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Abstract
Objectives—To produce valid seroincidence estimates, the serologic testing algorithm for recent
HIV seroconversion (STARHS) assumes independence between infection and testing, which may
be absent in clinical data. STARHS estimates are generally greater than cohort-based estimates of
incidence from observable person-time and diagnosis dates. The authors constructed a series of
partial stochastic models to examine whether testing motivated by suspicion of infection could
bias STARHS.

Methods—One thousand Monte Carlo simulations of 10,000 men who have sex with men
(MSM) were generated using parameters for HIV incidence and testing frequency from data from
a clinical testing population in Seattle. In one set of simulations, infection and testing dates were
independent. In another set, some intertest intervals were abbreviated to reflect the distribution of
intervals between suspected HIV exposure and testing in a group of Seattle MSM recently
diagnosed with HIV. Both estimation methods were applied to the simulated datasets. Both
cohort-based and STARHS incidence estimates were calculated using the simulated data and
compared with previously calculated, empirical cohort-based and STARHS seroincidence
estimates from the clinical testing population.
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Results—Under simulated independence between infection and testing, cohort-based and
STARHS incidence estimates resembled cohort estimates from the clinical dataset. Under
simulated motivated testing, cohort-based estimates remained unchanged but STARHS estimates
were inflated similar to empirical STARHS estimates. Varying motivation parameters appreciably
affected STARHS incidence estimates, but not cohort-based estimates.

Conclusions—Cohort-based incidence estimates are robust against dependence between testing
and acquisition of infection whereas STARHS incidence estimates are not.
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Introduction
The serologic testing algorithm for recent HIV seroconversion (STARHS) was designed to
permit estimation of HIV seroincidence using a single blood specimen from each tester.[1]
Specimens reactive to the enzyme-linked immunosorbant assay (ELISA), and confirmed by
Western Blot (WB), are retested using an assay that reacts to a greater level of antibody
produced some average number of days following production of antibodies detectable by
ELISA. For less-sensitive ELISA (LS-EIA), that mean number of days is estimated at 129
days; the proportion of specimens reactive by ELISA and non-reactive by LS-EIA, is taken
to reflect the proportion of testers who acquired HIV during a 129 day period, and used to
calculate annual seroincidence. Prior to STARHS, HIV seroincidence in clinical populations
could be calculated among cohorts of initially ELISA-negative, repeat testers, using
seroconversion events and person-time during the period of observation. While valid, cohort
incidence estimates are of limited generalisability due to selection bias, the limitation
STARHS was designed to overcome. Using simulation, Song and Karon have shown that
estimates from STARHS and cohort methods will testing is independent of acquisition of
HIV.[2] However, comparison of cohort and STARHS estimates of seroincidence using
specimens and data from the same clinical testing population shows STARHS estimates to
be biased upward.[3] Seroincidence was estimated using STARHS and cohort methods for
men who have sex with men (MSM) who tested for HIV at Public Health—Seattle & King
County (PHSKC). All initially tested negative for HIV antibody and subsequently retested.
STARHS seroincidence estimates were greater than cohort estimates by a factor of 1.5.

In populations who choose the time of their HIV tests, independence between dates of HIV
infection and HIV testing cannot be assumed. Some proportion of MSM who have taken
risks for HIV acquisition (unprotected anal intercourse, sexual contact with a seropositive),
experience symptoms of primary HIV infection, or experience symptoms of (or are notified
of contact to) another sexually transmitted disease (STI), may test for HIV soon after. Such
motivated testing will increase the proportion of ELISA/WB-positive testers who test LS-
EIA non-reactive, and the proportion of LS-EIA non-reactive results among all testers,
biasing STARHS seroincidence estimates upward.[4]

