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Abstract
An accurate, predictive understanding of protein-DNA binding specificity is crucial for the
successful design and engineering of novel protein-DNA binding complexes. In this review, we
summarize recent studies that use atomistic representations of interfaces to predict protein-DNA
binding specificity computationally. Although methods with limited structural flexibility have
proven successful at recapitulating consensus binding sequences from wild-type complex
structures, conformational flexibility is likely important for design and template-based modeling,
where non-native conformations need to be sampled and accurately scored. A successful
application of such computational modeling techniques in the construction of the TAL-DNA
complex structure is discussed. With continued improvements in energy functions, solvation
models, and conformational sampling, we are optimistic that reliable and large-scale protein-DNA
binding prediction and engineering is a goal within reach.

Introduction
Sequence-specific interactions between proteins and nucleic acids play a central role in a
wide variety of cellular processes, including transcriptional and translational regulation,
DNA replication, and DNA damage repair. The ability to accurately predict and rationally
engineer the specificity of these interactions would have a transformative impact on biology
and medicine. Here we review recent progress in molecular modeling of protein-DNA
interactions, focusing on algorithms for prediction of DNA-binding specificity. In addition
to its intrinsic importance for unraveling regulatory interactions, binding specificity
prediction provides critical feedback for structure-based design of protein-DNA interactions:
indeed, we suggest that a major barrier to successful redesign of DNA binding specificity is
the difficulty in modeling the changes in interface structure and/or specificity induced by
designed mutations (Fig. 1). Given the polar nature of protein-DNA interfaces, which often
feature specific water-bridged interactions, binding specificity prediction is also a stringent
test of electrostatics models and representations of aqueous solvation.
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Structure-based prediction of protein-DNA binding specificity
Prediction of the DNA binding specificity of a protein of interest (Fig. 2) typically begins
with a structure of the protein bound to a DNA target site. Models of the protein bound to
alternate sites (often all single base-pair mutants of the target site) are built from this
structure, and relative binding affinities are computed for these sites by comparing the
energies of the starting and mutant complexes under a suitable energy function. For
benchmarking purposes, these predicted binding affinities may be compared with
corresponding experimental values, or a position weight matrix (PWM) model can be
constructed from the calculated energies and compared with one estimated from known
target sites or high-throughput experimentation [1-3, 4*].

Classification scheme
Here we review a representative subset of recently described approaches to structure-based
specificity prediction, organized according to the energy functions and conformational
sampling approaches employed. To aid in describing and differentiating these methods, and
highlight key issues in structure-based specificity prediction, we provide in Table 1 the
answers to the following five questions for each of the discussed methods.

1. What type of energy function is employed? Here we focus exclusively on studies
that evaluate binding energies using atomically detailed descriptions of complexes.
Recent studies can be roughly divided according to whether they use knowledge-
based (KB) or molecular mechanics (MM) energy functions. In knowledge-based
approaches, the shape of the distance-dependent atomic interaction energy curve is
estimated from an experimental dataset such as a collection of protein-DNA
complex structures. MM energy functions, on the other hand, are composed of
independent, physicochemical energy terms that capture van der Waals and
Coulombic interactions, solvation effects, and other atomic interaction energies.
While the weights on these terms may be fit to experimental data, the functional
forms of the individual terms are more constrained than for KB approaches. For the
purposes of this review, we include in the MM category physics-based force fields
such as FoldX [5] and Rosetta [6,7] that may incorporate knowledge-based energy
components (such as rotamer probability estimates) in addition to standard MM
terms.

