prRDH) was identified in 2000 by Rattner and
colleagues (32). The human RDH8 gene is located in chromosome 19 at 19p13.2, and RDH8
protein expression is found in the retina. Immunohistochemistry with anti-RDH8 antibody
reveals subcellular localization of RDH8 in the POS. RDH8 demonstrates a substrate and a
cofactor preference for all-trans-RAL (32) and NADPH (33). The main phenotype of
Rdh8−/− mice is delayed clearance of all-trans-RAL after bright light illumination (34),
which is not accompanied by abnormal Meta-II decay of rhodopsin (34).

Rdh8−/− mice display: 1) accumulation of all-trans-RAL after intense illumination, 2)
delayed dark adaptation, and 3) slightly increased accumulation of di-retinoid-pyridinium-
ethanolamine (A2E), a product of all-trans-RAL conjugation with
phosphatidylethanolamine, but no significant retinal degeneration was observed under room
lighting conditions (34). A later study revealed that RDH8 is responsible for ~70% of the
all-trans-RDH activity in the mouse retina, and RDH12 (35,36), which resides in the
photoreceptor inner segments, carries on ~30% of this activity. Although retinas from
Rdh8−/−Rdh12−/− mice had lost ~98% of their all-trans-RDH activity, these mice
surprisingly still converted all-trans-RAL to all-trans-retinol in vivo. Other enzymes belong
to alcohol dehydrogenase family members in the retina may contribute to the reduction of
all-trans-RAL in the eye of knockout models (37,38). Indeed Rdh8−/−Rdh12−/− mice showed
only mild retinal changes at 6 months of age when kept in a regular laboratory light/dark
cyclic environment. Thus, less than 2% of total all-trans-RDH activity in photoreceptors is
sufficient to maintain retinoid homeostasis in mice under such conditions (Fig. 2).

Role of all-trans-RAL in mediating photodamage to the retina
It has been demonstrated that the photoactivation of visual pigments is the essential trigger
of light-induced retinal degeneration, which is supported by considerable evidence
including: 1) photodamage is not inducible in visual chromophore deficient retina, such as
retinoid isomerase, retinal pigment epithelium-specific 65 kDa protein (RPE65) or lecithin:
retinol acyltransferase (LRAT) deficient mice (9,39), 2) there is clear correlation between
rates of visual pigments regeneration and light-induced damage thresholds (40), and 3) slow
regeneration rate of visual pigments can prevent light damage (39,41,42). However, it was
not clear which processes in the visual cycle were critical in causing retinal photodamage. A
potential role of all-trans-RAL in mediating retinal photo-damage has been suspected for
over two decades (43). Still, there was lack of experimental evidence to indicate that free all-
trans-RAL exists in the retina at levels adequate to cause photosensitized damage (44).
Recently we reported that mice with genetic ablation of RDH8 and ABCA4, two important
enzymes responsible for all-trans-RAL clearance from photoreceptors, develop light-
dependent cone and rod dystrophy with characteristics similar to human macular
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degeneration (Fig. 3). These include lipofuscin/A2E accumulation, formation of drusen and
basal laminar deposition, photoreceptor/RPE atrophy, complement deposition at Bruch’s
membrane, and choroidal neovascularization (8). In contrast, mice that lack retinoids in the
eye due to deletion of LRAT, an enzyme essential for retinoid storage in the RPE (45),
namely Lrat−/−Rdh8−/−Abca4−/− mice failed to exhibit this retinal degeneration (9).
Furthermore, Lrat−/−Rdh8−/− Abca4−/− mice supplemented with retinoids demonstrated
light-induced retinal degeneration without A2E accumulation. These data suggest that all-
trans-RAL but not A2E is a primary cause of retinal degeneration in Rdh8−/−Abca4−/−mice.
Other data also suggest that all-trans-RAL causes greater mitochondrial oxidative stress-
associated apoptosis than A2E (9). First, all-trans-RAL induced higher cytotoxicity than
A2E in cultured RPE cells. Second, a caspase inhibitor (Z-VAD-fml) and a Bax inhibitor
(Bax is a pro-apoptotic member of Bcl-2 family proteins mitochondrial-dependent apoptosis
(46)) prevented cell death caused by all-trans-RAL in vitro. Third, oxidative
phosphorylation in mitochondria was suppressed by all-trans-RAL but not A2E. Fourth, fruit
flies (Drosophila melanogaster) with a pigment-cell-enriched dehydrogenase deficiency
(homolog of mammalian RDH) underwent light-induced retinal degeneration (47). Together,
these findings indicate that all-trans-RAL mediates phototoxiciy of the retina, and free all-
trans-RAL is more cytotoxic than A2E, so that A2E production may actually lower all-trans-
RAL toxicity.