To examine whether motivated testing may exert bias on STARHS estimates, hypothetical
populations of MSM with a moderate incidence of HIV infection, and testing for HIV over a
five-year period, were simulated using partial stochastic modeling. A series of models was
created in which testing was not motivated by potential HIV exposure, and dates of potential
HIV exposure and testing were independent. Data were simulated using parameter values
taken from the dataset of Seattle MSM for which STARHS and cohort incidence estimates
were obtained.[3] Another series of models was created in which some testers perceived that
they may have been exposed to HIV and whose testing was motivated those potential
exposures; thus, dates of potential exposure and testing dates were dependent. Parameter
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values for simulations under which some testing was motivated were derived from interview
data from Seattle MSM recently diagnosed with HIV infection, some of whom suspected
HIV exposure prior to testing. Seroincidence estimates were calculated from simulated data
using both the STARHS and cohort methods used in the original analysis. Motivation
parameters were varied to assess whether STARHS and cohort incidence estimates are
robust against differing degrees of motivation.

Methods
Data sources for parameter values in all models

The frequency with which simulated MSM tested was obtained from the distribution of
observed intervals between next-to-most-recent and most recent HIV tests of MSM at
PHSKC sites. Intertest intervals for those men had an inverse gamma distribution, a mean
value of 582.0 days and a standard deviation of 509.3 days. This distribution was termed
parameter d. Simulated individuals were randomly assigned a test date from the distribution
of d.

The frequency with which testers seroconverted was obtained from the cohort incidence
estimate for initially ELISA-negative MSM testing at PHSKC during 1996–2000, which
was 1.4 new infections per 100 person-years. Based on the observed incidence among MSM
in the PHSKC dataset, mean time to seroconversion was parameterised at a mean 83.3 years,
with a uniform distribution. All simulated individuals were assigned seroconversion dates
following their most recent negative test, randomly drawn from that distribution.

Construction of model of unmotivated testing
A simulation of 10,000 individuals was created in which dates of acquisition of infection
were independent from dates of testing. Initial time was set at their most recent HIV test.
Time to test was reparameterised slightly from empirical data for better fit, resulting in a
mean of 650.0 days and a standard deviation of 398.0 days. If an individual’s seroconversion
date preceded his next test date, his result was ELISA/WB positive. For all individuals
ELISA/WB positive results, an LS-EIA result was simulated. If seroconversion date
preceded test date by ≤129 days, the LS-EIA result was non-reactive otherwise it was
reactive. One thousand Monte Carlo simulations were performed, generating HIV incidence
estimates using STARHS and the cohort method. These estimates were compared with
seroincidence estimates from the PHSKC dataset.

Data sources for parameter values in models under which testing was motivated
Parameters for motivated testing were taken from participants in the Seattle Area MSM
study (SAMS), MSM recently diagnosed with HIV infection who had recently acquired
HIV; this study is described in detail elsewhere.[5] Participants were asked about their three
most recent male anal sex partners, and in the case of individuals testing ELISA/WB
positive, whether they believed they knew which partner was the source of their infection.
Dates of first sexual contact with that partner and last unprotected sexual contact were
collected. If a participant believed some other partner to be the source of his infection he
was asked for those dates for that partner. Distributions of both duration of partnership and
interval between last sexual contact and testing took on gamma distributions. In SAMS, 24
of 77 seropositive men (31%) felt that they knew which of their previous or current partners
had transmitted HIV to them. Of these, 7 had sex with that partner only once, 10 were in a
sexual partnership with that partner at the time of HIV diagnosis, and 7 had sex with the
partner multiple times but were no longer having sex with the partner when diagnosed.
Given the low per-act transmissibility of HIV, all testers were assigned a date of a potential
exposures that would prompt them to test. Therefore, time between most recent ELISA-
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negative result and a potential exposure took on a uniform distribution with a mean of 5.0
years, under which 31% of testers would have such an event within the mean intertest
interval of 650.0 days. For seroconverters, the date of infection was used as their potential
exposure, taken from their predicted seroconversion date.

Construction of model of motivated testing
A simulations incorporated testing motivated by perception of potential exposure. Dates of
testing were informed by either date of potential exposure, or in the case of ELISA/WB-
positive testers, infection. Two waiting times were developed from the SAMS data from the
three types of partnerships ELISA/WB-positive testers suspected to be the source of their
infection (fig 1).

