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ABSTRACT

The Hedgehog (Hh) signaling pathway has been implicated
in tumor initiation and metastasis across different malig-
nancies. Major mechanisms by which the Hh pathway is
aberrantly activated can be attributed to mutations of
members of Hh pathway or excessive/inappropriate ex-
pression of Hh pathway ligands. The Hh signaling pathway
also affects the regulation of cancer stem cells, leading to
their capabilities in tumor formation, disease progression,
and metastasis. Preliminary results of early phase clinical
trials of Hh inhibitors administered as monotherapy dem-
onstrated promising results in patients with basal cell car-

cinoma and medulloblastoma, but clinically meaningful
anticancer efficacy across other tumor types seems to be
lacking. Additionally, cases of resistance have been already
observed. Mutations of SMO, activation of Hh pathway
components downstream to SMO, and upregulation of al-
ternative signaling pathways are possible mechanisms of
resistance development. Determination of effective Hh in-
hibitor-based combination regimens and development of
correlative biomarkers relevant to this pathway should re-
main as clear priorities for future research. The Oncologist
2012;17:1090–1099

INTRODUCTION
Hedgehog (Hh) proteins were initially discovered in Droso-
philia melanogaster, together with their signaling transduction
pathway [1, 2]. This signaling pathway plays a critical role in
embryonic development but is generally silenced in adults [3,
4]. However, this pathway is reactivated during tissue repair
and regeneration [5–8]. In the last decade, there has been in-
creasing evidence that the Hh pathway plays an important role
in carcinogenesis; this knowledge has provided an attractive
platform for the development of novel anticancer agents [9,
10]. In this review, we discuss the relevance of the Hh pathway
in cancers and summarize the clinical experience thus far with
Hh inhibitors.

HEDGEHOG PROTEINS AND SIGNALING
TRANSDUCTION PATHWAY
Three mammalian Hh proteins have been identified in humans;
they are denoted by the prefixes Sonic, Indian, and Desert.

Briefly, these proteins act as a ligand and activate the Hh sig-
naling pathway by binding to Patched (PTCH1), a transmem-
brane protein present on the primary cilium of target cells. In
the absence of an Hh ligand, PTCH1 represses the activity of
Smoothened (SMO), which is now recognized to play an im-
portant role in the Hh signaling transduction pathway. Follow-
ing Hh ligand binding to PTCH1, SMO repression is released
and this subsequently results in the modulation of GLI tran-
scription factors. There are three forms of GLI transcription
factors: GLI1, GLI2, and GLI3. GLI1 has a transcriptional ac-
tivator function, whereas GLI2 can either activate or repress
gene expression depending on posttranscriptional/transla-
tional modifications. GLI3, converse to GLI1, yields a strong
repressor effect on transcriptional activities [10, 11]. Primary
cilia also play crucial roles in mammalian Hh signal transduc-
tion, as most of the key components for the Hh pathway (e.g.,
PTCH1, SMO and GLI transcription factors) are enriched
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within this structure [12]. Additionally, cilia play an important
role for the trafficking of Hh pathway proteins, which is crucial
for pathway activation [12]. Ultimately, the balance between
the activating and repressive functions of GLIs results in the
expression of target genes, among others GLI1, PTCH1, MYC,
BCL-2, and Cyclin D1 [13–15].

Within this simplified description (Fig. 1A), there are nu-
merous other cellular components engaged in the activation of
Hh pathway, especially in the steps regulating GLI activity
downstream from SMO. These components include suppres-
sor of fused (SUFU), KIF7, protein kinase A (PKA), glycogen
synthase kinase 3ß (GSK3ß), and casein kinase 1 (CK1) [13,
16 –18]. SUFU is a negative regulator of this pathway; it
achieves this effect via several mechanisms. Physically, SUFU
sequesters GLI transcription factors, whereas functionally
SUFU affects GLI transcription ability [19–21]. The kinase
protein KIF7 acts as both a positive and negative regulator of
Hh pathway [22, 23]. It interacts with GLI proteins and inhibits
GLI-dependent transcriptional activation [22, 23]. Conversely,
KIF7 may assume a positive role via its movement to cilia tip
after pathway activation where it antagonizes the activity of

SUFU [15]. However, the actual functions of most of these
proteins are still subject to intensive studies and not fully un-
derstood [9, 10].

