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Patterned control of human locomotion
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Abstract There is much experimental evidence for the existence of biomechanical constraints
which simplify the problem of control of multi-segment movements. In addition, it has been
hypothesized that movements are controlled using a small set of basic temporal components
or activation patterns, shared by several different muscles and reflecting global kinematic and
kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is
accounted for by a combination of few basic patterns, each one timed at a different phase of the gait
cycle. Similar patterns are involved in walking and running at different speeds, walking forwards
or backwards, and walking under different loading conditions. The corresponding weights of
distribution to different muscles may change as a function of the condition, allowing highly
flexible control. Biomechanical correlates of each activation pattern have been described, leading
to the hypothesis that the co-ordination of limb and body segments arises from the coupling of
neural oscillators between each other and with limb mechanical oscillators. Muscle activations
need only intervene during limited time epochs to force intrinsic oscillations of the system when
energy is lost.
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Introduction

Biologists seek to understand complex organismal
processes in terms of the molecular components. In a
similar vein, systems motor physiologists aim at under-
standing the organization and production of movements
in terms of the elementary components, that is, the basic
control units with which the central nervous system (CNS)
constructs a movement.
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A typical limb movement involves angular motion at
several articular degrees of freedom, and the activation
of many more different muscles. For instance, there are
more than 50 muscles in each lower limb and at least half
of them participate actively in the control of leg motion in
the sagittal plane during walking (Winter, 1991). In line
of principle, the CNS might control the activity of each
individual muscle and the motion (as well as the stiffness)
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at each articular degree of freedom independently of the
control of all other muscles and degrees of freedom.
If so, motor control would be extremely fractionated,
meaning that the elementary motor components match
individual degrees of freedom. The organization of neural
pathways in primates does permit the selective activation
of single muscles, motor units or neurons, and there
is evidence that the CNS learns to control individuated
degrees of freedom with training (Fetz, 2007; Kutch et al.
2008). In practice, however, it would be very difficult
to implement a strategy of individual control outside of
a limited number of specific cases. Consider that even
the human fingers, the limb segments with the highest
selectivity of control, normally do not move independently
of each other because of mechanical and neural constraints
(Schieber & Santello, 2004; van Duinen & Gandevia,
2011), so that it takes a great deal of training in pianists to
minimize the movement spillover of the striking finger to
the adjacent fingers (Furuya et al. 2011).

There are several reasons why fractionated motor
control is often impractical to implement. First, because
of physics, a torque exerted at one joint tends to determine
angular motion not only at the corresponding joint,
but also at the other dynamically coupled joints of
the limb. A muscle torque would result in substantial
unwanted motion, unless mechanical coupling was taken
into account by the motor commands. Moreover, several
muscles are bi- or multi-articular, that is, they cross more
than one joint and act on several degrees of freedom
simultaneously. In addition to biomechanical coupling,
there is also neural coupling inherent in motor commands:
most descending and sensory pathways to α-motoneurons
are highly divergent and convergent. For instance, many
corticospinal axons branch over several spinal segments
providing terminal arbors in the motoneuron pools of
multiple muscles of the monkey (Shinoda et al. 1981). Also,
the projection patterns of spinal interneuronal systems
are highly divergent, as are the central projections of
muscle spindle afferents (Jankowska, 1992). Moreover,

even low-order sensory signals, such as those from muscle
spindle afferents or dorsal spino-cerebellar neurons, may
reflect whole limb dynamics, rather than local, uniarticular
information (Bosco & Poppele, 2001).

