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Abstract
BACKGROUND—The derivation of molecular signatures indicative of disease status and
predictive of subsequent behavior could facilitate the optimal choice of treatment for prostate
cancer patients.

METHODS—In this study, we conducted a computational analysis of gene expression profile
data obtained from 79 cases, 39 of which were classified as having disease recurrence, to
investigate whether advanced computational algorithms can derive more accurate prognostic
signatures for prostate cancer.

RESULTS—At the 90% sensitivity level, a newly derived prognostic genetic signature achieved
85% specificity. This is the first reported genetic signature to outperform a clinically used
postoperative nomogram. Furthermore, a hybrid prognostic signature derived by combination of
the nomogram and gene expression data significantly outperformed both genetic and clinical
signatures, and achieved a specificity of 95%.

CONCLUSIONS—Our study demonstrates the feasibility of utilizing gene expression
information for highly accurate prostate cancer prognosis beyond the current clinical systems, and
shows that more advanced computational modeling of tissue-derived microarray data is warranted
before clinical application of molecular signatures is considered.
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INTRODUCTION
Prostate cancer is the most common male cancer by incidence, and the second most common
cause of male cancer death in the United States. In 2008, it is estimated that approximately
186,320 new cases will be diagnosed and 28,660 men will die from this disease (data from
the National Cancer Institute). The mortality rate for prostate cancer is declining due to
improvements in earlier detection and in local therapy strategies; however, the ability to
predict the metastatic behavior of a patient’s cancer, as well as to detect and eradicate
disease recurrence remains some of the greatest clinical challenges in oncology. It is
estimated that 25–40% of men undergoing radical prostatectomy will have disease relapse,
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often termed a biochemical recurrence as the first clinical indication a rising serum level of
prostate-specific antigen (PSA) [1]. The accurate identification of patients at risk for relapse
would greatly facilitate the rational application of adjuvant treatment strategies.

Accurate prediction models based on standard clinical variables already exist for prostate
cancer recurrence after radical prostatectomy [2]. A postoperative nomogram developed by
Kattan et al. [3] is one of the most frequently used tools in current clinical settings. It
predicts prostate cancer progression by estimating 5- and 7-year progression-free probability
(PFP) after radical prostatectomy based on serum PSA, Gleason grade, surgical margin
status, and pathologic stage. Though well calibrated and repeatedly validated, the accuracy
of the nomogram does leave room for improvement, yet to date, no single biomarker, nor
any prognostic molecular models based on high-throughput gene expression analysis, has
been able to significantly improve upon the predictive accuracy of the postoperative
nomogram [4,5].

The advent of microarray gene expression technology has greatly enabled the search for
predictive disease biomarkers. Numerous exploratory studies have demonstrated the
potential value of gene expression signatures in assessing the risk of postsurgical disease
recurrence beyond the current clinical systems [6–9]. However, existing molecular
predictive models were derived using relatively simple computational algorithms, and the
critical issue of whether proposed gene signatures are ready for randomized, prospective
clinical validation trials is still under debate in the oncology community [10–12]. Key to
resolving this issue is the development of advanced algorithms that are capable of
identifying relevant genes (features in bioinformatic terms) in a background of tens of
thousands of genes, and on the basis of a limited number of patient tissue samples. This
process is known as feature selection, and achieving this in high-dimensional data remains a
major challenge in bioinformatics and machine learning [13]. Current limitations in feature
selection performance seriously undermine the performance of currently used data analysis
algorithms in terms of their speed and accuracy, and represent a major obstacle in the
translation of molecular models to clinical applications. In order to overcome some of these
restraints, we have previously derived a feature selection algorithm that addresses several
major issues with prior work including computational efficiency and solution accuracy. We
have experimentally demonstrated that our algorithm is capable of handling problems with
extremely large input data dimensionality, to a point far beyond that needed for gene
expression data analysis of genetically complex organisms [14–16]. The application of our
approach to breast tissue microarray data sets has enabled us to derive highly accurate
prognostic molecular signatures for breast cancer [17].