DYSREGULATION OF HEDGEHOG PATHWAY IN
SOLID TUMORS
Aberrant activations of Hh pathway have been observed across
a number of different malignancies (Table 1). The mechanisms
by which aberrant activations of Hh signaling can lead to can-
cer are complex, but in general they include activating muta-
tions of members in the Hh pathway (ligand-independent) and
excessive/inappropriate expression of Hh ligands (ligand-
dependent) [4, 10, 24].

Activating Mutations of Members in
Hedgehog Pathway
Loss-of-function mutations in PTCH1 were initially identified
in patients with basal cell nevus syndrome (BCNS; also known
as Gorlin syndrome). These mutations lead to constitutive up-
regulation of the Hh pathway and patients are highly predis-

Figure 1. Hedgehog signalling. (A) Hedgehog ligands (Hhl) bind to PTCH1 and unrepress SMO with activation of GLI and target genes.
(B) The tumor produces Hhl and stimulates itself. (C) Tumor cells produce Hhl and activate signaling in nonmalignant cells. In turn, other
signaling pathways are activated and stimulate tumor growth (arrow). (D) Stromal cells produce the Hhl required for tumor
growth/survival.
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posed to the development of basal cell carcinomas (BCC) [4].
Further studies also showed that PTCH1 mutations occur in
sporadic cases of BCC and medulloblastoma [4, 25–28].
PTCH1 mutations have been found in patients with central ner-
vous system primitive neuroectodermal tumors or medullo-
blastomas [29–31]. More than 40 different PTCH1 mutations
have been reported, which mostly result in truncated protein
and are scattered throughout the gene. Although no mutational
hot spots have been identified, exon 17 mutations have been
seen more frequently in sporadic cases of medulloblastoma
than BCNS. These clinical findings were supported by several
preclinical reports that elegantly demonstrated the role of these
mutations in carcinogenesis [32, 33]. In one study, spontane-
ous development of BCCs occurred when Hh was overex-
pressed in a transgenic mouse model; in another report, mice
with heterozygous Ptch1 mutations went on to develop cere-
bellar medulloblastomas [32, 33].

Gain-of-function mutations in SMO are also present in
some cases of sporadic BCCs [28, 34–36]. One mutation at
base pair 1604 (G-to-T transversion) of exon 9 of the SMO
gene changes codon 535 from tryptophan to leucine and has
been reported in about 20% of sporadic BCCs [28, 35]. This
mutation has resulted in constitutive SMO signaling and de-
velopment of BCC-like tumors in transgenic mice [34, 36].
Additionally, the 1604 G-to-T mutation in SMO has also been
described in medulloblastoma patients, albeit at much lesser
frequency (1 out of 21 patients) [28]. Genetic alterations of
other components of Hh pathway, such as GLI and SUFU mu-
tations, have also been observed [37–39]. Inactivating germ-

line mutations of SUFU have been reported in 3% of sporadic
and �10% of desmoplastic medulloblastomas [37, 38]. Al-
though alterations of GLI1 and GLI3 have been observed in
global genomic analyses of pancreatic tumors, these are not
thought to be activating, but rather are more likely to be pas-
senger mutations [39].

Excessive/Inappropriate Expression of Hh Ligands
Aberrant activation of the Hh signaling pathway in cancers
may also be ligand- dependent and has been reported in several
malignancies [10, 40]. Ligand-dependent activation of the Hh
pathway was initially described to occur in autocrine mode, but
there is an increasing understanding that paracrine or reverse
paracrine modes may also occur [10, 24].

Autocrine Stimulation
In the autocrine mode, tumor cells self-secrete Hh ligands to
which they subsequently respond and culminate in activation
of the signaling pathway. This mode has been previously de-
scribed in a number of malignancies, as summarized in Table
1. In one study, 50% of small cell lung carcinomas (SCLCs)
demonstrated overexpression of both Sonic hedgehog (SHH)
and GLI1 in an autocrine fashion [8]. Moreover, the treatment
of SCLC cell lines with cyclopamine (an SMO inhibitor) re-
sulted in significant growth inhibition [8]. In another study,
there was a marked increase in the expression of SHH in mice
bearing human SCLC xenografts. Treatment of these mice
with the SMO inhibitor LDE-225 following carboplatin and

Table 1. Cancers associated with aberrant activation of Hedgehog pathway

Tumor type Mechanism of Hedgehog pathway activation References

Basal cell carcinoma Ligand independent (mutations in PTCH1 and SMO) �4, 25–28, 34–36�

Breast Ligand dependent (autocrine) �43–45, 93�

Colorectal Ligand dependent (autocrine and paracrine) �11, 53�

Gliomas Ligand dependent (exogenous ligand) �94–96�

Hepatocellular Ligand dependant/unclear mechanism �85�

Leukemia Ligand dependent/unclear mechanism �97�

Lung Ligand dependent (autocrine) �8, 41,42, 98, 99�

Lymphoma Ligand dependent (autocrine and reverse paracrine) �54, 97, 100–103�

Medulloblastoma Ligand-independent (mutations in PTCH1, SMO, SUFU) �28–32, 35, 37, 38�

Multiple myeloma Ligand dependent (reverse paracrine) �54, 104�

Ovary Ligand dependent/unclear mechanism
Loss of heterozygosity at the PTCH1 locus

�46, 47, 105�

Pancreatic Ligand independent (mutations of GLI1 and GLI 3) �39, 53, 106, 107�

Ligand dependent (autocrine and paracrine)

Prostate Ligand dependent (autocrine and paracrine) �108–110�

Upper GI Ligand dependent (autocrine) �111�

Sarcoma Mutations in PTCH and SUFU in rhabdomyosarcoma �81, 112–115�

Ligand dependent (autocrine) in osteosarcoma/chondrosarcoma

Direct activation of GLI1 in Ewing sarcoma
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etoposide chemotherapy was highly effective in preventing re-
currence of residual tumors [41]. Overexpression of SHH,
GLI1, GLI2, and SMO has also been reported in tumor tissues
of 80 patients with non-small cell lung carcinoma. In this se-
ries, elevated expression level of SMO correlated with the
presence of nodal disease, implicating its role in metastasis and
disease progression [42].

Autocrine activation of the Hh pathway has also been
shown in breast cancer, both in cell lines and tumoral tissue
studies [43–45]. In a study by Kubo et al., overexpression of
SHH and GLI1 was detected in virtually all of the 52 breast
cancer specimens examined [43]. In another series, the over-
expression of SHH in breast cancers was shown to be second-
ary to hypomethylation of the ligand promoter as well as
NF-�B upregulation [45]. Furthermore, akin to studies in lung
cancers, inhibition of Hh pathway using cyclopamine led to
suppression of proliferation in breast cancer cell lines in a
dose-dependent manner [43]. Similar reports involving multi-
ple ovarian cancer cell lines revealed upregulation in expres-
sion (more than fivefold) of several components of the Hh
pathway, including GLI1 (9 of 19 cell lines), SMO (9 of 19 cell
lines) and SHH (10 of 19 cell lines) [46].

Furthermore, dysregulation of PTCH1 in ovarian cancers
has also been described [46, 47]. The treatment of ovarian can-
cer cell lines with the SMO inhibitors cyclopamine or KAAD-
cyclopamine prevented their growth and migration [47, 48]. In
addition to cell line data, one study involving 80 ovarian cancer
specimens reported that components of the Hh signaling path-
way were significantly increased and overexpression of
PTCH1 and GLI1 conferred poor survival [47].

Despite the encouraging data described in this section, cy-
clopamine-based studies have inherent limitations which af-
fect their interpretation. In many of the cell-line studies, the
doses of cyclopamine used are now recognized to be associ-
ated with antiproliferative effects that are independent of Hh
signaling [49, 50]. It has been shown that cyclopamine in high
concentrations can induce apoptosis by increasing N-SMase2/
ceramide and via generation of nitric oxide [49]. Moreover, it
is difficult to reach systemic levels of cyclopamine in vivo be-
cause of its toxicity and relatively short elimination half-life
[51]. The preclinical studies are further limited by the fact that
there is no agreed-upon standard method to measure the Hh
pathway activity and none of commercial antibodies against
PTCH, SMO, or GLI have ever been shown to work specifi-
cally on fixed tissues [52].

Paracrine Stimulation
In the paracrine mode, Hh ligands are secreted by tumor cells
and induce activity within infiltrating stromal cells. This in
turn results in the production of unknown factors within the tu-
mor environment, which ultimately support tumor growth [10,
40]. In a study by Yauch et al., paracrine activation of the Hh
pathway was found in patient-derived xenografts of pancreatic
and colon adenocarcinoma. Furthermore, inhibition of Hh
pathway in the stroma resulted in tumor growth retardation and
thus supports a paracrine mode of stimulation [53]. The exact
mechanism by which Hh pathway activation in stromal cells

can enhance tumor progression is unclear, but insulin-like
growth factor-1 receptor (IGF-1R) and Wnt signaling path-
ways may play a role [53].

