
J Pathol Inform Editor-in-Chief:
 Anil V. Parwani ,	 Liron Pantanowitz,
 Pittsburgh, PA, USA	 Pittsburgh, PA, USA

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS
HTML format

Research Article

ImageJS: Personalized, participated, pervasive, and reproducible
image bioinformatics in the web browser

Jonas S. Almeida1, Egiebade E. Iriabho1, Vijaya L. Gorrepati, Sean R. Wilkinson1,2,
Alexander Grüneberg1, David E. Robbins1,3, James R. Hackney1

Division Informatics, Departments of 1Pathology, 2Biomedical Engineering, 3Electrical and Engineering, University of Alabama at Birmingham, Alabama, USA

E-mail: *Jonas S Almeida - jalmeida@uab.edu
*Corresponding author

Received: 06 April 12	 Accepted: 06 June 12	 Published: 20 July 12

This article may be cited as:
Almeida JS, Iriabho EE, Gorrepati VL, Wilkinson SR, Hackney JR, Grüneberg A, et al. ImageJS: Personalized, participated, pervasive, and reproducible image bioinformatics in the web browser.
J Pathol Inform 2012;3:25.

Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2012/3/1/25/98813

Copyright: © 2012 Almeida JS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

Abstract
Background: Image bioinformatics infrastructure typically relies on a combination of
server-side high-performance computing and client desktop applications tailored for
graphic rendering. On the server side, matrix manipulation environments are often used as
the back-end where deployment of specialized analytical workflows takes place. However,
neither the server-side nor the client-side desktop solution, by themselves or combined, is
conducive to the emergence of open, collaborative, computational ecosystems for image
analysis that are both self-sustained and user driven. Materials and Methods: ImageJS
was developed as a browser-based webApp, untethered from a server-side backend, by
making use of recent advances in the modern web browser such as a very efficient
compiler, high-end graphical rendering capabilities, and I/O tailored for code migration.
Results: Multiple versioned code hosting services were used to develop distinct ImageJS
modules to illustrate its amenability to collaborative deployment without compromise
of reproducibility or provenance. The illustrative examples include modules for image
segmentation, feature extraction, and filtering. The deployment of image analysis by code
migration is in sharp contrast with the more conventional, heavier, and less safe reliance
on data transfer. Accordingly, code and data are loaded into the browser by exactly the
same script tag loading mechanism, which offers a number of interesting applications that
would be hard to attain with more conventional platforms, such as NIH’s popular ImageJ
application. Conclusions: The modern web browser was found to be advantageous for
image bioinformatics in both the research and clinical environments. This conclusion
reflects advantages in deployment scalability and analysis reproducibility, as well as the
critical ability to deliver advanced computational statistical procedures machines where
access to sensitive data is controlled, that is, without local “download and installation.”

Key words: Cloud computing, image analysis, webApp

Access this article online
Website:
www.jpathinformatics.org

DOI: 10.4103/2153-3539.98813

Quick Response Code:

INTRODUCTION

Image bioinformatics as a field is characterized by an odd
mixture of tremendous advances in its computational

statistics aspects while suffering from a persistent
resistance to their use by biomedical domain experts.
The image analysis platform with the deepest domain
penetration in the research community is probably

J Pathol Inform 2012, 3:25	 http://www.jpathinformatics.org/content/3/1/25

National Institutes of Health (NIH’s) ImageJ[1] in large
part because of its free open source and pluggable
implementation. Over the years, an extensive community
of image analysis developers and researchers has developed
a comprehensive environment for image analysis software
development using Java.[2] The development cycle can
be roughly described as follows: when a promising new
algorithm is identified, it might be first prototyped in a
specialized environment such as Mathwork’s Matlab, but
to reach a broader non-programming audience, it is then
laboriously ported as an ImageJ plugin. Illustrating the
domain penetration challenge, a regular stream of new
and updated plugins feeds a comprehensive repository
that now has several hundred entries (http://rsbweb.
nih.gov/ij/plugins/). However, a visit to the laboratory
will show that those who could benefit from an add-
on are typically not aware of them. Even more striking
is the situation that the few researchers using image
analysis, who know how to find and install plugins, often
also need image analysis applications that are slight
modifications or combinations of existing functionalities.
Paradoxically, the computational statisticians with the
quantitative expertise to develop those modifications
often do not have the substantial software development
skills needed to deliver the novel application as a stand-
alone application or as a plugin module.