2. When building structural models of mutant DNA target sites, what degree of
conformational relaxation is allowed after base mutation? DNA mutations are
typically performed so as to preserve the plane of the base, the geometry of the
glycosidic linkage, and the conformation of the sugar phosphate backbone. If no
further conformational relaxation is allowed, this procedure may introduce atomic
overlaps and/or unfavorable electrostatic interactions – either internal to the DNA
or in the protein-DNA interface – that have the potential to bias the specificity
profile toward the DNA site present in the starting structure. When starting from a
co-crystal structure of the native protein bound to the high-affinity consensus target
site, this effect may enhance performance; in template-based specificity predictions
or when assessing the quality of a large-scale specificity redesign, on the other
hand, it seems likely that some degree of conformational relaxation is necessary
(Fig. 1). For example, sequence-dependent fluctuations in minor groove width,
which can contribute to binding specificity for certain families [8], have been
successfully modeled using Monte Carlo simulations [9]. For the classification
given in Table 1, we consider whether protein and/or DNA backbone flexibility is
allowed, and whether local energy minimization or more intensive conformational
optimization is used. The latter distinction is motivated by the observation that
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energy minimization (which involves a search for a nearby local energy minimum)
may not sample the discrete rearrangements of interface protein sidechains that are
accessible to rotamer-based optimization protocols.

3. Is the energy of the unbound DNA site considered? Binding affinities involve
energy differences between the bound and unbound states. Evaluating only the
energies of the bound complexes risks missing indirect readout mechanisms, which
depend on the sequence-dependent deformability of DNA and are determined in
part by energetic differences between the bound and unbound state. For example,
the greater flexibility of pyrimidine-purine base steps (TpA, CpA, and CpG) is
thought to reflect weaker stacking interactions for these steps in unbent B-form
DNA [10]. Capturing this effect requires either scoring of unbound models of the
DNA sequence, or the explicit inclusion of a knowledge-based scoring term that
measures these geometric preferences (such as harmonic base-step potentials
derived from crystal structures [11] or molecular dynamics (MD) simulations [12]).
Explicit treatment of the unbound state is also critical when there are differences in
the internal energy of base pairs or base steps of different sequences, as occurs
when intra-DNA interactions are evaluated with an MM potential.

4. Is independence assumed between DNA base pairs? Positional independence
may be a feature of the energy calculations themselves, or may follow from the
extent of DNA sequence sampling that is performed to construct a binding
specificity model. In the absence of intra-DNA energetics and conformational
relaxation of mutant complexes, the binding affinity contribution of a DNA base at
one position in the target site is independent of the base identities at other positions.
Even when calculated energies are not strictly pairwise independent, however,
many studies choose to sample only single base mutants from a consensus target
site. The ADAPT method [13*,14*], by contrast, evaluates binding energies for all
possible variants of the target site, and thus is able to capture energetic correlations
between DNA sequence positions. Although positional independence has been
shown to be a reasonably good approximation to binding energetics overall [15],
there are clear cases where this assumption breaks down [16], which may be
associated with sequence-dependent DNA bending or protein sidechain
rearrangements at the interface.

5. Is the approach tested with homologous templates? We expect that performance
evaluations based only on predictions made from structures of native, high-affinity
complexes will tend to reward protocols that bias toward the crystal structure
sequence, whereas such protocols would be expected to perform less well when
predicting binding specificity from the structure of a template with divergent
binding preferences or when assessing the quality of a large-scale specificity
redesign. Given the limited experimental coverage of protein-DNA complexes, the
ability to make accurate predictions starting from structures of homologous protein-
DNA complexes [17], or unbound protein structures via protein-DNA docking
[18,19], is highly desirable; such applications are, however, likely to require
significant backbone and sidechain conformational sampling.