In this study, we conducted a computational analysis to investigate whether the application
of our computational algorithm can lead to the derivation of more accurate prognostic
molecular signatures for predicting prostate cancer recurrence. To this end, we analyzed a
prostate tissue gene expression data set established at the Memorial Sloan Kettering Cancer
Center (MSKCC) [5], and used a rigorous experimental protocol to compare the prognostic
performance of newly identified genetic signatures with those previously derived. Receiver
operator characteristic (ROC) curves and survival data analyses demonstrate the superior
performance of the new gene signature over previous work. We further derived a hybrid
prognostic signature, obtained by integrating gene expression data and clinical variables,
that significantly outperformed both the gene signature and the predictive nomogram. Our
results demonstrate that advanced computational modeling can significantly improve the
accuracy of molecular prognostic signatures for prostate cancer.
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MATERIALS AND METHODS
Data Set

We analyzed the gene expression and clinical data set used in the study published by
Stephenson et al. [5] Senior author Dr. William Gerald of MSKCC kindly provided updated
clinical information for this study. The data set was built from tissue samples obtained from
79 patients with clinically localized prostate cancer treated by radical prostatectomy at
MSKCC between 1993 and 1999. Thirty-nine cases had disease recurrence as classified by
three consecutive increases in the serum level of PSA after radical prostatectomy, and 40
samples were classified as non-recurrent samples by virtue of maintaining an undetectable
PSA (<0.05 ng/ml) for at least 5 years after radical prostatectomy. No patient received any
neo-adjuvant or adjuvant therapy before documented disease recurrence. The complete
clinical characteristics of the 79 primary tumors are listed in Stephenson et al. [5] Samples
were snap frozen, examined histologically, and enriched for neoplastic epithelium by
macrodissection. Gene expression analysis was carried out using the Affymetrix U133A
human gene array, which has 22,283 features for individual gene/EST clusters, as per
manufacturer’s instructions. Image processing was performed using Affymetrix Microarray
Suite 5.0 to produce cel.files, which were used directly in our analyses. In line with the
majority of microarray analyses, for genes to be incorporated into the published MSKCC
predictive models [5], data were filtered using several criteria that included a significant
differential expression between the two classes (P-value <0.001), a fold change >1.3, and a
“present” call in greater than 80% of the samples in either class. If feasible, it is preferable to
allow a learning algorithm to decide without bias which genes are useful for prediction,
without the use of any arbitrary preprocessing filters. In our study, except for a simple re-
scaling of the expression values of each gene to be between 0 and 1 (see Supplementary
Data), no other preprocessing was performed.

Feature Selection Algorithm
We have previously derived a feature selection algorithm that addresses several major issues
with prior work, including their problems with computational complexity, solution accuracy,
algorithmic implementation, and capability to handle problems with large data
dimensionality [14–18]. The key idea is to decompose an arbitrary complex model into a set
of locally linear ones through local learning, and then estimate feature relevance globally
within a large margin framework. The algorithm is a generic feature selection method that
performs without making any assumptions about the underlying data distribution. It avoids
any combinatorial search, and thus allows one to process many thousands of features within
1 min on a personal computer (Figure S4 in Supplemental Data). We have conducted a
large-scale experiment on a wide variety of synthetic and real-world data sets that
demonstrated that the algorithm can achieve close-to-optimum solutions in the presence of
thousands of irrelevant features. For details of the computational algorithm see our previous
publications [14–18] and Supplementary Data Section 2. The Matlab implementation of the
algorithm is available upon request for validating the reported results and academic research.