A common solution to the difficulty of matching users
and data with workflows is to develop web services. For
example, the quantitative image analysis of estrogen
receptor, progesterone receptor, and more generically, the
Ki-67 immunohistochemistry staining results in breast
cancer tissue sections can be conveniently performed by
submitting the image to a public web service.[3] Users
benefit from improvements in the code automatically and
no application needs to “installed,” therefore overcoming
concerns with compromising privacy or degrading
the performance of existing applications in the client
machine. However, that solution comes with its own
problems. Submitting to a remote service exposes the
image to a third party outside the reach of institutional
IT; updates in the web service may cause results not to be
reproducible and the server side application is typically
not exposed to public scrutiny, limiting the opportunities
for other quantitative researchers to advance or even fully
understand the underlying algorithms;[4] bioinformatics
web services are also notorious for relatively short
lifetimes, reflecting a sustainability model that can only
be met in the long term by institutional commitment or
by commercial products.[5]

A third solution might be to develop web services that
deliver the software rather than process the data, the
software-as-a-service (SaaS) model. This possibility
was anticipated in the eve of Web 2.0 bioinformatics
applications.[6] It was then predicted that a Web 3.0
would eventually emerge with “read-write-execute”

capabilities that could be explored by analytical workflows.
The ImageJS webApp ecosystem described in this report
advances along those exact lines without crossing the lines
set by requirements of privacy, scalability, reproducibility,
and sustainable deployment associated with the biomedical
environment. It also pays particular attention to the need
for producing and delivering reproducible research, a topic
that is taking center stage as bioinformatics increasingly
seeks to deliver data-intensive solutions with translational
usage.[7] Specifically, if an image analysis result can be
retrieved directly from the published image, with both
the data and the analytical environment that generated
the result, then one could indeed claim to be reporting
Reproducible Research.[8] Accordingly, ImageJS seeks to
deliver image analysis results meeting the gold standard in
that report’s description of the Spectrum of Reproducibility
[Figure 1].[8]

The possibility of approaching software development
as an open organic process, which is explored by the
ImageJS webApp environment described here, has been
proposed before as a requirement for “Medicine 2.0.”[9]
As discussed in that report, such an approach would
blur the separation between software development and
software deployment, turning coding into a conduit for
workflow assembly that is more akin to social networking
mechanisms. This is a departure from conventional
bioinformatics infrastructure that can also be construed
as a response to the mounting knowledge re-engineering
bottleneck.[10] It would provide a beyond the data deluge
solution[11] to image analysis where the computation is
pushed to where the data is, rather than the customary
approach of shuffling the data among a myriad of
analytical services.

Figure 1: ImageJS migrates through “script tag loading” to the
browser (by pointing a script.src to http://imagejs.github.com/
imagejs.js), where it creates an object with a method, imagejs.
loadModule, that will import and register additional components
onto imagejs.modules, while keeping data meant to be shared
between modules in imagejs.data. The corresponding UML
representation is appended to the lower left side of the browser
box. The solid lines represent programmatic exchanges and dashed
line represents an exchange that requires user intervention, such
as the loading or saving an image/analysis

J Pathol Inform 2012, 3:25	 http://www.jpathinformatics.org/content/3/1/25

video, publicly available at http://www.youtube.com/
watch?v=qbKBGb4EchE.