On the other hand, the smooth execution of
multi-segment movements in healthy subjects indicates
that such complications are somehow addressed by the
CNS (Soechting & Lacquaniti, 1981; Lacquaniti et al.
1999; Scott, 2004). One hypothesis is that basic patterns
of muscle activation represent elementary components or
building blocks for the generation of limb movements.
According to this hypothesis, the CNS emits a time series
of command signals – the basic activation patterns (Fig. 1).
Each command is based on both feedforward and feed-
back signals, and is output at a specific phase of the
motor task. A single command recruits several pools
of α-motoneurons quasi-synchronously, and activates
several different muscles of the limb. In this manner, each
patterned command influences multiple motor outputs,
owing to the fan-out of connections from the neurons
encoding the corresponding signal. In other words, there
are only a few basic patterns which are shared by multiple
muscles involved in a given motor task, resulting in
a considerable reduction of the number of degrees of
freedom of neural control. Thus, the activity profile of each
muscle, measured as electromyographic (EMG) activity,
results from the weighted combination of all basic patterns
(Fig. 1). The weight is related to the recruitment strength
of the α-motoneuron pools from a given command signal,
and may change as a function of the condition allowing
highly flexible control (Ivanenko et al. 2006). A related
hypothesis is that of modular control (Grillner, 1985; Bizzi
et al. 2008; Clark et al. 2010): a given module involves
a basic activation pattern (temporal structure) and the
weights of distribution (spatial structure) to different
muscles.

A further qualifying aspect of the hypothesis is
that a similar strategy of reduction of the number of
degrees of freedom holds true across different behavioural

Figure 1. Schematic of patterned control
Simulated example of muscle activity profiles as
weighted sum of three basic temporal
patterns. A given pattern and its associated
weights of distribution to all muscles represent
a control module. The outputs of the first
(green), second (blue) and third (red) modules
are summed together to generate overall
muscle activation (black envelope) according to
the equation: mi(t) = ∑

jpj(t)wij, where m is
muscle activation, p is pattern and w is weight.
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conditions, such as a wide range of different speeds,
amplitudes or directions of a given movement, loading
or unloading of the limb and body, or even different
motor tasks involving the same set of muscles. The neural
controllers issue basic activation patterns which, based on
both a forward model of limb biomechanics and feedback
signals from the periphery, take into account the dynamic
state of the whole limb, such as the interaction torques in
multi-jointed limbs. The coupling of activation patterns
and limb biomechanics then results in balanced net joint
torques and smooth movements.

Here we review evidence for patterned control of human
locomotion, but converging evidence for similar control
schemes has been gained for a variety of other motor
behaviours, ranging from swimming, kicking and jumping
(Bizzi et al. 2008) to nociceptive wiping responses (Giszter
et al. 2010), whole body postural responses (Ting &
MacKay, 2007), arm reaching (d’Avella et al. 2006), hand
manipulation (Soechting & Flanders, 2008), and in several
other animal species in addition to humans (Gillner, 1985;
Bizzi et al. 2008; Drew et al. 2008; Tresch & Jarc, 2009;
Giszter et al. 2010; Dominici et al. 2011). Alternative
versions of the hypothesis of patterned control mainly
differ in the emphasis placed on the relative invariance
of the temporal versus spatial parameters of the muscle
commands (Kargo & Giszter, 2008; Tresch & Jarc, 2009;
Clark et al. 2010; Gizzi et al. 2011; Safavynia & Ting,
2012). Two extreme versions are that: (i) the waveform and
timing of each pattern are invariant across different test
conditions, while the weights are unconstrained and can
change as a function of the specific task, or conversely, (ii)
the weights are invariant across different test conditions,

while the temporal waveforms are unconstrained and can
change as a function of the specific task. However, as it will
become apparent from this review, these extreme versions
are too rigid to be physiologically plausible for human
locomotion: both the timing and the weight of the patterns
may vary with the specific context.

Activation patterns in human locomotion

Several studies consistently showed that the EMG activity
of trunk and leg muscles during human adult locomotion
is adequately reconstructed as a linear combination of four
to five basic patterns, each one timed at a different phase of
the gait cycle (Fig. 2A; Patla, 1985; Davis & Vaughan, 1993;
Olree & Vaughan, 1995; Ivanenko et al. 2004, 2005, 2008;
Cappellini et al. 2006; Clark et al. 2010; McGowan et al.
2010; Gizzi et al. 2011). The average shape of each pattern,
once it is time-normalized to stride duration, is little
affected by changes in walking speed (Ivanenko et al. 2004),
direction (walking backwards versus walking forwards, see
Fig. 3; Ivanenko et al. 2008a), loading or unloading of the
limb and body (Ivanenko et al. 2004; McGowan et al. 2010;
see Fig. 4), or changes in locomotion mode (running versus
walking; Cappellini et al. 2006; Ivanenko et al. 2008a). The
similarity of the average waveforms irrespective of walking
or running speed suggests that each command is shaped
relative to the overall duration of the gait cycle, so that
the resulting muscle activations have a short duration at
high speeds and a longer duration at low speeds. The main
peak of each activation pattern lasts about 15–20% of the
cycle, and they are spaced between each other by roughly
the same amount.