Reverse Paracrine Stimulation
Reverse paracrine stimulation occurs when Hh ligands pro-
duced by surrounding stromal cells activate the tumoral cell
Hh pathway. Dierks et al. demonstrated that Hh ligands se-
creted by bone marrow, nodal, and splenic stromal cells repre-
sented survival factors for malignant B-cell lymphoma and
plasmacytoma cells derived from a transgenic E�-Myc mouse
model or from patients with these malignancies [54]. How-
ever, such paracrine stimulation still needs further confirma-
tion.

The different modes of Hh pathway signaling are summa-
rized in Figure 1B–1D.

HEDGEHOG SIGNALING IN CANCER STEM CELLS
Cancer stem cells (CSCs) are a subpopulation of cancer cells
that are self-sustaining with the exclusive ability to self-renew
and give rise to heterogeneous cell lineages within the tumor.
They have been identified in a variety of cancers, and evidence
is accumulating that CSCs may be responsible for treatment
resistance and relapse [24]. Preclinical data have suggested a
possible regulatory role of Hh pathway in CSCs across a num-
ber of malignancies, such as glioblastoma, breast cancer, pan-
creatic adenocarcinoma, and hematological malignancies
[54 –58]. Activation of Hh signaling has been reported in
CD133-positive glioma CSCs and treatment of these cells with
siRNA or cyclopamine led to a loss of tumorigenic drive [55,
59]. Similarly, in breast cancers, Hh pathway activation (using
Hh ligands or manipulation of GLI1/2) or suppression (using
cyclopamine) in CSCs resulted in altered expression of BMI1,
a central regulator of stem cells. This in turn led to an increase
or loss of tumorigenic potential, respectively, in both in vitro
and in vivo settings [57]. In chronic myeloid leukemia, loss of
SMO caused depletion of stem cells and use of cyclopamine
led to reduction of stem cells in mouse model [58].

In addition to having tumorigenic properties, CSCs are also
implicated in cancer progression and metastasis [60]. Hh sig-
naling has been one of proposed pathways in this process [58,
61, 62]. Higher expression of PTCH1, GLI1, GLI2, and the tar-
get gene SNAIL1 has been reported in CD133-positive colon
CSCs [63]. In vitro inhibition of Hh pathway activity in these
cells using cyclopamine or siRNA resulted in decreased tumor
cell proliferation and induced apoptosis [63]. Although these
studies support the possible role of Hh pathway activation in
CSCs, it remains pertinent to be reminded of the limitations
posed by cyclopamine-based studies, as discussed previously.

HH INHIBITORS
The preclinical relevance of Hh signaling in cancers has re-
sulted in the development of several targeted agents against
this pathway. Most of these agents act by binding to and an-
tagonizing SMO. At present, seven SMO inhibitors are being
evaluated in the phase I or phase II clinical trial setting. These
agents include vismodegib, BMS-833923, IPI-926, LDE-225,
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PF-04449913, LEQ 506, and TAK-441. Currently, most data
concerning the clinical utility of these agents are based on trials
of vismodegib. Although these data suggest clinical benefit in
cancers driven by mutational activation, targeting the Hh path-
way may be less likely to be successful in tumors in which ab-
errant ligand overexpression or signaling are not the oncogenic
drivers, but rather are secondary to genetic changes in other
signaling pathways [64–67].

Hh Inhibitors Antagonizing SMO

Vismodegib (GDC-0449)
Vismodegib is a potent orally bioavailable small molecule in-
hibitor of the Hh pathway that acts by binding and inhibiting
SMO [68]. Antitumor activity of this drug was initially shown
in preclinical models of medulloblastoma, colon, and pancre-
atic tumors [69]. A phase I clinical trial of this agent involved
68 patients with refractory, locally advanced, or metastatic
solid tumors; it demonstrated an acceptable safety profile with
no dose-limiting toxicity (DLT). The most frequently reported
adverse events (AEs) have been muscle spasms, dysgeusia, fa-
tigue, alopecia, and nausea. Seven grade 4 AEs (hyponatremia,
fatigue, pyelonephritis, presyncope, resectable pancreatic ad-
enocarcinoma, and paranoia with hyperglycemia) were re-
ported in six patients (9%). Grade 3 AEs were observed in 28%
of patients; they most commonly included hyponatremia
(10%), abdominal pain (7%), and fatigue (6%) [69].