Delay in all-trans-RAL clearance and A2E accumulation
Delayed clearance of all-trans-RAL from the retina after light exposure results in production
of A2E, which consists of two molecules of all-trans-RAL and one molecule of
phosphatidylethanolamine (PE) (Fig 1). As previously mentioned in this review the
clearance of all-trans-RAL is mediated by key enzymes which are specific to
photoreceptors. To investigate the contribution of these responsible enzymes, RDH8,
RDH12 and ABCA4, to all-trans-RAL clearance from retina, kinetics of all-trans-RAL after
short term light exposure and A2E, end product of accumulated all-trans-RAL in chronic
fashion, were compared in: Rdh8−/−, Rdh12−/−, Abca4−/−, Rdh8−/−Abca4−/−,
Rdh12−/−Abca4−/− and Rdh8−/−Rdh12−/−Abca4−/− mice. RDH8 is the all-trans-RDH in the
photoreceptor outer segments (5). RDH12 is also all-trans-RDH, but is located in the inner
segments of photoreceptors (5). Interestingly, Rdh8−/−Rdh12−/−Abca4−/−mice at 6 weeks of
age displayed retinal degeneration, whereas other mutant mice did not show apparent
degeneration. Among tested animals, slower clearance of all-trans-RAL was detected in
mice with RDH8 deficiency, suggesting that RDH8 is the most critical enzyme for clearing
this molecule (Fig. 2A). Quantification of A2E was performed on 3- and 6-month-old
mutant mice. Age-related accumulation of A2E was observed in all employed mice.
Although clearance of all-trans-RAL after light was not significantly affected in mice with
ABCA4 deficiency, an increase in A2E accumulation was associated with the loss of
ABCA4 (Fig. 2B). Overall, slower clearance of all-tran-RAL is associated with a greater
production of A2E in mice. In humans, lipofuscin accumulate with age in the RPE,
especially in the macular region (48) and can account for up to 19% of the cytoplasmic
space in elderly human RPE (49–51). Lipofuscin has been considered one of the major risk
factors of several retinal diseases, including Best’s macular dystrophy, STGD and AMD
(50,52–62).

Lipofuscin is a complex mixture of lipid-protein aggregates, and retinoid derivatives
including A2E (63). The granules of lipofuscin are considered to form from the indigestible
materials of phagocytized POS (64,65). Spatial localization of A2E in the RPE may vary
based on the amount of accumulation (66) whereas lipofuscin granule accumulation is
localized in the lysosomal storage bodies of the RPE (67,68). Since A2E was identified as
the major orange-emitting fluorophore in the human RPE (69,70), the biosynthetic
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mechanism and pathological effects of A2E has been extensively studied. A2E is formed by
condensation of PE with two molecules of all-trans-RAL followed by oxidation and
hydrolysis of the phosphate ester (71). All-trans-RAL and N-ret-PE, a Schiff base adduct of
all-trans-RAL and PE, are ABCA4 substrates, but phosphatidylpyridinium-bisretinoid
(A2PE), a precursor of A2E, cannot be transported by ABCA4 transporter. A2PE therefore
can accumulate in disc membranes. Eventually A2E accumulation is detected in the RPE by
the resulting RPE’s phagocyctosis of the disc membranes (Fig. 1). Various mechanisms
have been proposed to explain the toxicity of A2E, including: A2E’s properties as a cationic
detergent (69), its physiologic interference with RPE function (72,73), and radical reactions
induced by light-dependent A2E oxidation (74). Immunogenic properties of A2E have also
been reported (75). These observations suggest a relationship between all-trans-RAL and
A2E in the pathology of human retinal diseases including STGD and AMD.