Type 1 partnerships were those in which testing followed a single encounter with the
partner. Type 1 partnerships required assignment of one category of waiting time, taken
from the distribution of after, the interval between last sex with the suspected source partner
and HIV testing. The empirical value for after had a mean of 415.9 days and a standard
deviation of 451.2 days, slightly reparameterised to better depict the gamma distribution
with a mean 450.0 days and standard deviation of 425.0 days. As 7/77 of ELISA/WB-
positive testers were Type 1 testers, test date followed infection/potential exposure by after
for 9.1%.

Type 2 partnerships were characterized by testing while the suspected source partnership
was ongoing. Type 2 partnerships required a single category of waiting time. This was taken
from the uniform duration, the number of days between first sexual encounter with the
partner and last unprotected sex prior to testing (date of first unprotected sex was
unavailable). The empirical value for this waiting time had a mean of 123.1 days and a
standard deviation of 176.2 days; the standard deviation was reparameterised to better depict
the gamma distribution as 135.0 days. It was assumed that acquisition of HIV could have
occurred at any point since the beginning of the partnership and the last unprotected sex
prior to testing; therefore the waiting time daysin was drawn from a uniformly distributed
point within duration to last unprotected sex. To represent the 10/77 Type 2 testers, test date
followed infection/potential exposure by daysin for 13.0%.

In Type 3 partnerships, individuals tested following suspected exposure during a partnership
of some duration, which had ended. To represent the 7/77 Type 3 testers among ELISA/
WB-positive testers, test date followed infection or potential exposure by daysin + after for
9.1% of testers.

For motivated testers with ELISA/WB-positive results, determination of LS-EIA result
required calculated the number of days between the date the individual would have produced
antibodies detectable by ELISA and ELISA/WB-positive test. This was accomplished by
subtracting from the number of days between suspected exposure and positive test, the
number of days the individual would have antibody levels undetectable by the current
ELISA. This number was randomly assigned from a uniform distribution of one to 30 days
to reflect the period an HIV infected person will have a negative ELISA, estimated to be
between 10.2 and 27.4 days.[6] One thousand Monte Carlo simulations generated both
STARHS and cohort measures of seroincidence from the simulated data, which were
compared to STARHS and cohort seroincidence estimates from MSM tested at PHSKC.

Construction of models in which degree of motivated testing was varied
Lastly, datasets were simulated the proportion of individuals expediting testing in response
to suspected infection was varied while holding other parameter values constant.
Simulations were also conducted varying the degree to which testing was expedited by
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incrementally changing the distribution of waiting times daysin and after, varying the type
of partnerships from which encounters motivated testing by changing the proportion of
testers for whom the suspected exposure was a single encounter (Type 1 source
partnerships).

Approaches to calculation of seroincidence
Cohort seroincidence was calculated from PHSKC data and simulated data using a cohort
estimator derived from Kitayaporn.[7] The formula for this estimator is given by:

Equation 1

where for a period t, Σ C is the sum of the proportions of each seroconversion period falling
within the observation period, and for the ith person, j=1 represents seroconverters, j=0
represents men who maintain seronegativity,

Because simulated data sets contained one observation per individual, it was appropriate to
use the original STARHS formula from Janssen to compute incidence as follows:

Equation 2

where for a period T, nω is individuals with ELISA/WB-positive and LS-EIA non-reactive
results, N is all individuals with ELISA-negative results during the observation period, and
ω̄ is the average number of days number of days estimated to pass between production of
antibodies detectable by standard ELISA and that detectably by LS-EIA. Detailed
descriptions of these methods are available in online supplemental materials.[3]

Results
In 1,000 Monte Carlo simulations on 10,000 simulated MSM, expediting testing slightly
decreased the proportion with positive ELISA results at next test (a mean 209.7 days for
unexpedited simulations v a mean 202.2 days for expedited; p < 0.001), resulting in positive
test prevalences for all tests performed during the simulation period of 2.1% and 2.0%,
respectively. Among those testing ELISA positive, the proportion with LS-EIA non-reactive
results was greater (a mean 19.2% non-reactive for unexpedited simulations v a mean 26.2%
for expedited; p <0.001). Expediting testing increased the proportion of LS-EIA non-
reactive results among all results used in calculating STARHS seroincidence (in which the
denominator includes those with ELISA-negative results) from 0.4% to 0.5% (p <0.001).