A phase 1 clinical trial of vismodegib has shown signifi-
cant clinical activity in tumors with driver mutations of the Hh
pathway [64, 65, 69]. The overall response rate (defined as
both complete and partial responses) in advanced BCC was
achieved in 19 out of 33 patients (58%). Complete response
was achieved in two patients. The authors reported a median
response duration of 12.8 months (range: 3.7–26.4 months)
among evaluable patients [69]. The clinical benefit of vismo-
degib has been also reported in medulloblastoma. Treatment of
a patient with refractory widespread metastatic medulloblas-
toma with a somatic mutation in PTCH1 (PTCH1-W844C) and
loss of heterozygosity resulted in a rapid, although transient,
regression of disease at all tumor sites and improvement of
symptoms [64].

As the maximum tolerated dose was not reached, the rec-
ommended phase II dose was chosen as 150 mg p.o. daily
based on the pharmacokinetic data showing saturable plasma
concentrations of vismodegib. An attempt was made to reduce
the frequency to 150 mg three times per week or once weekly
following a loading dose of 150 mg daily for 11 days, but this
maneuver failed to achieve unbound plasma concentration as-
sociated with efficacy in patients with BCC and medulloblas-
toma [70].

Two recently published clinical trials have further demon-
strated the remarkable clinical benefit of this agent in BCC [71,
72]. In a study by Sekulic et al., vismodegib at a dose of 150 mg
daily was associated with objective response rates of 30% and
43% in patients with locally advanced and metastatic BCC, re-
spectively. In the group of locally advanced BCC, 13 out of 63
patients (21%) had a complete response. Median duration of

response for both groups was 7.6 months [71]. In addition, vis-
modegib had promising results in a randomized placebo-con-
trolled trial in patients with BCNS [72]. The primary endpoint
of this study was reduction in the incidence of new BCCs that
were eligible for surgical resection. Vismodegib at a daily dose
of 150 mg significantly reduced the per-patient rate of new sur-
gically eligible BCCs (2 vs. 29 cases per group per year). Al-
though no tumors progressed during treatment with
vismodegib, BCCs and palmar-plantar pits associated with
BCNS both recurred after stopping the treatment [72]. Both
studies reported notable drug-related toxicity profiles. Muscle
spasms, alopecia, dysgeusia, nausea, decreased appetite, diar-
rhea, fatigue, and weight loss were the most commonly re-
ported adverse events [71, 72]. Although most of these
toxicities were low grade in nature, they led to treatment dis-
continuation in 54% of patients in the BCNS study. Further-
more, in the study by Sekulic et al., seven fatal events were
reported [71]. Although all seven patients had coexisting con-
ditions at baseline, it is relevant to note that three of the deaths
were due to unknown causes [71].

A phase II randomized trial of vismodegib or placebo in
combination with oxaliplatin, 5-fluorouracil, and leucovorin
or irinotecan, 5-fluorouracil, and leucovorin plus bevacizumab
in 195 patients with previously untreated metastatic colorectal
cancer did not meet the primary endpoint of extending the pro-
gression-free survival [66]. Another phase II randomized pla-
cebo-controlled trial investigating vismodegib as maintenance
therapy in patients with ovarian cancer in second or third com-
plete remission did not demonstrate any significant improve-
ment in progression-free survival [67]. These results underline
the complex challenges in attaining clinical benefit from Hh
pathway inhibition and also highlight the lack of utility for this
class of agents to be used in cancer management when aber-
rance of Hh pathway is not the oncogenic driver.

At present, there are several phase II trials investigating the
role of this agent in specific tumor types and different combi-
nations with chemotherapy regimens (Table 2).

BMS-833923 (XL139)
BMS-833923 is another potent, oral, small-molecule antago-
nist of SMO [73]. The inhibitory effect of this agent has been
demonstrated in multiple cell lines, including engineered hu-
man medulloblastoma cell lines. A phase I trial of BMS-
833923 has shown good clinical tolerance at doses up to 360
mg; evaluation of this agent in a phase I setting was still ongo-
ing at the time of abstract reporting. The most common AEs
include dysgeusia (44%), muscle spasms (44%), alopecia
(15%), diarrhea (11%), myalgia (11%), dry mouth (11%), and
nausea (11%). Grade 2 pancreatitis and lipase elevation oc-
curred in one patient at a dose of 240 mg, whereas grade 3 hy-
pophosphatemia was observed in one patient at 540 mg.