Experimental Procedure
To avoid possible overfitting of a computational model to training data, we used a rigorous
experimental protocol with the leave-one-out cross validation (LOOCV) method to estimate
classifier parameters and prediction performance [17,19], as depicted in Figure 1. The
experimental protocol consists of inner and outer loops. In the inner loop, LOOCV is
performed to estimate the optimal classifier parameters based on the training data provided
by the outer loop, and in the outer loop, a held-out sample is classified using the best
parameters from the inner loop. The experiment is repeated until each sample has been
tested. The held-out testing sample is not involved in any stage of the training process. The
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classification parameters that need to be specified in the inner loop include the kernel width
and regularization parameter of the feature selection algorithm (see Supplementary Data), as
well as the structural parameters of a classifier, which leads to a multi-dimensional
parameter search. To make the experiment computationally feasible, we adopted some
heuristic simplifications. Linear discriminant analysis (LDA) was used to estimate
classification performances and tune the input parameters. One major advantage of LDA,
compared to other classifiers (e.g., SVM and neural networks), is that LDA has no structural
parameters. We predefined the kernel width as 5, and estimated the regularization parameter
through LOOCV in the inner loop. In the simulation study presented in the Supplemental
Data, we demonstrated that the choice of the kernel width is not critical, and the algorithm
yields nearly identical prediction performance for a large range of values for this parameter
(Refs. [13] and [17], and Supplemental Data).

Statistical Analysis
Kaplan–Meier survival plots and log-rank tests [20] were used to assess the predictive
values of different prognostic approaches. The Mantel–Cox estimation of hazard ratio was
performed to quantify the relative risk of biochemical recurrence in the bad-prognosis group
compared with the good-prognosis group. A hazard ratio above 1.0 indicates that the
patients assigned to the bad-prognosis group have a higher probability to develop disease
recurrence than those in the good-prognosis group. In most microarray data analyses, the
numbers of available patient samples are usually quite small, and some performance
measurements (e.g., hazard ratios) are heavily influenced by the choice of a decision
threshold. A ROC curve obtained by varying a decision threshold provides a direct view on
how a predictive approach performs at the different sensitivity and specificity levels. The
specificity is defined as the probability that a patient who did not experience disease
recurrence was assigned to the good-prognosis group, and the sensitivity is the probability
that a patient who developed disease recurrence was in the bad-prognosis group. The most
frequently used criterion for comparing multiple ROC curves is the area under a ROC curve,
commonly denoted as AUC, which can range from 0.5 (no discrimination) to 1.0 (perfect
ability to discriminate). MedCalc version 8.0 (MedCalc Software, Mariakerke, Belgium)
was used to perform the ROC curve analysis. A P-value of 0.05 was considered statistically
significant.

RESULTS
Using the iterative analytical approach depicted in Figure 1, we developed two
computational models to predict the biochemical recurrence of prostate cancer in a cohort of
79 patients who had clinically localized prostate cancer treated by radical prostatectomy.
Biochemical recurrence of disease was defined as three consecutive increases in the serum
level of PSA. The first model was based exclusively on gene expression data obtained from
tissue samples, and the second combined the predictive information of both genetic and
clinical variables. Specifically, in the latter combination (or hybrid) model we used as
clinical variable the 7-year probability of disease recurrence estimated by the clinically used
postoperative nomogram [3].

ROC curve analysis was performed to compare the prediction performance of the two novel
prognosis models and the nomogram (Fig. 2). The nomogram performed reasonably well,
consistent with multiple studies reported in the literature [3,4], but our genetic model
predicted disease recurrence more accurately than the nomogram, specifically in the high
specificity region. At the 90% sensitivity level, the genetic signature correctly classified 69
out of 79 samples (87%), including 34 non-recurrent and 35 recurrent tumors. To our
knowledge, this is the first reported genetic signature in the literature that outperforms the
clinically used predictive nomogram. Furthermore, a hybrid signature derived by combining
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the gene expression data with clinical information outperformed both the nomogram and the
genetic signature. At the 90% sensitivity level, the hybrid signature improved the
specificities of the genetic model and nomogram by about 10% and 20%, respectively
(Table I). It correctly classified 74 out of 79 samples (94%), including 38 non-recurrent and
36 recurrent tumors. Statistical analysis of the ROC curves using MedCalc Software
revealed the predictive accuracy of the hybrid signature to be significantly superior to that of
the postoperative nomogram (P-value <0.0001) and the gene-expression model (P-value
<0.05). The odds ratio (OR) of the hybrid and genetic models, reported in Table I, shows
that the patients assigned to the bad-prognosis group are 18.2 (95% CI: 5.9–56.2) and 16.5
(95% CI: 5.4–51.0) times more likely to develop disease recurrence than those assigned to
the good-prognosis group, respectively.