In 1,000 Monte Carlo simulations on 10,000 individuals, STARHS estimates were inflated
under expedited testing (table 1). Simulated STARHS seroincidence estimates under which
testing was unexpedited were comparable to the cohort seroincidence estimate from the
original dataset. Under the degree of expedited testing parameterized using SAMS data,
simulated STARHS seroincidence estimate approached the empiric STARHS estimate.
Under both unexpedited and expedited testing however, simulated cohort estimates were
identical, and were not appreciably different from the empiric cohort estimate. The ratio of
data-based cohort estimates to data-based STARHS estimates approximated the ratio of
simulated STARHS under independence between acquisition of infection and testing, and
under motivated testing (fig 2).

When varying the proportion of individuals expediting their next test between 10–90% at
10% intervals, and keeping other parameters constant, simulated STARHS seroincidence
ranged from 1.3 to 2.2 new infections per 100 person-years (fig 3). Simulated cohort

White et al. Page 5

Sex Transm Infect. Author manuscript; available in PMC 2012 August 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



estimates were robust against varying the proportion of expedited testers (a constant 1.20
new infections per 100 person-years).

Varying the interval between potential exposure and testing by halving and doubling the
distributions of the mean and median days of duration and after, as a result, for the waiting
time daysin. Halving the times between suspected exposure and testing increased simulated
STARHS seroincidence estimates (1.7 new infections per 100 person-years) (fig 4).
Doubling waiting times brought STARHS seroincidence close to that of unexpedited
STARHS and cohort estimates (1.3 new infections per 100 person-years). Cohort estimates
were robust against varying waiting times (a constant 1.2 new infections per 100 person-
years).

Varying the proportion of Type 1 testers between 10% and 90% resulted in STARHS
estimates ranging between 1.5–1.7 new infections per 100 person-years (fig 5). Cohort
estimates were constant, at 1.2 new infections per 100 person-years.

Discussion
Using empirical data, STARHS estimates are generally greater than cohort seroincidence
estimates, raising the possibility that testing motivated by risky behavior leads to a greater
proportion of LS-EIA non-reactive results than would arise if dates of testing and acquisition
of infection were independent. STARHS and cohort seroincidence estimates from simulated
data in the absence of testing motivated by behavior (i.e., independence between date of
acquisition of infection and date of testing) were similar to data-based cohort estimates,
indicating good fit of the overall model. Application of motivated testing to the degree
derived from SAMS data resulted in simulated STARHS estimates approximating empirical
STARHS estimates. Expediting testing did not increase simulated cohort estimates of
seroincidence, suggesting that motivated testing may be a source of bias in STARHS, but
not cohort incidence estimates.

Simulated STARHS estimates varied appreciably with the proportion of testers presenting as
a result of potential exposure or infection. Cohort estimates were stable, indicating that true
incidence is little affected by the number of individuals who test in response to risk, or to
acquisition of infection. A slight increase in cohort incidence estimates under expedited
testing can be attributed to the relatively small decrease in person-time, but the magnitude of
the increase in cohort estimates under motivated testing is much less than that seen with
STARHS.

Reducing waiting times between exposure and testing appreciably increased STARHS
incidence estimates, but not cohort estimates. Extending waiting times reduced STARHS
estimates to nearly match estimates in the absence of expedited testing. However, change in
waiting times did not affect simulated cohort seroincidence. Therefore, the promptness with
which those who experience a potential exposure seek testing can bias STARHS results.