In this study, one patient with BCNS achieved complete re-
sponse, one patient with non-small cell lung cancer had a par-
tial response, and 21% (6 of 28 patients) remained on treatment
longer than 100 days at the time of report [73]. Combination
regimens of BMS-833923 with chemotherapy in several tumor
types are currently underway; they are summarized in Table 2.
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IPI-926 (Saridegib)
IPI-926 is an orally bioavailable, semisynthetic derivative of
cyclopamine, which targets the Hh pathway by inhibiting
SMO [74, 75]. When combined with gemcitabine, IPI-926 in-
creases survival in a gemcitabine-resistant pancreatic cancer
mouse model [76]. The potent antitumor activity of IPI-926
has been shown in medulloblastoma mouse models that are
compound heterozygous for PTCH1 and HIC1 mutations [75].
In a phase I dose escalation trial conducted by Rudin et al., IPI-
926 was well tolerated up to a dose of 160 mg daily. The most
common AEs were fatigue (29% total; 3% were grade 3), ala-
nine aminotransferase elevation (20%; 8% were grade 3), as-
partate aminotransferase elevation (19%; 4% were grade 3);
and nausea (19%; none were grade 3). Dose-limiting toxicities
in this study were asymptomatic grade 3 increased transami-
nases and/or bilirubin (one patient at 160 mg, four patients at
�160 mg), all of which resolved when drug was held. Clinical
activity was observed in three patients with locally advanced
BCC who received IPI-926 for longer than 12 months at the
time of report [77].

The use of this agent in pancreatic cancer has also been

evaluated. Initial preclinical studies demonstrated promising
activity in a pancreatic cancer mouse model [76]. However, in
a randomized, phase II, placebo-controlled study of gemcit-
abine plus IPI-926 versus gemcitabine plus placebo in patients
with metastatic pancreatic cancer, the trial was stopped early
due to a difference in survival favoring the placebo arm. Dif-
ferent combinations of IPI-926 with systemic agents as well as
tumor specific trials are currently underway (Table 2).

LDE-225
LDE-225 is a selective orally bioavailable inhibitor of SMO.
Phase I dose escalation of this agent in 72 patients with ad-
vanced solid tumors has shown an acceptable safety profile
with a recommended phase II dose of 800 mg daily. The most
frequently reported AEs were fatigue, nausea, vomiting, an-
orexia, muscle cramps, myalgia, and dysgeusia [78]. Topical
preparation of LDE-225 has been also developed and studied
in patients with BCNS. In a double-blind randomized study in-
volving eight patients with 27 BCC tumors, of 13 BCCs treated
with active compound, three showed complete responses, nine
had partial responses, and one had no clinical response, in con-

Table 2. Hedgehog pathway inhibitors currently in clinical trials in cancer

Drug Phase Tumor site Combination
ClinicalTrials.gov
identifier

GDC-0449 (Vismodegib; Genentech,
Roche, Curis)

II Colorectal FOLFOX or FOLFIRI � bevacizumab 00636610

Gastric FOLFOX 00982592

Glioblastoma 00980343

Medulloblastoma 00939484

Pancreas Gemcitabine 01064622

Gemcitabine � nab-paclitaxel 01088815

Small cell lung cancer Cisplatin � etoposide 00887159

BMS-833923 (XL 139;
Bristol-Myers Squibb, Exelexis)

I Solid tumors 00670189

Gastric Cisplatin � capecitabine 00909402

Myeloma Lenadolamide � dexamethasone �
bortezomib

00884546

Small Cell Lung
Cancer

Carboplatin � etoposide 00927875

I/II Leukemia Dasatinib 01218477

IPI-926 (Infinity) I Solid tumors 00670189

Head and neck Cetuximab 01255800

I Pancreas FOLFIRINOX 01383538

II Chondrosarcoma 01310816

LDE225 (Novartis) I Solid tumors 00880308

Sporadic BCC
(topical preparation)

01033019

II Metastatic BCC 01327053

PF-04449913 (Pfizer) I Solid tumors 01286467

I/II Chronic myeloid
leukemia

Dasatanib or bosutinib 00953758

LEQ 506 (Novartis) I Solid tumors 01106505

TAK-441 (Millennium) I Solid tumors 01204073

Abbreviations: BCC, basal cell carcinoma; FOLFIRI, 5-fluorouracil/leucovorin and irinotecan; FOLFORINOX,
5-fluorouracil/leucovorin, irinotecan, and oxaliplatin; FOLFOX, 5-fluorouracil/leucovorin and oxaliplatin.
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trast to only one partial response out of 14 BCC tumors treated
with the vehicle [79].