To further demonstrate the predictive value of the three approaches in assessing the risk of
biochemical recurrence in prostate cancer patients, survival data analyses were performed.
The Kaplan–Meier curve of the hybrid model, plotted in Figure 3, shows a significant
difference in the probability of remaining free of disease recurrence in patients with a good
or bad prognosis (P-value <0.001). The Mantel–Cox estimate of hazard ratio for
biochemical recurrence of prostate cancer within 5 years for the hybrid model was 29.1
(95% CI: 8.3–102.1), which is much larger than those of either the nomogram (11.9, 95%
CI: 3.8–36.9) or the genetic model (18.0, 95% CI: 5.9–54.6) depicted in Figure 3. At the 5-
year end point, all three approaches had similar low relapse rates in patients with good
prognosis, but the patients assigned to the bad-prognosis group by the hybrid model had a
much lower probability of remaining free of disease recurrence (0.21, 95% CI: 0.12–0.40)
than that determined by the nomogram (0.35, 95% CI: 0.22–0.50).

To avoid possible overfitting of the computational model, we used the LOOCV method to
estimate classifier parameters and prediction performance [17,19]. As the name suggests,
LOOCV involves using microarray data from a single sample as validation data, and the
data from the remaining samples as the training data. The experiment is repeated until each
sample has been tested. Over the 79 iterations of LOOCV, a total of 11 genes were
identified in the optimal genetic prognostic signature (Table II). The mean expression of
each gene in the 79 tumor samples obtained from patients with, and without, disease
recurrence was visualized by creating individual scatter plots (Figure S2 in Supplemental
Data). The observed pattern (under- or over-expressed) in the recurrent cases for each gene,
and the frequency of occurrence of each gene over 79 model iterations, are listed in Table II.
A high occurrence rate is an indication of the relative importance of the corresponding gene
for predicting disease recurrence. In the hybrid modeling approach, the nomogram output
was selected in all 79 computational iterations, and 4, 5, and 6 genes were identified in 69,
9, and 1 iteration(s), respectively. A total of five different genes were included in the
optimal hybrid models (Table II). Notably, all of these genes were also present in the genetic
model, and three genes (PAK3, RPL23, and EI24) occurred at a high frequency in both the
genetic and hybrid models (Table II).

DISCUSSION
A number of studies have been conducted describing the use of microarray technologies for
prostate cancer diagnosis and prognosis [8,9,21–23], and the notion that molecular models
can provide prediction performance close to those achieved by current clinical systems has
been established [5,8,9]. However, to date, these predictive models have been derived using
simple computational algorithms, and whether these approaches achieved optimal
performance when using genetic information is rarely addressed in the literature. We have
recently developed a new feature selection algorithm [14–17] to address limitations inherent
to current microarray data analysis strategies.
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While high-throughput microarray technologies greatly facilitate the search for molecular
disease biomarkers through multivariate data analyses, they also pose serious challenges to
existing learning algorithms. With a limited number of patient samples and high-
dimensional data per sample, a learning algorithm can easily overfit training data, resulting
in models with over-optimistic error rates, but with a very poor generalization performance
on unseen test data—a phenomenon called the curse of dimensionality in machine learning
[24,25]. As described above, one needs to perform computational feature selection to
identify the small fraction of genes that potentially drive disease, in this case tumor
progression. Existing feature selection algorithms rely on combinatorial searches that have
no guarantee of optimality in the presence of tens of thousands of irrelevant genes, and are
seriously limited by computational complexity. For this reason, many gene identification
algorithms resort to filter methods that evaluate genes individually based on statistical
measures such as a Fisher score and/or a P-value of t-tests [7,8]. Although filter methods can
provide a working solution for exploratory purposes, the obtained gene signatures are far
from optimal for clinical applications.