The features of the ImageJS environment as a vehicle
to deliver computation were studied by developing and
deploying an image analysis workflow that included
standard modules for feature segmentation, analysis, and
filtering. Each of these modules was configured not only
to deliver a desirable image analysis functionality – and
in the process test if the browser is a suitable platform to
do so – but also to test different models of dependency
between modules. The goal of testing different models
of articulation between analytical modules is to explore
the balance between flexibility and robustness of
browser-based computational ecosystems as platforms for
collaborative software development. The orchestration
and dependencies between each module are described
in Figure 2. Each module represents an independent
development exercise, hosted and versioned in its own
externally hosted service. As stated in the “Materials
and Methods” section, to reinforce the perception of
independent development, the multiple modules and
ImageJS core code are scattered between distinct versioned
hosting services, namely, GitHub and Google Code.

Dissimilarity Metric
The image analysis procedure developed starts with the
selection by the user of a chromomarker. A chromomarker,
RGBmarker, is defined as the three-element vector with the
intensities in the red, green, and blue channels that one
uses to retrieve image features with similar chromometric
characteristics. To this purpose, the user selects a pixel
in the image, I, of size n x m as a marker, with [R,G,B]
intensities, and sets a weighted threshold, T, for a
dissimilarity metric, dist, that will be resolved for all pixels
in the image, each with its own intensity values [r,g,b]:

dist r g b i j W r i j R W g i j G WB b i jR G([, ,](,)) ((,)) ((,)) ((,)= ⋅ + ⋅ − + ⋅2 2 −−
= =

B

i n j m

)

,..., ; ,...,

2

1 1 			 (1)

Module Chromomarkers – Segmentation

MATERIALS AND METHODS

ImageJS was entirely developed in JavaScript
(ECMAScript 5th ed.), the “assembler language of the
web.” To illustrate the distributed and collaborative
nature of the proposed webApp ecosystem, its component
modules were developed in multiple versioned code
hosting services, GitHub (http://github.com) and Google
Code (http://googlecode.com). The core application is
best started as a webApp at https://chrome.google.com/
webstore/search/imagejs. It can also be started directly
from http://imagejs.github.com/, which serves code
hosted at https://github.com/imagejs/imagejs.github.com.

The segmentation, feature extraction, and filtering
modules were developed, and are hosted at http://
imagejs.googlecode.com/. The list of modules can
be accessed directly through http://module.imagejs.
googlecode.com/git/, and the development history can
be inspected at http://code.google.com/p/imagejs/source/
list?repo=module. In some examples, a web read-write
resource is used to provide persistent image storage as
a web service. A number of alternatives exist; in this
report, we used WebRW HTTP-REST API, which is
supported by two independent implementations, both
open source: one is written in NodeJS (https://github.
com/jonasalmeida/webrw) and another in PHP (https://
github.com/ebadedude/webrw).

Important note: Although the core components and most
modules will work in different web browsers, this study
makes use of recent HTML5 features such as the file
API (http://www.w3.org/TR/FileAPI/) that are still being
adopted. To avoid problems with the syntax or support
of recent developments in HTML5, the reader is advised
to use the latest version of Google Chrome (version 18 at
the time of this reporting).

Availability: https://chrome.google.com/webstore/search/
imagejs

RESULTS

The ImageJS browser based computational ecosystem is
loaded by pointing it (preferably using Google Chrome,
see availability in Materials and Methods) to http://
imagejs.github.com. This action will cause ImageJS’s
document object, imagejs, to migrate to the web browser.
A quick inspection of this object will reveal that it
includes only a handful of methods, including the
one that will load external code, loadModule. A closer
inspection of this method will show that a) it imports
external code by pointing a browser’s Document Object
Model (DOM) script tag to the URL of the external
code (“module”) and b) it registers the imported
module in imagejs.module(URL). As is the rest of this
section, this inspection is also provided as a webcast

