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Abstract
The posterior parietal cortex, including the medial superior parietal lobule (mSPL), becomes
transiently more active during acts of cognitive control in a wide range of domains, including
shifts of spatial and nonspatial visual attention, shifts between working memory representations,
and shifts between categorization rules. Furthermore, spatial patterns of activity within mSPL,
identified using multivoxel pattern analysis (MVPA), reliably distinguish between different acts of
control. Here we describe a novel multivoxel pattern-based analysis that uses fluctuations in
cognitive state over time to reveal inter-regional functional connectivity. First, we used MVPA to
model patterns of activity in mSPL associated with shifting or maintaining spatial attention. We
then computed a multivoxel pattern time course (MVPTC) that reflects, moment-by-moment, the
degree to which the pattern of activity in mSPL more closely matches an attention-shift pattern or
a sustained-attention pattern. We then entered the MVPTC as a regressor in a univariate (i.e.,
voxelwise) general linear model (GLM) to identify voxels whose BOLD activity covaried with the
MVPTC. This analysis revealed several regions, including the striatum of the basal ganglia and
bilateral middle frontal gyrus, whose activity was significantly correlated with the MVPTC in
mSPL. For comparison, we also conducted a conventional functional connectivity analysis,
entering the mean BOLD time course in mSPL as a regressor in a univariate GLM. The latter
analysis revealed correlations in extensive regions of the frontal lobes but not in any subcortical
area. The MVPTC analysis provides greater sensitivity (e.g., revealing the striatal-mSPL
connectivity) and greater specificity (i.e., revealing more-focal clusters) than a conventional
functional connectivity analysis. We discuss the broad applicability of MVPTC analysis to a
variety of neuroimaging contexts.

Introduction
Humans prioritize the processing of goal-relevant sensory information through voluntary
shifts of selective attention. Several recent studies have reported that voluntary shifts of
attention are associated with transient activity in the medial wall of the superior parietal
lobule (mSPL; e.g., Kelley et al., 2008; Liu et al; 2003; Serences et al., 2004; Shomstein &
Yantis, 2006; Shulman et al., 2009; Vandenberghe et al., 2001; Yantis et al., 2002). In
contrast, sustained activity associated with maintaining attention is found in intraparietal
sulcus and prefrontal cortex (e.g., Saygin & Sereno, 2008; Serences & Yantis, 2007, Silver
et al., 2005). These findings suggest that mSPL plays a role in reconfiguring or shifting
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attention rather than in maintaining the current state of attention. Furthermore, this transient
mSPL signal is also observed in non-spatial and non-perceptual acts of control, including
shifts of categorization rule (Chiu & Yantis, 2009) and shifts of attention between working
memory representations (Tamber-Rosenau et al., 2011). These studies thus implicate mSPL
as a domain-independent hub for cognitive reconfiguration (Chiu & Yantis, 2009;
Greenberg et al., 2010).

In addition to mSPL, other cortical and subcortical regions have been associated with
cognitive reconfiguration. For example, dorsolateral prefrontal regions are often co-activated
with parietal cortex, forming a dorsal frontoparietal attention control network for
deployments of attention to goal-relevant sensory information (Corbetta & Shulman, 2002).
Furthermore, many studies have demonstrated functional connectivity between dorsal
parietal cortex and prefrontal cortex (e.g., Fox et al., 2006), and have shown that this
connectivity affected behavior during spatial attention tasks (He et al., 2007; Thiebaut de
Schotten et al., 2005). In addition to those cortical regions, the basal ganglia (BG) also have
been implicated in shifts of spatial attention (e.g., Grande et al, 2006; Shulman et al, 2009;
Gitelman et al, 1999), shifts of task set (e.g., Cools et al, 2004, 2006; Leber et al., 2008;
Ravizza & Ivry 2001), and updates in working memory (O’Reilly & Frank, 2006). However,
functional connectivity has not been demonstrated between cortical control regions and
subcortical structures (e.g., the BG) in humans during shifts of spatial attention. The current
study was designed to examine the functional connectivity between mSPL and other cortical
and subcortical regions using a novel multivariate technique.