Clinical activity of LDE-225 was seen in medulloblastoma
(partial response in one patient) and advanced BCC (complete
response in one patient and partial responses in four patients).
Disease stabilization (�4 months) was observed in five pa-
tients with lung adenocarcinoma, spindle cell sarcoma, breast
cancer, and BCC [78].

PF-04449913, LEQ 506, and TAK-441
PF-04449913, LEQ 506, and TAK-441 are oral inhibitors of
the Hh pathway that are currently undergoing evaluations in a
phase I setting. A summary is detailed in Table 2.

Hh Inhibitors Antagonizing Components
Downstream to SMO
Increased understanding of the Hh signaling pathway has led
to new discoveries with previously known anticancer agents,
such as arsenic. Recent data have shown that arsenicals antag-
onize the Hh pathway by targeting GLI transcriptional factors.
Kim et al. [80] showed potent inhibitory effects of arsenic tri-
oxide (ATO) and phenylarsine oxide on the Hh pathway in a
cell line model (NIH 3T3). As arsenic treatment has been
shown to affect the p38 MAPK and JNK pathways, the authors
of this paper investigated whether the involvements of these
two pathways are required for arsenic inhibition of Hh signal-
ing. Interestingly, the inhibitory effect of the Hh pathway by
arsenic was sustained even in the presence of a p38 MAP ki-
nase (SB203580) or JNK (SP600125) inhibitors. This data
suggest that the anti-Hh effect of arsenicals is independent of
the p38 MAPK and JNK pathways.

In comparison with control specimens, ATO also signifi-
cantly delayed the growth of medulloblastoma allografts de-
rived from Ptch �/� p53 �/� mice [80]. Furthermore, ATO
inhibited Hh activity mediated by SMO-D477G, a mutation
that confers resistance to SMO antagonist. In another study by
Beauchamp et al., ATO inhibited GLI1 activity in HepG2 cells
co-transfected with GLI1 and pGL38�GLI binding element-
driven luciferase reporter. This inhibitory effect was shown to
be by direct interaction of ATO with GLI1 protein. These in-
vestigators also had previously established GLI1 as an impor-
tant transcriptional target of the oncogenic fusion protein
EWS/FLI1, an important driver of Ewing sarcomas [81]. Fur-
ther observations corroborate this finding; for instance, treat-
ment of Ewing sarcoma family of tumors (ESFT) cell lines
with ATO led to marked cytotoxicity and the presence of
higher GLI1/2 expression seems to indicate increased sensitiv-
ity to ATO. Additionally, tumor growth in ESFT xenografts
was inhibited with ATO administration; this treatment was
associated with an increased survival in constitutively acti-
vated SMO transgenic mouse model for medulloblastoma
(ND2:SmoA1), with significantly decreased GLI target gene
expression [82].

Novel inhibitors of GLI have also been evaluated in the
preclinical setting, including GANT61, a small molecule
which inhibits direct binding of GLI1 and GLI2 to the promot-
ers of target genes HIP1, BCL-2, and the transcriptional acti-

vation of BCL-2 [11]. The use of this agent resulted in
significant cell death across five different human colon carci-
noma cell lines and was found to be more potent than cyclo-
pamine [83]. Significant anti-tumor activity of GANT61 has
been also noted in prostate cancer human xenografts [84].

A polymeric nanoparticle encapsulated formulation of a
novel GLI1/GLI2 inhibitor, HPI-1 (NanoHHI), has also under-
gone early preclinical testing. This agent was shown to actively
inhibit the proliferation and invasion of human HCC cell lines.
NanoHHI also had a potent activity in HCC xenografts and re-
sulted in decrease in the weight of the subcutaneous tumor
xenografts. Additionally, it also significantly reduced the pop-
ulation of CD133-expressing HCC cells in orthotopic liver tu-
mors [85].