Figure 2: Examples of interface triggers for loading of modules
illustrated in this section: menu driven, dependency driven, and
programmatically associated with action by another module.
The analytical workflow can therefore be assembled by loading
modules in response to actions by the user or it can be initiated
by a particular result of the analysis

J Pathol Inform 2012, 3:25	 http://www.jpathinformatics.org/content/3/1/25

The first module, chromomarkers, will segment all pixels
in the image that are at a distance smaller than T.

segmentetPixelCoordinates i j dist r g b i j T= <[,]| ([, ,](,)) (2)

Both operations, distance calculation (Equation 1) and
segmentation (Equation 2), represent a first test of the
browser as an efficient environment for image processing.
The JavaScript engine of modern web browsers includes
support for map and reduce operations, which we recently
found to offer an efficient solution to the parallelization/
vectorization of code execution in the context of
sequence analysis.[12] For example, the n x m distance
matrix, D, defined by Equation 1, can be resolved
efficiently by nesting two map operations on the image
RGB intensities, I:

D I map function x i return x map function y j return I r= . ((,){ . ((,){ [, gg b i j,](,)})}) (3)

The efficiency of this implementation in ImageJS
relies on the JavaScript compiler mapping the explicit
parallelization of the code to local opportunities for
distribution. For example, by possibly using the machine’s
graphics processing units (GPUs).

As can be verified by operating ImageJS (or by viewing
the accompanying webcast at http://www.youtube.com/
watch?v=qbKBGb4EchE), chromomarkers will display the
edges of segmented image superimposed on the original
image. The edge detection is performed by another
mapping operation which is worth inspecting in the native
JavaScript syntax to recognize the nested mapping pattern
used in Equation 3, and is highlighted below in the code for
Equation 4. This time, the nested mapping is being used
to inspect the neighborhood of each pixel to find out if it
corresponds to a segmented pixel with a non-segmented
non-pixel, in which case it is classified as an edge:

			 (4)

Module Countshapes – Feature Extraction
As can be verified by using ImageJS or by viewing
the accompanying webcast, the image segmentation
operations are executed in real time (under 1 or 2 sec),
on par with other image analysis environments. Feature
extraction represents a tougher challenge. Here, the
goal is to identify which sets of segmented pixels define
a contiguous feature. This module’s interface now
separates (they are triggered by distinct events) feature
analysis operations that can be performed in real time,
such as the determination of segmentation density or the
ratio between RGB intensities between segmented and

non-segmented regions, from those that actually require
the extraction of features, such as counting them. The
implementation used has typical execution times of
about 10 features extracted per second.

The description of this feature extraction procedure
provides the opportunity to demonstrate how code can be
invoked in a publication without concern that subsequent
updates or renaming will cause this information not to
be available. For example, at the time of this writing, the
code for feature extraction can be found in line #171 of
version 4ec7931d17ccc17d27e724d51ae0 of jmat.js, which
can be “forever” available at http://code.google.com/p/
jmat/source/browse/jmat.js?r=4ec7931d17ccc17d27e724
d51ae0342b871bc98a#171. Following that link will not
only return the code used, but also expose comments
made by co-developers. It is again worth noting that
although the ImageJS core is hosted and versioned at
imagejs.github.com, this procedure happens to be hosted
and versioned by a distinct environment, this time at
Google. Both hosting services, which is to say, the hosting
services resolved by the links, are likely to last longer
(forever) than the interest or even the memory of its
authors.