One well-established approach to assessing functional connectivity first computes the time
course of the mean blood oxygenation level dependent (BOLD) signal across all voxels
within a seed region of interest (ROI). This time course is then entered as a univariate
(voxelwise) general linear model (GLM) regressor in order to identify other voxels whose
activity covaries with that of the seed region (e.g., Biswal et al., 1995; Friston et al., 1993).
Another approach, beta series correlation (Rissman et al., 2004), uses trial-by-trial beta
coefficient values, instead of raw time series, within a seed region to explore correlations
across the brain. More sophisticated approaches, such as psychophysiological interaction
analysis (e.g., Diekhof et al., 2009; Duann et al., 2009) or dynamic causal modeling (e.g.,
Friston et al., 1997; Stephan et al., 2007; Smith et al., 2006), further include interaction
terms among regressors to explore connectivity. Using the mean BOLD signal (or beta
values) within an ROI to explore functional connectivity, however, assumes that all voxels
within the ROI are all estimates of a single, common time series (thus justifying taking their
average). Furthermore, this method relies on the presence of reliable activations (after
correcting for multiple comparisons) in the seed regions of interest.

Here we develop an information-based functional connectivity method. In general, an
information-based approach employs multivoxel pattern analysis (MVPA) to identify
regions in which information expressed by spatiotemporal patterns of voxel activation
reliably reflects distinct cognitive states (e.g., Chiu et al., 2011, Kamitani & Tong, 2005;
Kriegeskorte et al., 2006, Norman et al., 2006; Polyn et al., 2005; Serences et al., 2009). Our
novel information-based functional connectivity method exploits the multivoxel pattern of
activity within a seed region by computing a continuous index of “pattern strength” as it
evolves and fluctuates over time. This multivoxel pattern time course (MVPTC) then is used
to identify other voxels whose activity covaries with the pattern strength within the seed
region. This approach was motivated by recent studies (Esterman et al., 2009; Greenberg et
al., 2010; Tamber-Rosenau et al., 2011) showing that spatial patterns of activity within
mSPL reliably predicted which of several domains of cognitive control subjects were
engaged in (e.g., spatial representations vs. rule representations; visual vs. working memory
representations) at each time point of a experimental run. Thus, multivoxel patterns of
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activity in mSPL provide a signature of cognitive state that is otherwise masked by
averaging the BOLD signal across voxels within the ROI.

In the current study, subjects performed cue-evoked covert shifts of spatial attention in the
task. We first identified a region of mSPL that exhibited transient increases in mean activity
time-locked to shifts of attention. We then used MVPA (employing a linear support vector
machine, or SVM) to model multivoxel activation patterns within mSPL associated with
attention shifts and sustained attention, respectively. The resulting classifier was then
applied to each time point in the entire mSPL time series, yielding a continuous information-
based index (i.e., the classifier decision value) of the degree to which the mSPL pattern
reflected shifting vs. sustained attention on a moment-by-moment basis. Finally, the
MVPTC obtained from mSPL was entered as a regressor in a whole-brain voxelwise GLM
to explore information-based functional connectivity between mSPL and the rest of the
brain.

Methods
Subjects

Ten right-handed subjects (20–23 yrs old, four males) participated in this study. Two of the
subjects failed to maintain fixation during the task and were excluded from further analysis.
All subjects had normal or corrected-to-normal vision and had no history of neurological
impairment. The Johns Hopkins Medicine Institutional Review Board approved the study
protocol. Written informed consents were obtained from all participants.