Molecular pathways involved in all-trans-RAL-dependent retinal
photodamage

Enzymatic reduction of all-trans-RAL to all-trans-retinol is a relatively slow process (43).
Thus, rhodopsin regeneration is a prerequisite for the build-up of free all-trans-RAL during
light perception. Free all-trans-RAL is not only toxic as a reactive aldehyde, but it also is a
potent photosensitizer when photoactivated by UVA and blue light (43). Importantly, it has
been shown that photoexcited all-trans-RAL inactivates ABCA4, which is involved in
removal of all-trans-RAL from the discs (76). Inactivation of ABCA4 may lead to a further
increase in the accumulation of all-trans-RAL. In cultured human RPE derived cells
(ARPE-19), 10 μM of all-trans-RAL showed cytotoxicity and increased intracellular Ca2+,
one of the early events of cell death. These affects were observed in less than 1 min after co-
incubation with all-trans-RAL (9). Rod outer segments contain 5 mM of rhodopsin (77),
which when bleached, yield equivalent concentrations of all-trans-RAL. Even bleaching of
less than 0.5% of total amounts of rhodopsin will generate toxic levels of all-trans-RAL if
this retinoid is not properly and quickly cleared from the retina. If a sufficient supply of 11-
cis-RAL is provided, but either ABCA4 or all-trans-RDH is inactive, the concentration of
accumulated all-trans-RAL in the retina can easily reach levels sufficient to cause cell
toxicity and apoptosis.

All-trans-RAL can mediate the generation of superoxide radical anion, singlet oxygen, and
peroxides when irradiated with UVA or blue light (43). Recent cell culture studies
demonstrated that aldehydes including all-trans-RAL can produce reactive oxygen species
(ROS) in NADPH oxidase-dependent manner (10,78). Unless effective antioxidants and
repair enzymes offer protection, ROS produced by all-trans-RAL can cause oxidative
damage to lipids and proteins that compromise their structures and functions. The RPE
phagocytoses 10% of the outer segment discs daily which then undergo lysosomal
degradation (69). However, oxidatively damaged compounds are no longer susceptible to
degradation by lysosomal enzymes, and/or can in turn inactivate these enzymes. Because
lysosomal degradation of photoreceptor outer segments is incomplete, ipofuscin/debris
accumulates in the RPE. Indeed, the primary components of lipofuscin are all-trans-RAL
conjugates such as A2E and all-trans-RAL-dimer (79). Photoactivation of lipofuscin by blue
light also generates ROS that induce further oxidation of intragranular components (79),
some of which could leak out of the granule and cause damage leading to RPE dysfunction
or even death (74). Some oxidative products affect gene expression in the RPE, resulting in
release of pro-inflammatory and pro-angiogenic cytokines (43). Currently drusen are
proposed to represent breakdown products of the RPE (80). Thus exocytosed lipofuscin and
side-products, formed by enzymes activated by all-trans-RAL and its conjugates, may
contribute to the formation of age-related drusen located between the RPE and Bruch’s
membrane. Some components of those deposits exhibit photosensitizing properties and
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others include oxidatively modified products with pro-angiogenic and pro-inflammatory
properties (80). Therefore, all-trans-RAL-associated oxidative stress contributes to age-
related retinal changes. Further studies regarding all-trans-RAL inducible oxidative stress
and mechanisms involved in activating inflammatory responses are essential to devise
successful therapeutics for age-related blinding diseases.

In vivo imaging of retinal photodamage
Recent advances in in vivo imaging technology such as a scanning laser ophthalmoscopy
(SLO) and two-photon microscopic imaging (TPM) have enabled us to obtain high–
resolution images from retinas and have been applied to a variety of experiments (81–87).
Fundus autofluorescence (AF) can be monitored by SLO (typically using 488 nm excitation;
emission filter, 500–700 nm) and has been utilized as one of the biomarkers for several
types of retinal degenerative diseases (82,88). A2E and other bisretinoids give rise to
elevated AF due to intramolecular conjugated double bonds within retinoid-derived
fluorophores. Additional evidence of fundus AF and bisretinoids is extensively covered
elsewhere (44).

In vivo SLO and TPM imaging ofRdh8−/−Abca4−/−mice, which display age-related A2E
accumulation, showed a good correlation between intensity of fundus AF and amounts of
accumulated A2E (85,87). A2E accumulation is accompanied by age-related retinal
degeneration under room light condition (Figure 2B), and A2E production in
Rdh8−/−Abca4−/− mice is more closely associated with age-related degeneration than light-
induced acute degeneration. Although accumulation of A2E is an important hallmark for
age-related retinal degeneration in Rdh8−/−Abca4−/− mice and intensity of AF is well
correlated with A2E amounts in the RPE (Fig. 4), progression of age-related retinal changes
in Rdh8−/−Abca4−/− mice is not directly corresponding with fundus AF intensity. The
fundus AF increased uniformly across the entire retina (Fig. 4A), but degenerative retinal
changes were dominantly observed in the inferior retina (Fig. 3) (8). In addition to this
intriguing phenomenon, the spatial distribution of A2E and its oxides was determined by
using the high molecular specificity of matrix-assisted laser desorption-ionization imaging
mass spectrometry. This technique showed a broad accumulation of these retinoid
byproducts distributed across the entire mouse fundus of Abca4−/−mice (66). Noteworthy
are the several clinical studies having investigated the relationship between abnormal
intensity of AF and the progression of retinal degeneration in AMD and Stargardt’s disease
(STDG) patients, but this relationship is still controversial (61,89–91).