Modular Orchestration
The ability to simultaneously host versioned development
and serve executable JavaScript code by exactly the same
mechanism is a unique feature of the web environment.
In the previous section, the feature extraction procedure
was described by reference to the specific version and
line of code deployment at the time of this writing.
The ability to reference specific versions of the code
therefore extends to the ability to execute them as well.
This feature is enhanced by ImageJS by allowing the
submission of modules by passing them as arguments
to the URL call. For example, http://imagejs.github.
com/?https://raw.github.com/imagejs/imagejs.github.
com/27b596ed08d41e79c6c96e86f0318694ca98cc9e/
mainMenu.js and http://module.imagejs.googlecode.com/
git-history/ef105347cc13dcb24cdfae621522b5891ff11ab7/
mathbiol.chromomarkers.js and http://
m o d u l e . i m a g e j s . g o o g l e c o d e . c o m / g i t - h i s t o r y /
ef105347cc13dcb24cdfae621522b5891ff11ab7/mathbiol.
countshapes.js specifies a very particular combination
of versions of the multiple modules involved in the
assembly of ImageJS. This is of course not a convenient
URL to exchange, so a shorter reference could be
generated, for example, http://bit.ly/H3hvbz. It is worth
repeating the note that none of the resources used to
enable the assembly of a specific version of the ImageJS
tool depends on the commitment of the authors of this
report to maintain those resources.

The ImageJS computational environment will natively
allow for three mechanisms to incorporate code
generated by others. The easiest to distribute is to simply

J Pathol Inform 2012, 3:25	 http://www.jpathinformatics.org/content/3/1/25

add the address of the modules to the URL of ImageJS
core application, as illustrated above. A more interactive
possibility is to use an input box as exemplified by
the Main Menu/Load option. The third one is to
associate links to DOM events such as mouse clicks.
The filtering of segmented images offers an illustration
of the usefulness of this mechanism in facilitating the
interaction with researchers focused on the computational
statistics aspects of the analysis. This module, mathbiol.
filterShapes, is strictly dedicated to specifying a number
of matrix manipulation procedures – erode and round
at the time of this writing. The association of these
procedures with the user interface buttons that trigger
them is dealt by the feature extraction module. Adding
a new filtering procedure to this object will automatically
trigger the creation of the additional buttons. We found
this style of module development to be particularly
appealing to the biostatistics minded researcher because
it does not require web programming skills beyond a basic
understanding of JavaScript syntax, which is reminiscent
of the C language.

In summary, the primary goal of the modules described
in this report is to illustrate how the image analysis can
be orchestrated to involve multiple contributions, with
different dependencies, using different styles, different
modes of interaction with the user, hosted in multiple
locations, while delivering reproducible results available in
the pervasive web browser platform. Figure 2 summarizes
the orchestration of modules described here, highlighting
the salient features and dependencies they were designed
to illustrate.

Data Management
The conventional approach of manually loading images
from the local file system, by file select or by drag and
drop, is supported. Manually saving the image and its
analysis results back to the files system is also supported
and consists of saving the contents of imagejs.data
[Figure 1] as a JSON structure. This behavior relies on a
relatively new development in web computing standards,
the File API (http://www.w3.org/TR/FileAPI).

Another possibility that is particularly useful in
collaborative and distributed environments is to rely on the
read-write capabilities anticipated for Web 3.0 Apps.[6,13]
In a nutshell, this is a cloud computing option that treats
web services as both remote storage and remote devices,
allowing for exchange of data simply by reference. One
of the modules, countShapes, illustrates this functionality
by using the WebRW service described in the “Materials
and Methods” section. This was adopted as a generic
solution of reading and writing back to the web such that
we would not have to choose among a slew of excellent
commercial resources such as Dropbox.com, Amazon’s
S3, or Google’s Fusion Tables, which would have required
user authentication. Regardless of the web read-write

cloud service chosen, the attraction of this option is that
programmatically, the Web is closer to the web browser
that to the browser’s machine own file system [Figure 1].
Accordingly, the same module loading mechanism
described in the previous sections will now be used to
deal with and saving and loading of data. As an example,
see either https://bitly.com/withData or point a QR reader
to the QR code in Figure 3 http://bit.ly/withData.qrcode;
both link to the same data with analysis, as depicted in
Figures 3 and 4.