Stimuli and procedure
Subjects were instructed to maintain fixation on a central fixation cross while monitoring
one of eight rapid serial visual presentation (RSVP) streams of alphanumerical characters
(see Fig. 1). Each RSVP frame had a duration of 125 ms. Two of these streams were task-
relevant, located 3.5° to the left and right of the fixation cross on the horizontal meridian;
each was flanked by three irrelevant distractor streams (3.3° center-to-center distance) in
order to maximize the demand for selective attention. Critical events (cues and targets) were
randomly intermixed among filler items (A–Z, except for R and L) within the task-relevant
streams; the distractor streams contained only filler items. All characters subtended
approximately 1.4° in height and 1.0° in width, and were presented in uppercase Arial font.
Cues were always rendered in bright red (and therefore were highly salient), while all other
items (targets and fillers) were randomly rendered in one of eight colors (green, blue, purple,
orange, yellow, army green, rose, and cyan). No two items had the same color in any given
frame.

Subjects began with their attention directed to one of the two relevant streams (according to
instructions at the beginning of each run). ‘Shift’ and ‘Hold’ instructions were conveyed by
the letters “L” and “R” in the currently attended stream. These cues instructed subjects to
direct attention to the left or right stream, respectively (e.g., “R” in the left stream signaled
subjects to shift attention to the right stream; “L” in the left stream signaled subjects to
maintain attention to the left stream). Cue onset asynchrony varied between 10 and 15 s, in
1-s increment, and the minimum target-to-cue and cue-to-target onset asynchrony was 3 s.
Approximately half of the cues were shift cues, and half were hold cues.

Subjects were instructed to make a four-alternative button-press response to each appearance
of a target character (2, 3, #, or $) embedded within the currently relevant RSVP stream.
Two target characters were simultaneously presented; either a “2” or “3” was presented in
one stream and either a “#” or “$” was presented in the other stream. Two stimulus-response
mappings were counterbalanced across subjects: 2, 3, #, $, or #, $, 2, 3 were mapped to the
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right index-, middle-, ring-, and little-finger buttons, respectively. Behavioral responses thus
provided a check on the subject’s current locus of attention. Note that the behavioral
responses always occurred during epochs of sustained attention; no behavioral response was
made to the cues themselves. Each subject completed 10 to 13 runs, each lasting 134 s
within one 2-hr fMRI session.

Prior to the fMRI session, subjects completed a behavioral practice session. During this
session, the rate of stimulus presentation gradually decreased from 500 to 125 ms per frame,
a rate at which subjects were able to maintain a performance accuracy of at least 80% across
two successive blocks. In the practice session, accuracy feedback was provided at the end of
each block. In the imaging session, frame duration was fixed at 125 ms and accuracy
feedback was not provided.

During scanning, visual stimuli were projected onto a screen placed at the end of the magnet
bore and viewed with a mirror mounted above the head coil from a distance of 68 cm.
Subjects held a custom-built MR-compatible response box with four buttons in their right
hand. All visual stimuli were presented on a grey background. Stimulus presentation and
behavioral data collection were controlled by custom MATLAB (The MathWorks, Natick,
MA) code using Psychophysics Toolbox 3 (Brainard, 1997; Pelli, 1997). Eye position was
monitored in the imaging session using a custom MR-compatible infrared camera and
ViewPoint 2.8.3 eye tracking software (Arrington Research, Scottsdale, AZ).

Image acquisition and analysis
Neuroimaging data were acquired with a Philips Intera 3T scanner and an 8-channel SENSE
head coil (MRI Devices) at the F.M. Kirby Research Center for Functional Brain Imaging
(Baltimore, MD). One high-resolution, whole-brain anatomical scan was acquired with an
MPRAGE T1-weighted sequence yielding 1-mm isotropic voxel resolution (coronal slices,
matrix = 256 × 256, TE = 3.7 ms, TR = 8.0 ms, flip angle = 8°). Whole-brain functional
volumes were acquired with a T2*-weighted echoplanar imaging (EPI) sequence in 31 axial
slices (3-mm thickness, 1-mm gap, 3 × 3 mm in-plane resolution, matrix = 64 × 64, TE = 30
ms, TR = 1.5 s, flip angle = 70°).