RESISTANCE TO HH INHIBITORS ANTAGONIZING SMO
The early data generated from a number of Hh inhibitors held
promise for some tumor types, especially in patients with
BCCs and medulloblastoma. However, akin to any targeted
therapies that have been developed in cancer, the emergence of
drug resistance is a distinct problem. Yauch et al. presented
molecular profiling results at the time of resistance develop-
ment from a patient with medulloblastoma taking vismodegib;
the patient had an impressive clinical and radiological re-
sponse at 2 months but relapsed at 3 months after treatment ini-
tiation. Although PTCH1 mutation was found in the original
tumor, a novel mutation in SMO was detected after treatment
initiation, explaining the acquired resistance [86].

Indeed, mutations at multiple sites in SMO can confer re-
sistance to vismodegib and other SMO antagonists. A SMO
mutation, heterozygous G-to-C mis-sense mutation at position
1697, that resulted in a change of codon 473 from Asp to His
(D473H) has been described in Hh inhibitor resistance. Lack of
specific binding of 14C-labeled GDC-0449 to SMO-D473H
suggested deficiency in drug binding as a mechanism for de-
veloping resistance. Interestingly, a mutation altering the same
amino acid also arose in a vismodegib-resistant mouse model
[86].

Amplifications of GLI2 transcription factor and Hh target
gene Cyclin D1 have been identified as alternative mecha-
nisms for the development of resistance to Hh inhibitors [87].
Focal amplification of GLI2 conferred resistance to LDE225 in
medulloblastoma mouse models. Additionally, a small number
of resistant tumors also showed increased GLI2 mRNA ex-
pression in the absence of clear amplification, suggesting that
upregulation may be secondary to alternative mechanisms
[88].

Compensatory upregulation of the IGF-1R/PI3K pathway
may also play a role in resistance development to SMO antag-
onists. This is based on the observation of increased upregula-
tion of the IGF-1R/PI3K pathway in LDE225-resistant tumor
samples. In keeping with this finding, the addition of the PI3K
inhibitor BKM120 or the dual PI3K-mTOR inhibitor BEZ235
to the initial treatment with the SMO antagonist markedly de-
layed or even prevented the development of drug resistance in
Ptch�/� Hic�/� mouse medulloblastomas [88].
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POTENTIAL ON-TARGET ADVERSE EFFECTS OF

INHIBITING THE HH PATHWAY
The Hh pathway has a substantial role in endochondral ossifi-
cation and bone homeostasis [89, 90]. This raises the possibil-
ity of adverse skeletal effects with Hh pathway inhibition. In
one study using mouse models, the use of cyclopamine re-
sulted in significantly lower bone mass and mineral density in
comparison to the control group [91]. Moreover, transient in-
hibition of the Hh pathway in young mice has resulted in per-
manent bone defects and altered growth, which persisted after
cessation of the Hh pathway inhibitor and restoration of path-
way [92]. Given the fact that medulloblastomas and BCNS
mostly present in pediatric patients, different Hh pathway in-
hibitors will be developed and studied in this patient popula-
tion. Thus, special attention should be made to detect potential
skeletal adverse effects, especially in pediatric patients.

CONCLUSION
Hh inhibitors currently represent an opportunity in the quest
for novel anticancer therapies. However, the understanding of
how this pathway affects different cancers is still under intense
study and is not fully understood. This effort is further compli-
cated by the limitations of earlier preclinical studies in which
cyclopamine was used at a high dose.

For tumors in which Hh components are mutated, such as
BCC, BCNS, and medulloblastoma, the proof of concept for
this class of agents has been satisfied. Challenges still exist for
the utility of these drugs in other tumor types. In such cancers,

targeting Hh alone is unlikely to be effective and appropriate
combinations with cytotoxic or other targeted agents need to
be studied further. Reassuringly, a number of these initiatives
are already in progress (Table 2). Moreover, the development
of agents that target the Hh signaling pathway downstream to
SMO will also provide further useful therapeutic strategies in
this area.

Another challenging aspect in the development of Hh in-
hibitors is the development of acquired drug resistance, as it
can substantially diminish the potential that these agents hold.
Deeper understanding on the resistance mechanisms will en-
able the development of better strategies to overcome this
problem. Currently, strategies may include concurrent combi-
nation with other targeted therapies such as PI3K-mTOR in-
hibitors or the development of second-generation Hh
inhibitors that cotarget compensatory pathways conferring re-
sistance. Finally, the development of correlative biomarker
studies could also be informative in shedding light on the op-
timal patient populations to treat and should be undertaken
with priority.
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