A Pathology Application: KI67 Labeling for
Cellular Proliferation
The proposition that ImageJS is particularly adequate
to the development of very specific image analysis
applications was assessed by developing a new module
to assist with the determination of cellular proliferation
index from KI67-labeled transmission microscopy images.
As proposed, this was pursued by building not only
on top of the imagejs abstraction [Figure 1] but also
integrated with one of the generic modules described
earlier, Chromomarkers. As a consequence, this exercise
was conveniently reduced to the writing of a few
image analysis filters that rely on the Chromomarkers’
segmentation utilities to select segmentation thresholds.
The KI67 index, a cellular proliferation index, is the
ratio of nuclei undergoing division, often estimated
from transmission microscopy images of tissue treated
with a generic nuclear stain, such as Hematoxylin, and
an antibody that targets KI67, a protein present only in
the active stages of the cell cycle. To address the vagaries
of manual estimation of proliferation from such images,
the KI67 ImageJS module was designed to assist with
the calculation and, more importantly, to report the
final value with the graphic display of the corresponding
segmentations. A snapshot of this application is presented
in Figure 5, and can be invoked by a short link such as
http://bit.ly/ki67js or http://uab.mathbiol.org/ki67 in a
modern web browser, preferably Google Chrome.

DISCUSSION

Because of the increasing volume and heterogeneity of
data, the organic development of software that delivers
computational solutions to translational environments is
not only a challenge of increasing proportions, but also
one with increasing rewards. Accordingly, advances in
biomolecular methodology, coupled with the benefits of
an integrated environment in which data science in a
biomedical context may be applied, are increasingly seen
as a key new frontier for Pathology.[14] The opportunity to
develop encompassing integrative infrastructure for image
analysis has not been missed by the research community,
with very comprehensive initiatives such as OMERO[15]
advancing open source software that Pathologists with
access to Informatics Research resources and partnerships

J Pathol Inform 2012, 3:25	 http://www.jpathinformatics.org/content/3/1/25

can use. The advantages of these partnerships are also
increasingly compelling as the amount of annotated
image data in the public domain increases. Furthermore,
these are also increasingly object of large-scale modeling
exercises such as the recent morphological analysis of
The Cancer Genome Atlas (TCGA) slide images to
identify classifiers of tumor subtypes.[16] These advances
make the prospect of pushing image analysis to the Lab
Medicine or to the point of care all the more enticing
and the inability to do so all the more frustrating.

In principle, applications such as NIH ImageJ provide a
good solution to the “last mile” problem of delivering
computational solutions to the environments and
machines that have access to the image data that need
to be analyzed. The use of the Java language (the “J” in
ImageJ) to deliver such a solution is in line with its 1990s
motto of “write once, run anywhere.” It was then widely
anticipated that this would be the language of the web
and that not only would applications be delivered to the
browser as Applets (http://java.sun.com/applets/) but also
eventually the browser would mature to such a high level
of integration with the Java language (it would have a
native JVM) that even individual procedures would be
delivered into a communal computational pool where
an ecosystem of workflows might emerge in reaction to
the data and user interaction context. In a nutshell, the
web browser was, correctly, anticipated to become the
ultimate SaaS platform endowed with efficient processors
and with a protective sandbox such that the machine’s
own file system would not be exposed to the foreign
code injection. This should allow for the promise of
personalizing the analysis of an image in that private file

system to benefit from the wealth of reference data being
annotated elsewhere. In fact, this promise has since been
delivered, not by object-oriented Java which still requires
a virtual machine to be first loaded by the browser before
being interpreted, but by its little functional helper,
JavaScript, which went on to provide the basis for the
second generation of web technologies a decade later.[6]
Another key variation on the original prediction was the
emergence of cloud computing infrastructure as a logical
extension of the machine’s file system. This is the modern
scenario that the ImageJS prototype, described in the
“Results” section, explores: we now have all the features
needed for pervasive image analysis that we can port all
the way to the point of care. Specifically, a) we have an
efficient computational environment and b) we can deliver
SaaS in a manner that is both safe and reproducible.