Neuroimaging data were analyzed using BrainVoyager QX software (Brain Innovation, The
Netherlands). Functional data were slice-time and motion corrected and then temporally
high-pass filtered to remove components occurring three or fewer cycles per run. To correct
for between-scan motion, each subject’s EPI volumes were all coregistered to that subject’s
anatomical scan. Finally, the volumes were Talairach-transformed and resampled into 3-mm
isotropic voxels. No spatial smoothing was applied to the EPI data.

Functional Region of Interest (functional ROI)
The GLM approach (Friston et al., 1995) was used to estimate beta weights for regressors
representing critical events. Included were regressors that modeled the presentation of
targets and cues instructing subjects to shift attention from left to right (sLR), shift attention
from right to left (sRL), hold attention on the right stream (hR), and hold attention on the left
stream (hL), respectively. The regressors were created by convolving a single-gamma
hemodynamic response function (Boynton et al., 1996) with a stick function marking the
onset of each event. The mSPL ROI to be used for pattern classification was identified by a
contrast of attention Shift (sLR, sRL) vs. attention Hold (hR, hL) with a liberal threshold of
t(7) = 2 (p < .06 uncorrected; see Fig. 2A). The mSPL ROI in Talairach space was then
transformed back to the subjects‘ native anatomical space, from which preprocessed
functional EPI data were extracted for further analyses. The BOLD signal was z-transformed
relative to the mean and standard deviation of each run.
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Multivoxel pattern classification
Patterns associated with shifting vs. sustained attention were extracted from the mSPL ROI
for each subject: For each voxel in the mSPL ROI, activity associated with shifting attention
was defined as the mean of the BOLD signal at 6 and 7.5 s after the onset of an attention-
shift cue. Activity associated with sustained attention was defined as the mean of the BOLD
signal at 1.5 and 0 sec before the onset of an attention-shift cue, an epoch during which
participants should have sustained attention to the left or right RSVP stream (see Fig. 2B). It
is possible that this pre-shift epoch included other cognitive operations or states in addition
to sustained attention (e.g., letter identification). However, it should be noted that
discriminating the target stimuli in the RSVP task required highly focused attention, and
subjects did so with reasonable accuracy.

This resulted in a set of 120–128 training/testing examples for each pattern for each subject.
A linear classifier was trained to discriminate between these multivoxel patterns associated
with shifting versus sustained attention for each subject. We used the standard leave-one-
run-out cross-validation procedure (see Fig. 2C) with a support vector machine (OSU SVM
toolbox, an adaptation of libsvm, Chang & Lin, 2001). The initial mean cross-validation
accuracy at the group level was 65.1% (S.E.M. = 1.95%), which was significantly above
chance (p < .05), indicating that patterns of activity in mSPL can be reliably decoded when
all of the voxels within the ROI were used. This was, of course, as expected, because several
previous studies have found transient activity in mSPL during shifts of attention, but not
during sustained state of attention (i.e., Kelley et al., 2008; Saygin & Sereno, 2008; Silver et
al., 2005; Yantis et al., 2002). Nevertheless, to ensure that an optimized classifier would be
employed when distinguishing patterns of activity at other time points not included in the
training and testing epochs above, we eliminated voxels within the ROI that contributed
mostly noise (i.e., voxels that did not help to distinguish between shifting and sustained
attention patterns), as described below.

For each fold of training and testing, a set of classifier weights (one weight per voxel) was
obtained. We first calculated the absolute value of the mean weight for each voxel across all
folds, and then ranked them. Based on this ranking, classifier accuracy was optimized with
the 75 mSPL voxels with the highest importance (i.e., largest absolute weight magnitude;
see Esterman et al., 2009). The selected voxels were then re-trained with all examples (no
run left-out) to obtain a new set of weights. Note that no inference can be made from this
analysis about the voxels in mSPL (Kriegeskorte et al., 2009).

Multivoxel pattern-based functional connectivity
The classifier was then applied to the mSPL activity pattern at each time point of all runs to
derive a decision value (see Fig. 2D), thus creating a multivoxel pattern time course, or
MVPTC. The MVPTC indexes the degree to which activation in the ROI reflects a shifting-
attention pattern (i.e., a positive decision value) vs. a sustained-attention pattern (i.e., a
negative decision value) as multivoxel activity fluctuates throughout task performance.
Importantly, the output of the classifier was not binarized (as it otherwise would be for
discrete classification; see Fig. 2D for an example).

