Skip to main content
. 2012 May 12;40(15):6993–7015. doi: 10.1093/nar/gks408

Table 2.

Conceptual matrix M containing the lexicographically ordered n cyclic shifts of S = ACATACAGATG$

i S[SA[i]] BWT[i] offset[i] LF[i]
0 $ ACATACAGAT G 0 8
1 A CAGATG$ACA T 0 10
2 A CATACAGATG $ 0 0
3 A GATG$ACATA C 0 6
4 A TACAGATG$A C 1 7
5 A ATG$ACATAC G 1 9
6 C AGATG$ACAT A 0 1
7 C ATACAGATG$ A 1 2
8 G $ACATACAGA T 1 11
9 G ATG$ACATAC A 2 3
10 T ACAGATG$AC A 3 4
11 T G$ACATACAG A 4 5

M[0..11,0] contains the lexicographically ordered characters of S and M[0..11,11] equals BWT(S). The last two columns are required for the inverse transformation. offset[i] stores the number of times BWT[i] has appeared earlier in BWT(S). The last column LF[i] contains pointers used during the inverse transformation algorithm: if S[i] = BWT[j], then BWT[LF[j]] = S[i − 1].