Knowledge-based potentials
Several groups have explored the use of knowledge-based potential energy functions in the
context of a static model in which little or no conformational adjustment is performed after
base mutation. The DNAPROT method [20] uses a potential energy function that combines
Olson’s harmonic model of DNA flexibility [11] with three atomic preference matrices (for
hydrogen bonds, water-mediated hydrogen bonds, and hydrophobic interactions) derived
from a large database of protein-DNA interfaces. This method performed well at PWM
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prediction from native structures, and even generated reasonable PWM predictions for two
targets whose structures were modeled by homology (with rotamer-based optimization of
sidechains at the protein-DNA interface in the context of the template DNA sequence).
Donald et al. [21] compared the performance of several statistical potential functions and
found that the quasichemical approach outperformed other potentials, including the
Amber99 MM force field. Alamanova et al. [22] derived a distance-dependent all-atom
statistical potential from protein-DNA crystal structures and successfully applied it to
predict PWMs for transcription factors (TFs) in the p53 and NF-κB families. Compressed
sensing methods were used by AlQuraishi and McAdams [23] to learn a “de novo”
interatomic energy potential from protein-DNA interface structures and binding energies. In
this approach, protein-DNA binding interactions are viewed as mesoscopic sensors of an
underlying microscopic signal, the atomic interaction potential, which is fit by a regularized
logistic regression procedure that enforces sparsity of the components in order to avoid over-
training. This approach gave improved results over the quasichemical and DNAPROT
methods (as well as the MM approach of Morozov et al. [24], see below) in recovery of
crystal structure DNA sequences for the helix-turn-helix superfamily; transferability to other
families and applicability of the potential to prediction of specificity from homology models
or models where relaxation upon mutation is performed remain to be demonstrated.

Molecular mechanics force fields and conformational relaxation
Havranek et al. [7] developed a simple physicochemical model for prediction and design of
protein-DNA interactions that featured fixed-backbone, rotameric sampling of interface
sidechains together with a frozen DNA approximation. Accurate specificity predictions from
native structures were demonstrated, and binding preferences for a set of zinc finger mutants
were predicted by homology modeling with good experimental agreement for most targets.
Morozov et al. [24] compared specificity prediction approaches with (“dynamic model”) and
without (“static model”) conformational relaxation of mutant complexes, and found that the
static model gave better performance overall, noting however that this model “…is more
likely to fail when DNA conformational change is required to predict novel sites by
homology.” The potential function combined MM terms with a harmonic model for DNA
strain inspired by Olson et al. [11]; during conformational relaxation of mutant complexes
the protein backbone and protein-DNA interface were fixed while protein sidechains and
DNA dihedral angles were adjusted by Monte Carlo rotamer optimization and gradient-
based minimization. Serrano and co-workers have used the FoldX force field [5] to predict
PWMs from native crystal structures using a protocol that features limited conformational
rearrangement of mutant complexes, with promising benchmark results [25*]. The FoldX
model has been used to predict the effect of protein and DNA mutations on DNA-binding
affinities of the Pax6 paired domain [25*], as well as in a variety of structure-based
specificity redesign applications [26,27].

Using a molecular mechanics potential based on the Amber [28] force field, Siggers and
Honig [29*] found that fixed-backbone, template-based specificity predictions for C2H2 zinc
fingers are highly sensitive to the degree of structural divergence between target and
template interfaces. Their protocol featured sidechain relaxation of mutant complexes (using
a protein conformer library, small-perturbation DNA rotamers, and gradient-based energy
minimization) as well as explicit evaluation of unbound DNA energies; it was able to
generate highly accurate predictions when given the structure of the target protein (Zif268)
or a structurally similar template. Conformational relaxation was found to be important for
correctly predicting binding affinity for a series of target sites (as opposed to recapitulating a
consensus sequence). Using constrained energy minimization of mutant complexes with the
Amber force field and a generalized Born solvation model [30] (and explicit scoring of
unbound DNA sites), Rahi et al. [31] successfully recapitulated experimental ΔΔG values
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for the PurR TF and single amino acid variants, and examined the relative contributions of
direct and indirect readout mechanisms to DNA recognition by this TF.