The MVPTC for each run was entered as a regressor in a whole-brain univariate (voxelwise)
GLM; we refer to this as the mSPL-pattern model. To account for whole-brain fluctuations
in signal intensity (Fox et al., 2009; Zarahn et al., 1997), we also entered a global signal
regressor (mean activity across all voxels) in this GLM as a nuisance regressor. A random-
effects group level analysis (with subject as a random factor and run number as a nuisance
variable) was conducted to identify voxels that exhibited activity that was significantly
correlated with the mSPL MVPTC. Because the mSPL MVPTC was not independent of
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voxel activity in mSPL itself and the surrounding parietal regions (see Kriegeskorte et al.,
2009; Vul et al., 2009), voxels in the parietal lobe were excluded from the results reported
below.

For comparison with conventional functional connectivity analysis, we generated a regressor
in which the BOLD signal across the same 75 mSPL voxels was averaged to create a mean
time course (termed the mSPL-mean model, see Fig. 2D for an example). This was
equivalent to assuming that all voxels contribute equally by setting identical classifier
weight for each voxel. The mSPL-mean model then served as a regressor in a separate
whole-brain GLM along with the global signal regressor as described above. A random-
effects group level analysis (with subject as a random factor and run number as a nuisance
variable) was conducted to identify voxels that were significantly correlated with the mean
activity in mSPL. Statistical maps were corrected for multiple comparisons by applying a
cluster-size threshold (Forman et al., 1995): voxelwise nominal p = 0.009, t(7) = 3.5,
corrected alpha = 0.05.

Results
Behavioral results

During the RSVP task in the scanner, mean accuracy was 83.3% (SE = 2.5%). Almost all of
the errors were misses (i.e., failure to respond; M = 15.2%, SE = 2.4%) rather than incorrect
button-presses (M = 1.5%, SE = 0.5%), indicating that subjects rarely failed to shift attention
to the appropriate RSVP stream following a shift cue (i.e., if subjects failed to shift attention
to the relevant stream, they would have responded often to targets in the irrelevant stream,
resulting in incorrect button-presses).

Neuroimaging results
The Shift vs. Hold contrast in the hemodynamic response function (HRF)-based univariate
GLM yielded a region in mSPL that was subsequently used as the seed region for
connectivity analyses (Fig. 2A). No other brain region exceeded the threshold for statistical
significance. Figure 2D shows the MVPTC (blue) and the mean BOLD signal (red) from
mSPL for a representative subject during one run. The small arrows indicate when a shift-
cue appeared—that is, when the subject was instructed to shift attention. Both time courses
exhibit fluctuations; in most instances, the MVPTC increases in magnitude sharply after
shift cues, but to a varying degree from one shift cue to the next. The mean BOLD signal
also increases following shifts but the change in magnitude is less pronounced (see Fig. 2D).
Using this seed region, we computed a whole-brain correlation map with the standard
functional connectivity analysis approach (i.e., the mSPL-mean model; Fig. 3A). As shown
in Figure 3A, the mSPL-mean model identified a network of frontal and occipital regions;
see Table 1 for a complete list.

After computing the MVPTC from this same region, several clusters of voxels were found to
exhibit reliable positive correlations (i.e., correlations with shift-like multivoxel activity in
mSPL) including the left caudate nucleus of the basal ganglia (BG) and bilateral middle
frontal gyrus (MFG; see Fig. 3B). We found no brain region that exhibited a negative
correlation with the MVPTC. See Table 1 for a complete list.