Figure 2. Basic patterns and effect of
walking speed
A, basic patterns obtained by non-negative
matrix factorization of averaged (across
steps) rectified EMG profiles of 16
unilateral leg muscles (see list in Fig. 3A) in
10 walking subjects. Patterns are plotted
versus normalized gait cycle. VAF
cumulative variance accounted for by all
patterns. B, upper plot: changes in the
relative duration of the stance phase with
speed. Lower plot: phase lag required to
provide the best fit between each pattern
and the pattern determined from the
5 km h−1 data. B is modified from
Ivanenko et al. 2004.
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In contrast with the shape, the timing and the weight
of the patterns may change considerably as a function
of walking direction (Fig. 3), speed changes and body
weight unloading or loading (Fig. 4; Ivanenko et al.
2004; McGowan et al. 2010). Thus, in Fig. 4 one notices
that the weight of pattern no. 2 (labeled Module 2 in
the Figure) changes differentially between soleus and
medial gastrocnemius muscle as a function of different
loading conditions, although these two muscles are
traditionally considered as strict synergists. The possibility
of a functional uncoupling of muscles (such as the
medial and lateral gastrocnemius) belonging to the same
anatomical group has also been described in walking
around curves (Courtine et al. 2006) and cycling (Wakeling
& Horn, 2009). Irrespective of speed or loading, each
pattern is shared by several different muscles which
may act on different joints of the limb (Figs 3 and 4;
Ivanenko et al. 2004; Cappellini et al. 2006; McGowan
et al. 2010). Conversely, some muscles load on more
than one pattern, while others load heavily on a single
pattern.

Neural controllers of each leg can generate rhythmic
muscle activity relatively autonomous of the contralateral
leg, as shown by split-belt walking (Choi & Bastian, 2007).
Normally, however, there is strong bilateral coordination,
and several proximal muscles (e.g. the glutei) also affect
the contralateral limb via their action on the pelvic girdle
(Winter, 1991). Accordingly, when the basic patterns
are extracted from bilateral EMG recordings (instead of
unilateral recordings as those of Figs 2–4), two patterns

(nos 3 and 4) are almost carbon-copies of the other two
(nos 1 and 2), phase-shifted by half a cycle (Olree &
Vaughan, 1995; Dominici et al. 2011).

Biomechanical correlates of the activation patterns

The results reviewed above are consistent with the
hypothesis that the CNS controls a variety of different
locomotor tasks by distributing a few basic temporal
patterns of activation to several different muscles
acting on different joints of the limb. Several studies
showed systematic correlations between the timing of
the activation patterns and the occurrence of specific
biomechanical events of the gait cycle (Ivanenko et al.
2003, 2004; Cappellini et al. 2006; Dominici et al. 2011).
Thus, the maximum of each pattern shifts slightly toward
successively earlier phases of the gait cycle as walking or
running speed increases, and this time-shift parallels the
corresponding reduction of relative duration of the stance
phase (Fig. 2B; Ivanenko et al. 2004; Cappellini et al. 2006).
These time-shifts may depend on proprioceptive feedback
about the onset of stance and the transition between stance
and swing. Also, both the time-normalized waveform of
the patterns and that of output kinetics (e.g. joint torques
and powers) are roughly independent of walking speed
(Winter, 1991).