The application of our feature selection algorithm to the MSKCC data set enabled us to
derive a genetic signature that predicts biochemical disease recurrence after radical
prostatectomy with 87% overall accuracy. Furthermore, a hybrid signature derived by
combining the gene expression data with the 7-year PFP score outperformed both the
nomogram and the genetic signature, correctly classifying 74 out of 79 samples. Statistical
analyses also clearly demonstrated the superiority of the hybrid signature over a prognostic
system that uses only genetic or clinical markers. These data confirm the previous finding
[5] that the nomogram and gene expression models can provide complementary information
for predicting the biochemical recurrence of prostate cancer. Though the nomogram
performs very well when the estimated 7-year disease PFP is larger than 90%, it assigns a
significant number of non-recurrence patients to the bad-prognosis group. It is evident in
Figure 4 that microarray data provide additional information to stratify these patients. If a
threshold for the probability of recurrence was applied using the nomogram data only, for
example, at 0.7 on the x-axis of Figure 4, then several non-recurrent cases below the
threshold would be wrongly classified. However, if we have plot both nomogram and
microarray data and add a threshold to the decision based on microarray data, say at 0.475
on the y-axis of Figure 4, only a couple non-recurrent cases would be wrongly classified
(below nomogram threshold and to the right of the microarray threshold). While it is clear
that the hybrid signature performs extremely well thus far, we should emphasize that in
many cases clinical data are not available, or are not consistent across institutions, and thus
it is important that optimal genetic signatures are also pursued.

Three genes that were most highly weighted in both the genetic and hybrid signatures were
RPL23, EI24, and PAK3. RPL23 is a member of the ribosomal protein (RP) family that acts
to stabilize rRNA structure, regulate catalytic function, and integrate translation with other
cellular processes, but recent studies have shown that many RPs have extra-ribosomal
cellular functions independent of protein biosynthesis. A potential role for RPs in
carcinogenesis and tumor progression is being founded on studies that have implicated RPs
not only as targets of tumor suppressors or proto-oncogenes, but also as more direct
mediators of aspects of tumor progression [26]. RPL23 has been shown by Dai et al. [27] to
be part of a multiprotein complex that regulates the activity of the oncoprotein HDM2
(human MDM2), a protein that is frequently over-expressed in various human carcinomas,
soft tissue sarcomas, and other cancers [28]. HDM2 interacts with several growth
suppressors and other proteins, including the tumor suppressor p53, the retinoblastoma
susceptibility gene product Rb, and the growth suppressor p14, so any shift in the
availability of HDM2 could lead to significant alterations of cellular phenotype. Etoposide-
induced gene 24 (EI24) is a p53-induced gene (PIG) that is located in chromosomal region
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11q23–24 shown to be often mutated or deleted in solid tumors, including prostate [29].
EI24/PIG8 is localized in the endoplasmic reticulum (ER), and by virtue of its binding
Bcl-2, has been linked with the modulation of apoptosis [30]. EI24 is a direct target of p53
transcriptional activation and is thought to be involved in the formation of reactive oxygen
species [31]. Perturbation of either of these mechanisms by changes in EI24 expression may
contribute to prostate cancer progression. PAK3 is a Group I member of the p21-activated
kinase (Pak) family serine/threonine protein kinases that bind to and modulate the activity of
the small GTPases, Cdc42 and Rac. GTPase signaling controls many aspects of cellular
response to the environment, and through these interactions, PAKs have been shown to be
involved in the regulation of cellular processes such as gene transcription, cell morphology,
motility, and apoptosis [32]. Interestingly, it has been revealed that one PAK family member
is able to inhibit androgen receptor (AR) responsiveness, a critical function in prostate cells,
by regulating nuclear translocation of the AR and thus preventing specific transcriptional
responses [33]. There is growing evidence for a pivotal role of GTPases in tumor
progression [34], and is noteworthy that another of the 11 genes in the genetic prognostic
signature is a GTPase-activating protein, named RICS, that also acts on Cdc42 and Rac [35].
The potential roles of these genes in prostate cancer progression deserve further
investigation.