The HRF-based univariate GLM (Fig. 2A) failed to reveal frontal or BG activations
associated with shifts of attention, when examining either a Shift vs. Hold contrast or a
simple main effect of Shift (even with a liberal threshold of t(7) = 2.3, voxelwise p < .06,
uncorrected). Although the MFG was identified in the mSPL-mean functional connectivity
model, that analysis also revealed much more extensive (i.e., less selective) activations in
frontal lobes than did the mSPL-pattern model. In addition, no BG activation was observed
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in the mSPL-mean model even with a liberal threshold of t(7) = 2.3, voxelwise p < .06,
uncorrected. This suggests that the mSPL-pattern model was more sensitive to BG
involvement, and revealed more specific (focal) prefrontal activity than the SPL-mean
model (cf. Fig. 3A & 3B).

Furthermore, in order to directly contrast the explanatory power of the mSPL-pattern model
to the mSPL-mean model, we conducted a step-wise regression analysis procedure (to avoid
issues of collinearity between the two time courses) using both mSPL-mean and mSPL-
pattern time courses. Specifically, our first-stage GLM included mSPL-mean as a regressor
(same procedure as above), but instead of obtaining the activation map, we obtained the
residuals. In the second stage, the mSPL-pattern vector was entered in a GLM as a regressor
of the mean-model residuals, yielding a new map as shown in Figure 3C. This analysis
revealed significant correlation in BG, demonstrating that mSPL-pattern model uniquely
accounted for activation in the basal ganglia, above and beyond that accounted for by the
mSPL-mean model (cf. Fig. 3B & 3C).

Finally, it is important to ensure that the observed basal ganglia (BG) correlation was due to
use of multivariate pattern information, rather than some other aspect of the SVM training
procedure. We thus conducted the following auxiliary analyses to exclude this possibility.
First, we applied the SVM procedure to the SPL-mean as a single-feature classifier. We used
both the raw/continuous decision values as well as the binarized values (Fig. 4A). No
significant BG correlations were revealed, suggesting that the pattern contributed uniquely
to the BG correlation. We also conducted the binarized MVPTC analysis as a comparison to
the original MVPTC analysis with the continuous decision values (Fig. 4B). Both of these
analyses revealed BG activation, suggesting that it was the pattern that provided the
sensitivity.

Discussion
In this study, we replicated the finding of transient activity in mSPL associated with
voluntary shifts of spatial attention (Fig. 2A; e.g., Kelly et al., 2008; Yantis et al., 2002). We
then implemented a novel multivoxel pattern-based connectivity analysis method that
revealed regions of the brain whose activity was correlated with fluctuations in multivoxel
patterns within mSPL. These regions included prefrontal cortex and the striatum of the basal
ganglia, providing converging evidence for an expanded parietal-frontal-striatal network for
the shifting of spatial attention (e.g., Shulman et al., 2009; Gitelman et al., 1999).

We compared the results of the MVPTC correlation analysis (mSPL-pattern model) with a
conventional functional connectivity analysis (mSPL-mean model) in which the time course
of the mean BOLD signal in mSPL was used as a regressor. The mSPL-mean model
revealed extensive activity in the frontal regions (Fig. 3A). Studies have shown that the
precuneus (of which mSPL is the dorsal-most part) is associated with a variety of cognitive
functions (e.g., Cavanna & Trimble, 2006) in addition to the control of visuospatial attention
shifts. Thus, some of the variance in the mean mSPL signal over time is likely to be driven
by functions other than the control of attention shifts. In addition, there are intrinsic
fluctuations in widespread cortical networks when participants are at rest (Aguirre et al.
1998; Macey et al. 2004) that could also account for connectivity in the mSPL-mean model.

In contrast, the mSPL MVPTC reflects changes in the mSPL multivoxel pattern that is
associated specifically with the state of visuospatial attention; it was correlated with only a
subset of the regions identified by the mSPL-mean model. Furthermore, this analysis
uniquely revealed functional connectivity between the striatum and mSPL (see Table 1, cf.,
Fig. 3A and 3B). It is noteworthy that these results rule out the possibility that the regions

Chiu et al. Page 7

Neuropsychologia. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



identified with the mSPL-pattern model were simply the regions found to be most
statistically robust (i.e., those with the highest t values) with the mSPL-mean model. The
activity in the caudate detected by the mSPL-pattern model was not detected by the mSPL-
mean model even with a more liberal threshold (voxel p < .06, uncorrected). We suggest that
the MVPTC method reveals more process-specific functional connectivity, as the mSPL
MVPTC specifically indexes shifting and sustained states of visuospatial attention, whereas
the mean BOLD signal over the course of a run reflects a combination of multiple task-
relevant, and possibly task-irrelevant, processes throughout the entire experiment.