Correlational analyses (Davis & Vaughan, 1993;
Ivanenko et al. 2006) and biomechanical simulations
based on the experimentally derived activation patterns
(Neptune et al. 2009; Fig. 5) show that pattern no. 1

Figure 3. Forward versus backward locomotion
Patterns and weights in forward (A) and backward (B) walk at 5 km h−1 on treadmill. Notice that the patterns are
similar between forward and backward locomotion, but the weights are drastically different.
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(involving primarily hip and knee extensors) contributes
to weight acceptance at heel contact in early stance,
pattern no. 2 (ankle plantar flexors) contributes to body
support and forward propulsion in late stance, pattern
no. 3 (ankle dorsiflexors and hip flexors) contributes to
foot lift-off in early- to mid-swing and pattern no. 4
(hamstrings) decelerates the leg in late swing in pre-
paration for heel contact and then stabilizes the pelvis
after contact. Depending on the context, there may
be an additional pattern associated with ilio-psoas and
erector spinae muscles, accelerating the leg forward and
stabilizing the trunk in late stance and early swing
(Ivanenko et al. 2004, 2005; Cappellini et al. 2006). This
approach has recently been extended to three-dimensional
coordination of walking (unpublished obs, Jessica L. Allen
and Richard R. Neptune). The same basic patterns, which
are involved in the control in the sagittal plane of forward
progression, are also involved in the control of motion
in non-sagittal planes. An additional pattern (loading on
adductor magnus), however, contributes to the control

of medio-lateral accelerations of the centre of body mass
(COM).

The overall behaviour of the body and limbs during
walking is determined by the net forces and torques, as
resulting from the interplay of neural and mechanical
factors. Because the activation patterns are pulsatile,
muscle activations intervene only briefly at specific phases
of the gait cycle to re-excite the intrinsic oscillations of
the system when energy is lost. At optimum speed (about
5 km h−1), walking saves energy by exchanging forward
kinetic energy and gravitational potential energy of the
COM during the inverted-pendulum oscillation of stance
(Fig. 6A; Cavagna & Margaria, 1966), and by oscillating
the limb ballistically as an upright compound-pendulum
during swing (Mochon & McMahon, 1980). Thus, in
the absence of external perturbations, muscle activity
is only required to oppose gravity, maintain postural
configurations in the face of interaction torques, and
reintegrate energy losses during each cycle. Mechanical
(and metabolic) energy is mainly expended to redirect

Figure 4. Effect of loading and unloading
In each row, a basic pattern is plotted versus normalized gait cycle (as in Figs 2 and 3), and scaled in amplitude
for the indicated muscles and loading conditions (see legend). For each condition, all muscles within a module
received the same activation timing and waveform, but the magnitude was allowed to vary. Both timing and
magnitude were allowed to vary between conditions. GMAX, gluteus maximus; GMED, gluteus medius; VAS,
3-components vastus (medialis, lateralis, intermedius); RF, rectus femoris; HAM, hamstrings; BFsh, short head of
biceps femoris; MGAS, medial gastrocnemius; SOL, soleus; TA, tibialis anterior. Modified from McGowan et al.
(2010) with permission from Elsevier.
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Figure 5. Contributions of basic patterns to walking biomechanics
Contribution of different patterns (modules) to the walking sub-tasks of body support, forward propulsion and
leg swing. Early stance (15% of gait cycle), late stance (45%), early swing (70%) and late swing (85%) are shown.
Arrows departing from the COM denote the resultant module contributions to the horizontal and vertical ground
reaction forces that accelerate the COM providing body support and forward propulsion. Net energy flow by
each module to the trunk or leg is denoted by a + or – for energy increases or decreases, respectively. Muscle
abbreviations are as in Fig. 4. Modified from Neptune et al. (2009) with permission from Elsevier.

COM velocity during step-to-step transitions (Fig. 6A;
Kuo et al. 2005), and to force leg oscillation for swing
(Marsh et al. 2004). As in pushing a swing which oscillates
back and forth, muscle activations are timed at the
apex of limb and body oscillations to replace dissipated
energy. In running, instead, kinetic and gravitational
potential energy is stored as elastic strain energy in
muscles, tendons and ligaments at foot strike, and then is
partially recovered during propulsion (Alexander, 1991).
Interestingly, the time-varying rostro-caudal migration of
bilateral motoneuron activity in the human lumbo-sacral
spinal cord mirrors the changes in COM energy

during both walking and running (Cappellini et al.
2010).