The Web Browser for Computational Efficient
Image Analysis
The main argument for delivering image analysis using
the browser’s native interpreter is that it is the route best
aligned with the sandboxed browser, and is therefore least
likely to face objections by no download and installation
policies in care delivery environments. Initially, it was
not clear that this environment is sufficiently performant
for image analysis. The World Wide Web consortium
(W3C) has recognized the need for metrics for different
computational operations, but has only recently
standardized their acquisition.[17] We have also recently
found out when functionally decomposing sequence
analysis into MapReduce operations[12] that these
improvements may actually justify rather than deter the
use of the browser to deploy advanced computational
statistics procedures. As described in the “Results”
section and documented in the accompanying webcast,
the ability to perform image segmentation using weighted

Figure 4: Image analysis corresponding to http://bit.ly/withData. See
Figure 3 for equivalent QR code for optical reading by tablet devices

Figure 3: Quick Response (QR) code, generated automatically by
http://bit.ly/withData.qrcode for the link http://bit.ly/withData,
which in turn points to http://imagejs.github.com/?http://module.
imagejs.googlecode.com/git/ mathbiol.chromomarkers.js and
http://module.imagejs.googlecode.com/git/ mathbiol.countshapes.
js and http://165.225.128.64/?doc=UID5716226333752275 and http://
module.imagejs.googlecode.com/git/mathbiol.showdata.js, which
corresponds to a particular image analysis result that is assembled,
re-analyzed, reproducing the display depicted in Figure 4

J Pathol Inform 2012, 3:25	 http://www.jpathinformatics.org/content/3/1/25

Euclidean distance, edge detection, and then overlaying
the edges on top of the original image, all in real time,
suggest that a similar argument may be valid for image
analysis. This argument will be on even more solid
ground if efficiency refers to power consumption, since
that is the very argument why web browsers in mobile
devices are increasingly not supporting graphics rendering
using Adobe’s Flash, Microsoft’s Silverlight, and Oracle-
Sun’s JVM.

Safe and Reproducible SaaS?
The argument that the browser offers a safer delivery
of applications is the same that leads IT departments
to disable the installation of applications by researchers
and clinicians in biomedical facilities. There certainly
are opportunities to make webApps unsafe, but the fact
that they are executed within the browser’s sandbox
raises effective barriers to accessing the file system or
devices attached to the machine where the webApp is
being executed. The argument for a more reproducible
delivery of image analysis solutions is also not an absolute
claim. It reflects two facts. The first is that the script
tag loading mechanism enables the use of hosted code
versioning services for versioned application hosting, as
illustrated in the results given in the section “Modular
Orchestration.” The second reason for this claim is that
scientific publication also relies on the web browser as

the primary dissemination mechanism, which signifies
that an image analysis result represented as a figure in
a published manuscript can include a link to the data
and its versioned analysis code such that the result is
automatically reproduced by the machine of the reader.
As illustrated in Figure 4, the reproduction in the client
machine can even include the assembly of the analytical
environment where alternative analysis can be attempted.

CONCLUSION

ImageJS provides a pervasive mechanism to deliver image
analysis workflows and interactive interfaces to where
the data are. Its architecture was specifically designed to
promote the emergence of collaborative computational
ecosystems. It includes a core Object Model equipped
with data-specific attributes and methods, such as a
module loader that registers the source URLs of the
components loaded. The ability to define workflows by
chaining the addresses of the modules with ImageJS’s
own is expected to be the most useful feature of this
image analysis environment. The use of versioned
code hosting as a mechanism for deployment is also
a stark departure from conventional bioinformatics
infrastructure, where the ensuing “code injection”
is normally avoided rather than promoted. However
compelling this mechanism for distributed development
and deployment may be, and no matter how convenient
and scalable the delivery of computation to image
repositories may be, ImageJS webApp ecosystem is
primarily an experiment in informatics. The ability to
gather data about the population of this computational
webApp ecosystem by others and about collaborative
data processing to inform further development of
distributed image analysis infrastructure may well be its
most valuable purpose.