There are several limitations to this set of simulations. Data on motivated testing used as the
basis for model parameters was taken from only 77 individuals, and data for waiting times
between suspected exposure and testing were available for only 24. In addition, reasons for
testing for HIV are complex and those testers may not have presented directly as a result of
the contacts that they believed to be the source of their infection. Because it may be
unfeasible to collect data on whether an individual seeks testing as a result of a potential
exposure (which may not happen at a cognitive level), these models used time between
sexual contacts believed to be the source of HIV infection for recently diagnosed MSM as a
proxy, in the absence of better alternatives. It is encouraging however, that application of the
waiting times found in SAMS data caused expedited STARHS estimates to emulate clinical
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STARHS data. Unavailability of data for parameterization of testing motivated by
symptoms of primary HIV infection, and testing motivated by symptoms of, or reported
exposure to, other STIs precluded their incorporation into models. However, as some SAMS
participants likely experienced these factors, waiting times following suspected exposure
may capture those elements to an unknown degree. Last, these models do not account for the
increased likelihood of testers with long-term, untreated HIV infection and waning immune
response, to test LS-EIA non-reactive.

The limitations of STARHS’ application to clinical data is not limited to estimation of
incidence using the LS-EIA, as motivated testing would affect estimates from any method
that used a time-dependent biomarker. However, despite challenges in collecting data from
testers on suspected exposure to HIV and its possible motivation to seek HIV testing, it may
be worthwhile to assess its potential. To conduct an assessment it will be necessary to
collect data from testers, including those with ELISA-negative results, on whether their
presentation for testing is motivated by recent risky behavior, how long ago that recent
behavior was (including dates of first sexual risk with suspected source partners) and
whether exposure took the form of a single encounter, a partnership of any duration, and
whether that partnership was ongoing at the time of testing, and testers must be asked for the
date of their last test and result. Should a scheme be devised for weighting LS-EIA results
by the inverse likelihood of capturing them during ELISA-positivity/LS-EIA non-reactivity,
and STARHS estimates may more valid. Weighting schemes for producing STARHS
estimates from clinical data are under development.[2, 8] Comparisons between established
methods of incidence estimation and those weighted methods will require validation, using
both empirical and simulated data.
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Key messages

1. Seroincidence estimates using STARHS are vulnerable to bias when applied to
specimens and data from individuals who chose the time of their testing.

2. Monte Carlo simulations using the incidence of testing and infection from an
MSM population, produced unbiased STARHS and cohort incidence estimates
when testing and infection are independent.

3. Imposing dependence between infection and testing to the degree observed in
among ELISA-positive testers from a similar population results in inflated
STARHS estimates.

4. The degrees of bias in STARHS applied to empirical data, and applied to
simulated data parameterised using observed motivated testing data, are
remarkably similar.
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Figure 1.
Creation of parameter values from empirical data for two types of waiting times for three
categories of motivated testers
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Figure 2.
Bootstrapped HIV incidence estimates using STARHS and cohort-based methods using data
from men who have sex with men tested at publicly funded sites in Seattle, 1996–2000, and
resulting seroincidence estimates, by STARHS- and cohort-based methods, from 10,000
simulated MSM in 1,000 Monte Carlo simulations, based on incidence and testing frequency
parameters taken from MSM tested at publicly funded sites in Seattle 1996–2000, under
independence between infection and testing and under the degree of motivated testing in
SAMS data.
Bootstraps derived using 500 repetitions of samples of 50% of observations. Simulated data
consist of 10,000 individuals, simulated 1,000 times.
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Figure 3.
Resulting seroincidence estimates, by STARHS and cohort-based methods, from 10,000
simulated MSM in 1,000 Monte Carlo simulations, varying proportion of testers who are
motivated, holding constant waiting-times between suspected exposure and positive test and
type of motivated tester.
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Figure 4.
Resulting seroincidence estimates, by STARHS and cohort-based methods, from 10,000
simulated MSM in 1,000 Monte Carlo simulations, using halved and doubled waiting-times
between suspected exposure and positive test from SAMS data, holding constant the
proportion of motivated testers and type of motivated tester.
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Figure 5.
Resulting seroincidence estimates, by STARHS- and cohort-based methods, from 10,000
simulated MSM in 1,000 Monte Carlo simulations, varying the proportion whose suspected
suspected exposure was one-time encounter, holding proportion of motivated testers and
waiting-times between suspected exposure and testing constant.
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