AF measurements from other retinoid derivatives, such as retinyl esters (mostly all-trans-
retinyl palmitate) were tested using the autofluorescent mode in SLO, using a 488 nm
excitation, in Rpe65−/−mice, which are characterized as having an over accumulation of
retinyl esters in the retinosomes of the RPE (92). Theoretically, this imaging condition is not
able to detect AF of retinyl esters, but AF intensity measured by this mode correlates well
with A2E amounts in the RPE (87). Further clinical and animal model studies are required to
draw conclusions as to whether or not AF can serve as a reliable marker for disease
progression inpatients with AMD, STGD and other retinopathies with related pathologies.

Therapeutic approaches to prevent all-trans-RAL-associated retinal
degeneration

Since pathogenic roles of all-trans-RAL in retinal degeneration are implicated in mice
models, which recapitulate the features of human retinal diseases, all-trans-RAL can be a
promising molecular target to prevent progression of several types of retinal degenerations.
To date, there is no efficacious treatment for patients with dry-type AMD, STGD and other
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degenerative retinal diseases, to prevent, halt, or slow the disease process; unlike in the wet
type of AMD where recent breakthrough using anti-vascular endothelial growth factor
therapy have yielded positive results (93,94). Two different therapeutic interventions have
been proposed to reduce the toxicity of all-trans-RAL: 1) visual cycle inhibitors to produce
less all-trans-RAL after light exposure and 2) scavengers of all-trans-RAL to trap toxic free
all-trans-RAL by forming Schiff base interactions (95). Sieving, et al. showed protective
effects of 13-cis-retinoic acid, which has RDH5 inhibitory effects in a mouse model of light-
induced retinal degeneration (42). Additionally Radu, et al. found reduced amounts of
accumulated A2E in Abca4−/− mice in the presence of the visual cycle inhibitor, 13-cis-
retinoic acid (96) and fenretinide (4-HPR) with abilities to reduce in serum retinoid binding
proteins thus resulting in lower concentration of ocular retinoids (97). It is also known that
retinoid isomerase (RPE65) activity is inhibited by 13-cis-retinoic acid and 4-HPR as well as
all-trans retinoic acid (98). These studies provide the evidence that inhibition of the visual
cycle is beneficial in preventing light-induced retinal degeneration and the accumulation of
toxic all-trans-RAL condensation products. In 2005, retinylamine (Ret-NH2) was found to
inhibit RPE65 activity, and thus can function as a visual cycle inhibitor (99). Administration
of Ret-NH2 not only prevented light-induced retinal degeneration in BALB/c mice (41), but
also ameliorated age-related retinal degeneration with less accumulation of A2E in
Rdh8−/−Abca4−/− mice (8). Visual cycle inhibitors are effective in preventing all-trans-RAL-
associated retinal degeneration; however, these drugs may induce retinal degeneration by
depleting the supply of the visual chromophore. To overcome this problem, we tested the
idea that direct trapping of all-trans-RAL by amine drugs in form of Schiff base can lower
intraocular the all-trans-RAL concentration and ameliorate progression of retinal
degeneration. Recently multiple FDA-approval drugs with primary amino group were
administrated to Rdh8−/−Abca4−/− mice. Some of these drugs did not inhibit chromophore
regeneration and formed Schiff base adducts with all-trans-RAL, thereby lowering the peak
concentration of free all-trans-RAL. Importantly, these drugs protected the retina from light-
induced and age-related retinal degeneration in Rdh8−/−Abca4−/− mice (95). Of note, Ret-
NH2 exhibits dual properties working as both a visual cycle inhibitor and all-trans-RAL
scavenger (Fig. 5). Alternatively, overexpression of RDH8 or ABCA4 using established
gene delivery methods like adeno-associated virus can be another approach to prevent
accumulation of all-trans-RAL after light exposure. In fact, clinical studies for ocular gene
therapy have been conducted in patients with RPE65 mutations, and encouraging results
have been reported (100,101). Further elucidation of the mechanisms of all-trans-RAL
toxicity can improve on these pharmacological treatments, and the outcomes generated in
these studies can be applied to the clinical setting where the detection of early pathological
changes associated with all-trans-RAL is able to be monitored. This connection from bench
to bedside may promote the development of prophylactic treatments and aid in preventing
the progression of retinal dysfunction before visual acuity is adversely affected.