Molecular dynamics simulations and free energy calculations
MD simulations have been widely used to study the energetics of macromolecular binding
events, and several groups have used MD simulations and free energy calculations to obtain
relative binding affinities of target proteins for alternate DNA sites. In so-called alchemical
free energy simulations, the free energy difference between two states is calculated by
sampling along an artificial “alchemical” transformation coordinate (λ) that links the two
states (e.g., the wild-type and mutant base pairs), using simulations at multiple, fixed values
of λ or in which λ is varied continuously between the states. Liu and Bader [32] used the
thermodynamic integration (TI) approach and a dual topology representation (in which both
states are simultaneously present, with interactions scaled by λ) of the mutated base pair to
calculate relative binding affinities for all single base mutations of a TF target site.
Calculations for the homeodomain Mat-α2 and bZIP GCN4 showed good agreement with
experimental binding data, and analysis of the trajectories suggested an important role for
water molecules in sequence-specific recognition. Beierlein et al. [33] investigated the
specificity of C-protein:DNA recognition at a highly conserved G:C base pair using TI with
a dual topology representation and a soft-core treatment of non-bonding interactions (to
avoid singularities at the endpoints of the alchemical transformation). In agreement with
experiment, all three base mutations were predicted to destabilize binding. Seeliger et al.
[34*] applied both an equilibrium approach (using simulations at fixed λ-values) and a non-
equilibrium approach (based on work distributions from many short simulations during
which λ is varied between the two states) to compute relative binding affinities of the TF
Zif268 for single mutants of its preferred target site. The spacing of intermediate states along
the transformation coordinate was chosen so as to maximize phase space overlap between
neighboring states. Agreement with experiment was encouraging, with deviations from
experimental ΔΔG’s averaging less than 1 kcal/mol. For the non-equilibrium method,
insufficient sampling of the endpoint states was found to be a major source of error. Taken
together, the results of these alchemical free energy calculations are highly encouraging,
although further benchmarking is necessary to assess performance in more challenging
applications such as template-based specificity prediction and prediction of binding
specificity changes induced by protein mutations. In addition, due to the high computational
cost of MD simulations [32,33,35], advances in computational efficiency will likely be
necessary for large-scale applications of these methods.

Moroni et al. [36] evaluated the use of MD conformational sampling in endpoint free energy
calculations using a variety of implicit solvent models (distance dependent dielectric,
solvent accessible surface area-based, and Generalized Born). Energetic contributions from
van der Waals and Coulombic interactions and solvation effects were independently
weighted to optimize the fit between predicted and experimental ΔΔG values for 52 single
base-pair mutations to the lambda repressor target site. The best agreement between
prediction and experiment was found when minimizing and scoring mutant complexes using
a potential energy function incorporating standard MM terms as well as the Generalized
Born plus solvent accessible surface area (MM/GBSA) solvation model, together with a
term counting protein-DNA hydrogen bonds. Using MD conformational sampling instead of
energy minimization resulted in poorer correlations with experiment, which was attributed
by the authors to the presence of large conformational fluctuations in the MD trajectories.

Temiz and Camacho [37*] have described a novel approach for predicting the binding
affinities of proteins in the C2H2 zinc finger family, one that incorporates MD sampling and
homology modeling into an empirical scoring framework based on analysis of protein-DNA
hydrogen bonds and atomic desolvation. In this model, hydrogen bond strengths are

Liu and Bradley Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



modulated by a weighting factor that reflects the solvent accessibility of the interacting
atoms (computed by explicitly solvating the interface models). Energies computed with this
empirical framework show very good agreement with experimental binding data for several
zinc finger proteins.

Enhanced sampling of sequences and structures
The ADAPT approach of Lavery and co-workers [38] has recently been extended [13*,14*]
to allow large-scale sampling of DNA sequence space with simultaneous conformational
relaxation of the DNA target and neighboring protein sidechains. In this approach, the
binding site is broken into overlapping five base segments, and binding energies are
calculated for all 45 = 1024 possible DNA sequences in each segment. To evaluate the
binding energy of a single sequence segment, bound and unbound energy minimizations are
performed in which nucleotides within that segment and nearby protein sidechains are
flexible while the protein backbone as well as nucleotides in other segments are held fixed.
The binding energy for any full-length DNA target site can then be computed by summing
segment binding energies, with a weighting scheme that accounts for residue-pair
interactions present in multiple overlapping segment minimizations. This approach was
applied to the DNA-binding proteins TBP and SRY and, using a grid-computing-enabled
approach, to the nucleosome (147 DNA base pairs wrapped around a histone octamer). The
use of MD snapshots rather than experimental structures as starting points for the protocol
was explored with promising results, and the predicted nucleosome binding energy matrix
was used to scan the sequence neighborhood of transcription start sites in the yeast genome,
recapitulating features of the experimentally observed nucleosome distribution such as a
well-known nucleosome-depleted region upstream of transcription start sites.