The MVPTC analysis appears to be more sensitive than the HRF-based univariate GLM (cf.
Figs. 3A and 2A); it revealed frontostriatal brain regions associated with attention shifting
that were not revealed by the HRF-based univariate GLM. This difference could not be
explained trivially by the choice of statistical threshold. An important feature of the mSPL-
pattern model is that it generalizes to time points in the experiment beyond those used for
training the classifier (i.e., during cued shifts of attention). For example, positive deflections
in the MVPTC could reflect not only cued shifts of attention, but also spontaneous shifts of
attention that are likely to occur from time to time (e.g., Christoff et al., 2009; Weissman et
al., 2006). Furthermore, even for cued shifts of attention, the MVPTC may reflect
meaningful variability in the amplitude and timing of each shift following the cue onset. In
contrast, the conventional HRF-based univariate GLM assumes a consistent hemodynamic
response function for each modeled attention-shift cue, and does not account for potential
spontaneous shifts of attention.

The results of the mSPL MVPTC correlation analysis corroborate and extend previous
findings in the literature suggesting a role for frontostriatal circuits in shifting between
behaviorally relevant locations or objects (e.g., Cools, 2004, 2006; Shulman et al., 2009).
Studies of patients with Parkinson’s disease (which is associated with progressive
neurodegeneration of the BG) exhibit deficits in set shifting (Revizza & Ivry, 2001) as well
as deficits in goal-directed, but not stimulus-driven, spatial attention (Grande et al., 2006). It
has also been suggested that this circuit plays a role in selection and updating within
working memory (O’Reilly & Frank, 2006). In fact, all shifts of goal-directed attention
might be accompanied by an update to working memory, as suggested by O’Reilly and
Franks’ (2006) model.

The method described here is related to the hybrid SVM-GLM approach proposed by
LaConte et al. (2005) and Wang (2009). Wang (2009) suggested that the hybrid SVM-GLM
approach has better sensitivity than a conventional GLM for detecting task-relevant
activations. Our method is also a hybrid SVM-GLM approach; however, the MVPTC
analysis introduces two crucial extensions. First, while LaConte et al. (2005) and Wang
(2009) both created a similar “pattern time course,” they did not use it for functional
connectivity. Second, we used a rapid event-related design, whereas the previous
implementations employed block designs (LaConte et al., 2005; Wang, 2009). Thus, we
demonstrate that MVPTC can be used to make inferences about time points (TRs) that are
not used in the training of the classifier model.

Our application avoids circular inferences (Kriegeskorte et al., 2009; Vul et al., 2009) by
limiting the univariate GLM analysis to data from voxels that are spatially independent of
the functionally defined ROI used to create the multivoxel-pattern model. Another recently
proposed method for assessing functional connectivity uses multivoxel patterns to compute
mutual information between two or more regions of interest (Chai et al., 2009); this is
different both from the MVPTC approach proposed here and from the methods of LaConte
et al. (2005) and Wang (2009), but points to the number of potential novel uses of MVPA
beyond simple decoding.
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The present study introduces a new way to use multivoxel pattern analysis that exploits
evolving patterns of activity during task performance. Multivoxel pattern analysis is first
used to distinguish patterns of activity associated with cognitive processes of interest, and
the resulting classifier is then used to compute a multivoxel pattern time course that reflects
fluctuations in cognitive state over time. Although here we modeled transient attention-
related activity, there are a wide range of potential applications of this method. These
include modeling sustained attention to different spatial locations or objects and modeling
working memory operations for different stimuli or task sets.