Conclusion
Photodamage can be mediated by all-trans-RAL and its condensation products, therefore,
efficient transport and reduction of all-trans-RAL by ABCA4 and all-tans-RDHs in the
photoreceptor is important for maintaining the health of the retina. Recent understanding the
role all-trans-RAL plays in phototoxicity in addition to the advancement of in vivo imaging
may contribute to the future development of new methods to fight retinal degenerative
diseases.
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Abbreviations used

ABCA4 ATP–binding cassette transporter 4

ABCR ATP- Binding Cassette Transporter, Retina-Specific

all-trans-RAL all-trans-retinal

AMD age–related macular degeneration

A2E di–retinoid–pyridinium–ethanolamine

A2PE phosphatidylpyridinium-bisretinoid

11-cis-RAL 11-cis-retinal

LRAT lecithin: retinol acyltransferase

PE phosphatidylethanolamine

POS photoreceptor outer segment

Ret-NH2 retinylamine

RDH retinol dehydrogenase

ROS reactive oxygen species

RP retinitis pigmentosa

RPE retinal pigmented epithelium

RPE65 retinal pigment epithelium–specific protein 65 kDa or retinoid isomerase

SDR short-chain dehydrogenase/reductase

SLO scanning laser ophthalmoscopy

SD–OCT spectral domain–optical coherent tomography

STGD Stargardt’s disease
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Figure 1. Process of all-trans-RAL clearance and accumulation of condensation byproducts
All-trans-RAL is a one of the major vitamin A metabolites in the retina. In physiological
conditions, all-trans-RAL is regenerated to the visual chromophore, 11-cis-retinal. The
absorption of a photon (hν) by a visual pigment (rhodopsin) causes isomerization of 11-cis-
RAL to all-trans-RAL, resulting in rhodopsin activation (rhodopsin*). The majority of all-
trans-RAL is released from photoactivated rhodopsin into the cytosolic space of
photoreceptor outer segments, and a fraction of all-trans-RAL is released to the intradiscal
space. Clearance of all-trans-RAL is achieved via two processes. First all-trans-RAL is
transported out from the intradiscal space into the cytosol by a photoreceptor specific ATP-
binding transporter 4 (ABCA4) and reduced to all-trans-ROL by all-trans-RAL
dehydrogenases (all-trans-RDHs; RDH8 and RDH12). Secondly all-trans-ROL diffuses into
the RPE where it is esterified, isomerized and converted to 11-cis-RAL by sequential
enzymatic reactions involving lecithin: retinol acyltransferase (LRAT), retinal pigment
epithelium-specific 65 kDa protein (RPE65) and 11-cis-RDHs including RDH5, and then
diffuses back into the photoreceptor where it regenerates rhodopsin. This 11-cis-RAL
recycling system is termed the visual (retinoid) cycle. When clearing of all-trans-RAL is
delayed, excess of all-trans-RAL accumulates in the form of its condensation products with
PE in photoreceptor outer segments. N-retinylidene-phosphatidylethanolamine (N-ret-PE)
and free all-trans-RAL are conjugated to form a phosphatidylpyridinium-bisretinoid (A2PE),
a precursor of A2E, which escapes from ABCA4 transporting and accumulates in the
intradiscal space. Accumulated A2PE is phagocytized by the RPE along with photoreceptor
outer segments, and is converted to A2E by lysosomal digestion in the RPE.
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Figure 2. Clearance of all-trans-RAL and accumulation of condensation byproduct (A2E) in
RDHs and ABCA4 deficient mice
(A) Clearance of all-trans-RAL was compared among 6-week old mice. After flash light
exposure, eye retinoids were extracted and quantified by normal phase HPLC to evaluate
effects of Rdh8, Rdh12, Abca4 genes and double or triple combinations of these genes on
the clearance of all-trans-RAL from the retina. There was no difference in all-trans-RAL
levels under fully dark-adapted condition between all these strains. Rdh8−/− mice displayed
the most significant delay of all-trans-RAL clearance compared to other mice with only a
single gene deletion. The double and triple genes deletions elongated all-trans-RAL
clearance. (B) Amounts of A2E were quantified by reverse phase HPLC. Age-dependent