The trajectories of the COM and feet are highly regular
and repeatable in human gait (Winter, 1991). They are
determined by the combined rotation and translation of
the lower limb segments. The pelvis, thigh, shank and
foot oscillate back and forth relative to the vertical with a
similar waveform, time-shifted across different segments
(Borghese et al. 1996; Bianchi et al. 1998), and in so
doing they carry the trunk and feet along. When the
segment elevation angles are plotted one versus the others,
they describe regular loops constrained close to a plane

Figure 6. Mechanical oscillations during walking
A, schematic trajectory of COM during a few consecutive steps. Arrows denote COM velocity before and after
heel contact. Notice that p1 and p4 timing coincides with the redirection of COM velocity. B, planar co-variance
of thigh elevation angle versus shank and foot angles identifies counter-clockwise loops, with heel contact and
toe-off at the top and bottom. Each coloured trace in both A and B denotes the trajectory segment over which
the indicated pattern is active.
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common to both the stance and swing phase (Borghese
et al. 1996; Lacquaniti et al. 1999; Ivanenko et al. 2008b).
Figure 6B shows the planar covariance in walking, with
the corresponding muscle activation patterns inserted at
the time of occurrence along the gait loop. The specific
orientation of the planar covariance reflects the phase
relationships between the segment elevation angles, and
therefore the timing of the inter-segmental coordination
(Bianchi et al. 1998). The phase-coupling between the
elevation angles shifts systematically with increasing
speed, just as the phase-coupling of the activation patterns,
once again demonstrating the tight linkage between
kinematic events and the activation patterns.

Development of locomotor patterns

An important question is whether the activation patterns
of locomotion are inborn, or whether they emerge during
development as learnt task solutions (Giszter et al. 2010).
According to the first viewpoint, a set of primitives is
available at birth because they are built into the motor
system by evolution. According to the second viewpoint,
instead, the motor system is organized to learn optimal
feedback controllers, and to construct the motor patterns
based on specific task requirements discovered with
experience (Todorov, 2004).

In fact, these two views can be reconciled (Giszter et al.
2010), as demonstrated by a recent study on different
developmental stages of the basic activation patterns of
locomotion (Dominici et al. 2011). When supported and
placed with the feet in contact with a firm surface, human
newborns display a stepping response which generally
disappears at ∼2 months after birth (unless stepping is
trained, Yang et al. 1998), and reappears several months
later when it evolves into intentional walking. Analysis
of EMG activity during newborn stepping reveals two
basic patterns that are roughly similar to pattern no. 2
and pattern no. 4 of the adult, but more prolonged in
duration (Dominici et al. 2011). As in adults, pattern no. 2
helps to provide body support during stance, while pattern
no. 4 helps to drive the limb during swing. In newborns,
however, there is no specific activation pattern at either
touch-down or lift-off. In toddlers (∼1-year-old) at their
first unsupported steps, one finds the same two patterns
(no. 2 and no. 4) of the newborn, plus two new patterns
timed at touch-down and lift-off which are similar to
pattern no. 1 and pattern no. 3 of the adult, and contribute
shear forces necessary to decelerate and accelerate the
body, respectively. In pre-schoolers (2–4 years), all four
patterns show transitional shapes: with increasing age,
the peak becomes narrower and shifts in time relative
to the step cycle, becoming closer and closer to the adult
waveform.

Dominici et al. (2011) also compared the development
of locomotor patterns in humans with that in other

vertebrates. In newborn rats, they found two patterns
essentially identical to those of human newborns, while
in adult rats, cats, macaques and guinea fowl they found
four patterns, closely resembling those of human children.
These results suggest that locomotion of several animal
species is built starting from common elements, perhaps
related to ancestral neural networks (Grillner, 2011).
However, with development, the motor patterns may
become tuned to the specific biomechanical requirements
of a given animal species. Thus, brief, pulsatile activations
timed at the apex of limb oscillations may be specific
to human adult locomotion, perhaps in relation to our
unique erect bipedal locomotion on extended legs and a
heel-contact well ahead of the body.