A major advantage of this method is that it could provide a way to track fluctuating brain
states during tasks in which the timing and effectiveness of a given cognitive operation (i.e.,
how rapid and accurate was a given shift of attention?) may not be closely tied to external
experimental events. For example, one could train a multivoxel pattern model to
discriminate between patterns of activity associated with high task engagement vs. patterns
of activity associated with low task engagement (e.g., during mind-wandering, Christoff et
al., 2009; or attentional lapses, Weissman et al., 2006), and then apply the estimated weights
to data from an independent data set to predict fluctuations in behavioral performance.
These and other potential applications of the MVPTC may provide new insights into how
ongoing changes in brain state give rise to fluctuations in cognition and behavior.
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Figure 1.
Behavioral task. While maintaining fixation at the center of the screen, the subject was
instructed to start attending to the left-central RSVP stream and to monitor for occasional
targets (2, 3, #, $). When a shift cue was presented in the left-central stream, the subject had
to shift attention covertly to the right-central RSVP stream, and vice versa, and continue to
monitor for targets in the currently relevant stream. The subject had to press one of four
buttons to indicate the identity of each target appearing in the relevant stream.
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Figure 2.
Multivoxel pattern time course (MVPTC) analysis flow. (A) Shift-related voxels in mSPL as
identified by the HRF-based univariate GLM. (B) A schematic illustration of an event-
related average BOLD time course in mSPL time-locked to shift cues. The dashed
rectangles indicate the time windows that were used to extract multivoxel patterns
associated with sustained attention and shifts of attention, respectively, during classifier
training. (C) An SVM classifier was trained to discriminate patterns associated with shifts of
attention vs. sustained attention and tested using a leave-one-run-out protocol. (D) An
example of an mSPL MVPTC (the SVM multivoxel pattern decision value at each time
point, in blue) and mSPL mean BOLD time course (expressed as a z-score, in red) from a
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single run of one representative participant. Arrows mark the onset of shift cues (e.g., sLR or
sRL).
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Figure 3.
Comparison of two functional connectivity analyses. (A) Conventional functional
connectivity analysis results using the mean BOLD signal time course in mSPL as the seed
(mSPL-mean model). The correlated regions are quite extensive both in lateral and medial
frontal lobes. (B) Correlation map from the mSPL MVPTC (mSPL-pattern model) revealing
more focused clusters of activation and a previously undetected cluster in the basal ganglia
(BG). (C) Correlation map of voxels uniquely correlated with the mSPL-pattern model,
revealing clusters in BG, similar to those in (B). The cluster size correction for multiple
comparisons yielded the same family wise Type I error rate of p < 0.05 for both sets of maps
shown here. Note that the mSPL seed region and the surrounding parietal regions were
masked out of both analyses. MFG: Middle Frontal Gyrus.
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Figure 4.
Comparison of connectivity analysis using continuous vs. binarized decision values. The
time course regressor was obtained from: (A) training SVM with mSPL-mean as a single-
voxel classifier and creating continuous decision values (green) or binarized decision values
(yellow); and from (B) training SVM with mSPL-pattern as multi-voxel classifier and
creating continuous decision values (blue) or binarized values (orange). Note that the mSPL
seed region and the surrounding parietal regions were not masked out here to ensure that the
correlation maps were sensible.
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Table 1

Talairach Coordinates

Side Peak X Peak Y Peak Z

mSPL mean Functional Connectivity

Middle Frontal Gyrus(MFG) R 29 37 30

Superior Frontal Gyrus (SFG) L −32 34 35

Medial Frontal Gyrus 1 25 31

Cuneus R 26 −79 16

mSPL-pattern Functional Connectivity

Middle Frontal Gyrus(MFG) R 28 35 29

Superior Frontal Gyrus (SFG) L −33 34 35

Caudate L −19 9 17

Cuneus R 23 −79 18

*
Voxelwise nominal p = 0.009, t(7)=3.5, corrected alpha = 0.05
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