To enhance conformational sampling in template-based specificity prediction, a recent study
[39*] using the Rosetta software package [6] extended fragment assembly techniques for
monomeric protein structure prediction to protein-DNA complexes by adding DNA-duplex
and protein-DNA interface fragment replacement moves. In this approach, models of
protein-DNA complexes are built in a two-stage procedure consisting of an initial coarse-
grained, fragment-assembly simulation followed by an all-atom refinement stage with a
high-resolution MM force field. DNA sequence space is explored by the use of Monte Carlo
sequence mutation moves in which a randomly selected base pair is mutated and nearby
bases and sidechains are re-optimized. Starting from randomized target sites, energy-biased
acceptance of these sequence moves focuses sampling in high-affinity regions of sequence
space, so that binding models in reasonable agreement with experiment can be extracted
from the final, optimized DNA sequences. This approach has been tested on the C2H2 zinc
finger family with promising results; transferability to other protein families remains to be
assessed.

TAL effector structures and simulations
Transcriptional activator-like (TAL) effectors are bacterial DNA-binding proteins that
contain multiple, tandemly-repeated copies of a highly conserved 33-35 amino acid
consensus sequence. TAL effectors have been shown to recognize their DNA target sites by
a remarkable, modular recognition process in which individual repeat units map to
successive DNA base pairs, with the identity of the amino acids at positions 12 and 13 of the
repeat unit (termed the repeat-variable diresidue, or RVD) showing a high degree of
correlation with the identity of the recognized base pair [40,41]. In a development with
relevance to protein-DNA modeling as well as rational engineering of protein-DNA binding
specificity, the first structures of TAL effectors were recently solved [42*,43*], revealing
the molecular basis for their modular DNA recognition properties (Fig. 3). Notably, the
crystal structure of the TAL effector PthXo1 was solved by molecular replacement using
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structure prediction models of the protein-DNA complex built by the fragment-assembly
techniques described above [39*]. In addition, de novo models built prior to the availability
of experimental data have also been published [44*], allowing a direct comparison with
experiment (Fig. 3B). These studies suggest that protein-DNA interface modeling
techniques may play a growing role in experimental structure determination.

Conclusions
Atomistic molecular modeling represents one promising avenue for the rational prediction
and reengineering of protein interactions. Success depends on potential energy functions that
are able to accurately balance the contributions of electrostatic, hydrogen-bonding, and non-
polar interactions in the presence of solvent and ions, as well as conformational sampling
algorithms that can recapitulate the structural rearrangements that accompany sequence
changes in binding proteins or their partners. Given the increasing availability of
standardized, high-throughput experimental datasets on protein-DNA interactions [1-3], the
many structural templates for these interactions in the PDB [45,46], and the largely polar
(and hence challenging) nature of protein-DNA interfaces, prediction of protein-DNA
binding specificity is emerging as an excellent in silico test of interface modeling
approaches. In this review, we have described a representative collection of recent
approaches to structure-based prediction of protein-DNA interactions, all of which depend
on atomically detailed structural models of the binding interface. We conclude that the
majority of these approaches give good results when predicting consensus sequences from
native, high-affinity structures. In the context of this somewhat artificial test, conservative
approaches with little or no conformational flexibility appear to give the best results
[21,23,24,25*]. In template-based specificity, and more generally when modeling
interactions not directly visualized by the input structure, there is evidence that
conformational flexibility improves prediction accuracy [20,29*,39*], although the lack of
comprehensive benchmarks that demand extensive sampling hinders comparison of different
approaches. Moving beyond the native-recapitulation tests that dominate these studies
should advance method development in this area. Looking ahead, we identify as promising
research directions the accurate modeling of interfacial waters, the incorporation of cofactor
binding influences by explicit modeling of multi-protein complexes, and the further
development and application of backbone sampling techniques in prediction and design.
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Highlights

We review structure-based approaches for protein-DNA binding specificity
prediction.