REFERENCES

1. 	 Rasband WS. Bethesda, Maryland, USA: ImageJ, U. S. National Institutes of
Health; Available from: http://imagej.nih.gov/ij/. [Last cited on 1997-2011].

2. 	 Ferreira T, Rasband W. ImageJ user guide. Image processing and analysiva.
ImageJ Community. 179. Available from: http://imagej.nih.gov/ij/dS IN JAocs/
guide. [Last accessed on 2010 Mar].

3. 	 Tuominen VJ, Ruotoistenmäki S, Viitanen A, Jumppanen M, Isola J.
ImmunoRatio: A publicly available web application for quantitative image
analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67.
Breast Cancer Res 2010;12:R56.

4. 	 Baggerly KA, Berry DA. Reproducible Research. AMSTAT News. Available
from: http://magazine.amstat.org/wp-content/uploads/2011an/January2011.
pdf. [Last accessed on 2011 Jan]. 16-7.

5. 	 Bastow R, Leonelli S. Sustainable digital infrastructure. Although databases
and other online resources have become a central tool for biological
research, their long-term support and maintenance is far from secure.
EMBO Rep 2010;11:730-4.

6. 	 Zhang Z, Cheung K-H, Townsend JP. Bringing Web 2.0 to bioinformatics.
Brief Bioinform 2009;10:1-10.

7. 	 Jasny BR, Chin G, Chong L, Vignieri S. Data replication & reproducibility.
Again, and again, and again Introduction. Science 2011;334:1225.

8. 	 Peng RD. Reproducible research in computational science. Science

Figure 5: Snapshot of the result of using imagejs’s KI67 module to
determine proliferation index in a labeled Glioblastoma sample
imaged by transmission microscopy. A webcast illustrating its usage
is available at http://www.youtube.com/watch?v=NCPNgRxWWDQ
and is also provided with the “Help” option of this ImageJS
application

J Pathol Inform 2012, 3:25	 http://www.jpathinformatics.org/content/3/1/25

2011;334:1226-7.
9. 	 Eysenbach G. Medicine 2.0: Social networking, collaboration, participation,

apomediation, and openness. J Med Internet Res 2008;10:e22.
10. 	 Hoekstra R. The Knowledge Reengineering Bottleneck. Semantic Web

2010;1:1-5.
11. 	 Bell G, Hey T, Szalay A. Computer science. Beyond the data deluge. Science

2009;323:1297-8.
12. 	 Almeida JS, Grüneberg A, Maass W, Vinga S. Fractal MapReduce decomposition

of sequence alignment. Algorithms Mol Biol 2012;7:12. (in press).
13. 	 Hendler J. Web 3.0 Emerging. Computer. IEEE Computer Society

2009;42:111-3.
14. 	 Tonellato PJ, Crawford JM, Boguski MS, Saffitz JE. A national agenda for the

future of pathology in personalized medicine: Report of the proceedings of
a meeting at the Banbury Conference Center on genome-era pathology,
precision diagnostics, and preemptive care: A stakeholder summit. Am J Clin
Pathol 2011;135:668-72.

15. 	 Allan C, Burel J-M, Moore J, Blackburn C, Linkert M, Loynton S, et al.
OMERO: Flexible, model-driven data management for experimental biology.
Nat Methods 2012;9:245-53.

16. 	 Cooper LA, Kong J, Gutman DA, Wang F, Gao J, Appin C, et al. Integrated
morphologic analysis for the identification and characterization of disease
subtypes. J Am Med Inform Assoc 2012;19:317-23.

17. 	 Jain A, Weber J. Web performance working group. 2011. Available from:
http://www.w3.org/2011/04/webperf. [Last accessed on 2012 Apr 2].