Central pattern generators

The muscle activation patterns and their weights
reflect global motoneuron output, and motoneuron
activation during locomotion is the end-product of
several neural processes (Fig. 7). A crucial role is
played by central pattern generators (CPGs), i.e. spinal
neuronal networks that control the basic rhythms and
patterns of motoneuron activation during locomotion
and other rhythmic behaviours (e.g. Grillner, 2006;
Kiehn, 2011). Hart & Giszter (2010) showed that
pulsatile patterns of muscle activation, similar to those
described in human locomotion, are associated with
the wiping responses of spinalized frogs, and appear
to be encoded by intermediate-zone interneurons. They
proposed that the pulsed activation patterns emerge from
a multi-layered organization of the spinal neural networks.
A similar proposal has emerged for mammalian locomotor
CPGs (McCrea & Rybak, 2008). They would include
a rhythm-generating layer and a pattern-generating
layer which coordinate flexor–extensor and left–right
side activity (Fig. 7A). The circuit of two mutually
inhibiting neurons depicted in Fig. 7A represents the
classic half-centre oscillator (Grillner, 2006). The neurons
in the rhythm-generating layer are two or more
synapses upstream from motoneurons and project to
pattern-generating neurons; the latter project mono-
synaptically to motoneurons.

In addition to multi-layered circuits, there are other
schemes of neuronal organization that may explain
pattern formation. For instance, in Matsuoka oscillators
(Matsuoka, 1985) neurons receive the same magnitude
of excitatory stimuli from outside the network, and
inhibitory stimuli from inside the network. Increasing
the number of neurons augments the number of bursts
of activity or basic activation patterns (Matsuoka, 1985).
Thus, four mutually inhibiting neurons (presumably
half-centres of stance–swing and left–right activity) are
able to reproduce the four basic activation patterns
reported for human locomotion (Fig. 7B).

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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We remarked above that two out of four patterns are
already present in stepping newborn babies, at a stage
when major inputs from the brain onto the spinal CPGs
are still immature (Martin, 2005). Indeed, automatic
stepping has been reported also in premature infants
and anencephalic newborns (Peiper, 1961). Cortico-spinal
drive on leg muscles matures relatively slowly during
human development (Petersen et al. 2010). Adults who
have suffered a spinal cord injury (Ivanenko et al.
2003) or a stroke disrupting the descending drive from
supraspinal pathways (Clark et al. 2010; Gizzi et al.
2011) display the full set or a subset of unaltered basic
activation patterns, although the weights of distribution
of the patterns and the corresponding profiles of EMG
activities are often drastically altered. Altogether, these
observations in children and adults support the idea that
spinal CPGs independent of supraspinal influences can
generate at least some of the basic commands under-
lying human locomotion (Dominici et al. 2011; Grillner
2011).

Sensory feedback

CPGs and motoneurons receive extensive feedback from
various sensory receptors for the control of balance,
direction and speed of locomotion (Pearson, 2000;
Grillner, 2006). Thus, the timing and magnitude of

EMG activity are tuned via proprioceptive feedback, as
shown by the tight relationship between these parameters
and critical kinematic and kinetic events (Figs 2–6). In
particular, the time-shift of the patterns with increasing
walking speed parallels the corresponding decrease of
duration of the stance phase relative to the swing phase
(Fig. 2B). In reduced cat preparations, the transition from
stance to swing is known to be heavily influenced by
sensory inputs, such as those signalling hip extension
(Grillner & Rossignol, 1978) or unloading of extensor
muscles (Duysens & Pearson, 1980). Also in human
infants, stance is prolonged and swing delayed when the
hip is artificially flexed or the load on the limb is increased;
conversely, stance is shortened and swing anticipated when
the hip is extended or the load is decreased (Pang &
Yang, 2000). In human adults, these effects are much
weaker, being presumably overridden by voluntary inter-
vention (Stephens & Yang, 1999). However, also in adults,
feedback is exquisitely sensitive to changes in peripheral
conditions and alterations in mechanical requirements
(Pearson, 2000), as is the functional state of the spinal
circuitry where sensory afferents project (Hultborn, 2001).
This state variability should not be viewed simply as
biological noise, but rather as a neural basis for flexibility
of motor execution as a function of the needs prevailing at
any given time, while the general constraint of a reduction
in the number of degrees of freedom would be enforced

Figure 7. Schematics of neural substrates
A, multi-layered organization of rhythm and patterns generators in the spinal cord under descending and sensory
influence. B, Matsuoka neural oscillators. See text for explanation.
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via the patterned control of muscle activations. Feedback
would also take care of error-detection and correction in
the motor output.