Interface flexibility is necessary for accurate template-based predictions.

Assessments on native complexes are likely biased toward conservative approaches.

Applications to structure determination and protein design are discussed.
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Figure 1. The importance of flexibility in protein-DNA modeling
(A) Shifts in DNA bases (yellow arrows) are evident in template-based modeling of one zinc
finger (the target, shown in red and pink) using another (the template, shown in blue).
Interfaces are superimposed based on their protein components. Protein sidechains in the
target whose DNA contacts would be disrupted by these DNA shifts are shown in stick
representation (example taken from [7]). (B) Superposition of design model (pink) and
experimental structure (blue) for the I-MsoI ‘-7C’ design of Ashworth et al. [47] reveals a
shift of 2.9 Å in the DNA backbone and a 180° flip of a designed Tryptophan residue. These
examples suggest that incorporation of backbone conformational flexibility may be
necessary for reliable prediction and design of protein-DNA interactions.
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Figure 2. Flowchart of structure-based calculation of the protein-DNA binding specificity
Step 1. A protein-DNA complex structure, taken from either experiments (X-ray or NMR)
or molecular modeling (homology modeling or docking), serves as the input of the method.
Here the Zif268 zinc finger protein is shown on the left in cartoon representation as an
example (PDB ID: 1AAY). Step 2. The DNA base-pairs in the target site are mutated,
perhaps exhaustively to all possible sequences (4L sequences for a site of length L), or more
commonly to all single-base mutants (3L sequences). A superposition of four possible base
pairs at a given position is shown in stick representation on the left. Step 3. The protein-
DNA binding energy change caused by the DNA sequence mutation(s) is evaluated, using
either a knowledge-based potential or a molecular mechanics force field. For methods that
use molecular mechanics force fields, the binding energy difference is typically evaluated
using the thermodynamic cycle shown on the left. Here the protein-DNA binding energy
difference caused by the DNA sequence mutation (ΔΔG) is obtained by subtracting the
unbound DNA energy (ΔGU) from the bound protein-DNA energy (ΔGB). Step 4. When
single base pair mutations are performed, based on the approximation of DNA position
independence, the binding energies of the different complexes can be converted into a
position weight matrix and represented as a sequence logo [48] to show the binding
specificity graphically (such as the logo shown on the left). When the DNA sequence space
is exhaustively searched, a collection of high-affinity DNA sequences (such as those with a
predicted binding affinity within some cutoff value of the optimal sequence) can also be
represented as a sequence logo, although it should be noted that these sequences contain
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information regarding inter-position correlation that can be represented by higher-order
graphical representations [49].
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Figure 3. TAL effector-DNA interactions
(A) Structure of the 23.5-repeat TAL effector PthXo1 bound to its target site [42*] reveals
the mechanistic basis of modular DNA recognition by TAL repeats. Successive repeats form
a left-handed helical bundle that wraps around the DNA duplex paralleling the major
groove. Inset panels show a subset of the specificity-determining contacts formed between
repeat residue 13 and its associated base-pair in the target site. (B) A de novo TAL-effector
model [44*] is superimposed onto three repeats of the dHax3 [43*] TAL effector (1.2 Å Cα-
RMSD over 102 residues). Whereas structural modeling played a critical role in structure
determination for PthXo1, the dHax3 structure was solved by standard techniques and can
serve as an independent reference for assessment of the structure predictions.
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