accumulation of A2E was observed in mutant mice, and the accumulation levels were
correlated with the delay of all-trans-RAL clearance. Bars indicate SD.
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Figure 3. Chronic and acute retinal photodamage in Rdh8−/−Abca4−/−mice
Rdh8−/−Abca4−/−mice exhibit severe retinal photodamage due to excess accumulation of all-
trans-RAL. Epon-embedded retina cross-section images (A) and in vivo high-definition
spectral-domain optical coherent tomography images (B) were obtained from
Rdh8−/−Abca4−/−mice with chronic and acute photodamage. The disruption of the outer
nuclear layer (ONL) with a decreasing number of photoreceptor cells was manifested
compared to age-matched Rdh8+/+Abca4+/+ mouse retina (A left and middle panels) under
regular cyclic light at 4 months of age. In vivo retinal image was obtained from these mice
by spectral domain optical coherent tomography (SD-OCT). In Rdh8−/−Abca4−/−mice,
disruption of ONL was demonstrated in the inferior retina (B upper panel) although
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Rdh8+/+Abca4+/+ retina maintained normal structure (B lower panel). Acute retinal
photodamage was induced in Rdh8−/−Abca4−/−mice (6 weeks old) by intense light exposure
(10,000 lux for 30 min) and retinal cross section images were obtained at 14 days after light
exposure. Most of photoreceptors were disappeared and only debris of dead photoreceptor
cells were accumulated in the subretinal space (A right panel). SD-OCT image showed only
residual ONL layer and debris accumulation as well (white arrows in B middle panel). INL,
inner nuclear layer; IS, inner segment; ONL, outer nuclear layer; OS, outer segment. Scale
bar in A indicates 40 μm.
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Figure 4. In vivo imaging of age-dependent accumulation of all-trans-RAL condensation
products in mouse eye
In vivo fundus images by scanning laser ophthalmoscopy (SLO) in autofluorescent mode
(AF mode) (A) and ex vivo images of the RPE by two-photon microscopy (TPM) (B) were
obtained from Rdh8−/−Abca4−/−mice. (A) Age-dependent increase of AF levels was
observed across the entire fundus in Rdh8−/−Abca4−/−mouse eye but only low level AF was
observed in age-matched Rdh8+/+Abca4+/+mouse. Infiltration of inflammatory cells which
engulfed photoreceptor debris was observed as white dots (yellow arrows) sporadically in
the fundus ofRdh8−/−Abca4−/−mice. These SLO images were obtained at AF mode with 3
second exposure to 488 nm excitation. (B) Higher intensity of autofluorescence which
indicates higher level accumulation of all-trans-RAL condensation products was specifically
detected by TPM using 850 nm excitation in the cytoplasmic space of the RPE in
Rdh8−/−Abca4−/−mouse eye at 6 months of age (B left panel) when compared to those of
age-matched Rdh8+/+Abca4+/+ mice (B right panel). Scale bar in B indicates 30 μm.
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Figure 5. Pharmacological innovation to protect photodamage mediated by all-trans-RAL
Accumulation of all-trans-RAL is prevented by two pharmacological actions of retinylamine
(Ret-NH2). First, free all-trans-RAL is neutralized by Schiff base formation between all-
trans-RAL and Ret-NH2 (A). This chemical reaction can be monitored in a color change in
the reaction-mixture. Second, free all-trans-RAL generation can be decreased by the
inhibitory action of Ret-NH2 in the visual cycle. Specific-binding of Ret-NH2 to RPE65 can
prevent an isomerization reaction and slow down regeneration of 11-cis-RAL, which can
consequently decrease free all-trans-RAL during light exposure. These two pharmacological
actions can protect Rdh8−/−Abca4−/−retina from photodamage (B). Representative in vivo
retinal images by high-definition SD-OCT clearly reveal that Rdh8−/−Abca4−/− mice treated
with Ret-NH2 can maintain normal morphology of the retina whereas outer nuclear layer
(ONL) are severely degenerated in vehicle treated mice. INL, inner nuclear layer; ONL,
outer nuclear layer; OS, outer segment.
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