Supraspinal control

Supraspinal control of locomotion has been extensively
investigated in the cat (see Armstrong, 1988; Orlovsky
et al. 1999). Several brainstem, cerebellar and cerebral
structures influence the spinal locomotor networks by
means of both tonic descending drive and rhythmic bursts
of activity which are phase-locked to the step cycle. It
has recently been suggested that motor cortical neurons
which are active sequentially during the step cycle may
regulate the activity of small groups of synergistic muscles
(Drew et al. 2008). Cortico-spinal regulation is especially
critical during visually guided gait adjustments, such
as those required to step over an obstacle. During gait
adjustments, motor cortical neurons might modify the
magnitude and phase of the EMG activity of all muscles
contained within a given synergy (Drew et al. 2008). This
would be tantamount to modifying the activation patterns
we considered in this review.

Much less is known about the supraspinal control of
human locomotion. Although the human spinal cord is
capable of autonomously generating the basic activation
patterns sustained by sensory feedback, descending
supra-spinal signals are probably critical to drive and
modulate the overall locomotor output in healthy adults
(Nielsen, 2003). Indirect evidence of the role of supra-
spinal control is provided by the very limited recovery of
gait in patients with complete spinal cord injury (Dobkin
et al. 1995). Direct evidence in healthy humans is provided
by trans-cranial magnetic stimulation (TMS) over the
motor cortex during walking: TMS transiently inhibiting
cortico-motoneuronal cells produces a reduction of EMG
activity in lower limb muscles (Petersen et al. 2001).

Integration between supraspinal and spinal
mechanisms is revealed by the study of the coordination
of locomotor activity with voluntary movements such
as kicking a ball, stepping over an obstacle or reaching
down to grasp an object on the floor while walking
(Ivanenko et al. 2005). The basic activation patterns
underlying locomotion are always present, but there is an
additional activation pattern timed to the voluntary task.
This suggests that when the timing is basically the same
for the components of a combined task, the result will
have the same activation timing. A discrepancy between
the activation timing in the component tasks results
in additional activation components. Thus, voluntary
activation patterns are generated separately from the
locomotor patterns, but a coupling of corticospinal with
propriospinal circuits might result in partial synchroniza-
tion of activation patterns (Ivanenko et al. 2006).

Conclusions

We argued that the co-ordination of limb and body
segments in locomotion arises from the coupling of
neural oscillators between each other and with limb
mechanical oscillators. Muscle activations intervene at
discrete times to re-excite the intrinsic oscillations of the
system when energy is lost. The idea of a minimal active
tuning of the passive inertial and visco-elastic coupling
among limb segments is consistent with the hypothesis
that walking has evolved according to minimum energy
criteria (Alexander, 1991; Lacquaniti et al. 1999). The
modular, patterned activation of muscles simplifies the
control problem by reducing the effective number of
degrees of freedom, but this does not imply a rigid,
stereotypical behaviour. In fact, there exists considerable
flexibility in engaging different muscles, as shown by the
considerable trial-to-trial variability of the EMG profiles
(Winter, 1991). The distribution of the activation patterns
and the selection of muscle synergies probably occur
downstream relative to the timing in a network that is
dynamically configured by sensory feedback and central
control. There may be no need to explicitly compute a
desired kinematic trajectory or the required muscle forces.
Indeed developmental studies suggest that the CNS learns
very gradually how to map between input and output, until
the mature CNS becomes able to map desired locomotion
into the required muscle forces (Dominici et al. 2011).
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