As well as an impact on clinical decision-making, it is hoped that microarray data will
advance our understanding of cancer biology, which in turn will inform the development of
new and effective therapies. The fact that diagnostic and prognostic signatures reported to
date have been composed of tens or hundreds of genes means that the choosing of genes to
study functionally remains difficult and somewhat arbitrary. A major advantage of our
deriving accurate prognostic signatures comprising just a few genes greatly facilitates the
task of functional investigation. The number of genes was further reduced to 5 in our
clinical/genetic hybrid signature, and it is notable that all 5 genes were also amongst the 11
genes comprising the genetic signature. This was not necessarily to be expected, because the
analysis used to derive the hybrid signature was not in any way informed by the genetic
signature analysis. While they used the same raw data, the two signatures were derived
entirely independently.

The derivation of disease-associated molecular signatures is necessarily an ongoing,
dynamic process, in which, with the inclusion of more patient samples with consistent
clinical information, a prognostic signature will be continuously refined [10,17,36]. Due to
biological and technical limitations, tissue-based microarray analysis may not be able to
achieve 100% accuracy, yet the application of our advanced feature selection algorithm has
brought us close to optimality in this data set. The ROC curves of our analyses depicted in
Figure 2 show that, in this cohort, there is now very little room for improvement. Although
cross-validation analyses between microarray platforms, and even between institutes
presents another set of problems, the findings described here suggest that the application of
this computational approach to larger scale cohort studies may lead to the derivation of
prognostic prostate cancer signatures that are worthy of clinical validation trials.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Computational experimental procedure.[Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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Fig. 2.
Receiver operating characteristic (ROC) plot comparing the prediction performance of the
clinical predictive nomogram, genetic prognostic signature, and hybrid model (combination
of nomogram and genetic). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Fig. 3.
Kaplan–Meier survival curve probabilities of remaining free of disease recurrence for
patients with a good or a bad prognosis as defined using the clinical nomogram
(Nomogram), molecular prognostic signature derived from gene expression microarray data
(Genetic), or a hybrid prognostic signature derived by the combination of the genetic and
nomogram data (Hybrid Genetic and Clinical). The P-values were computed by log-rank
test.[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Fig. 4.
Scatter plot showing the distribution of prostate cancer patients with (asterisks) and without
(circles) documented biochemical recurrence when plotted using both nomogram and
microarray data. The distribution demonstrates that the genetic and clinical markers contain
complementary information in assessing the risk of a patient developing biochemical disease
recurrence. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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TABLE II

Genes Identified in the Genetic Prognostic Signature and the Hybrid Genetic and Clinical (Marked by ¶)
Predictive Model

Gene symbol Gene title
Mean expression in
recurrent tumors P-value Occurrence frequencies

PAK3¶ P21 (CDKN1A)-activated kinase 3 Under-expressed <9.0e −6 78 (79)

RPL23¶ Ribosomal protein L23 Over-expressed <5.0e −5 79 (79)

E124¶ Etoposide-induced 2.4 mRNA Over-expressed <3.0e −7 79 (79)

TGFB3¶ Transforming growth factor, beta 3 Under-expressed <1.0e −5 79 (3)

RBM34¶ RNA-binding motif protein 34 Over-expressed <3.0e −4 62 (8)

PCOLN3 Procollagen (type III) N-endopeptidase Under-expressed <3.0e −5 78

FUT7 Fucosyl transferase 7 (alpha (1,3) fucosyl transferase) Under-expressed <3.0e −3 30

RICS Rho GTPase-activating protein Over-expressed <3.0e −6 8

MAP4K4 Mitogen-activated protein kinase 4 Over-expressed <3.0e −5 5

CUTL1 Cut-like 1, CCAAT displacement protein (Drosophila) Over-expressed <3.0e −5 2

ZNF324B Zinc finger protein 324B Under-expressed <5.0e −4 1

The P-values, computed using a t-test, quantify the up- or down-regulation of a gene between patients with, and without recurrence. The value
inside and outside of the brackets in the last column is the number of iterative models in which a gene was selected in the hybrid and genetic
models, respectively.
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