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Purpose: To identify the underlying genetic defect in four generations of a Chinese family affected with bilateral
congenital polymorphic cataracts.
Methods: Family history and clinical data were recorded. The phenotype was documented using slit-lamp photography.
Genomic DNA samples were extracted from peripheral blood of family members. Candidate genes were amplified using
polymerase chain reaction (PCR) and screened for mutations on both strands using bidirectional sequencing.
Results: Affected individuals exhibited variable opacities in the embryonic nucleus, sutures, and peripheral cortical
opacities. The phenotype for this family was identified as polymorphic. Direct sequencing revealed a splice site mutation
(c.215+1G>A) at the first base of intron 3 of the crystallin beta A3/A1 (CRYBA3/A1) gene. This mutation co-segregated
with all affected individuals in the family and was not found in unaffected family members or in 100 unrelated controls.
Conclusions: Our results identified a recurrent c.215+1G>A mutation in CRYBA3/A1 in a polymorphic congenital cataract
family, summarized the variable phenotypes among the patients, which expanded the phenotypic spectrum of congenital
cataract in a different ethnic background, and suggested a mechanism that influences cataractogenesis.

Congenital cataract, the loss of eye lens transparency, is
a significant cause of visual impairment or blindness in
childhood. The prevalence of congenital cataracts is 1 to 6 per
10,000 live births, depending on the ascertainment method
[1]. Globally, congenital cataracts account for nearly one-
tenth of childhood blindness from different causes including
infections during embryogenesis, metabolic disorders
(galactosemia), and genetic defects [2].Statistical analyses
have revealed that about one quarter of congenital cataracts
are hereditary [3].Genetically, the majority of isolated
congenital cataracts exhibit as autosomal dominant, although
autosomal recessive and X-linked inherited forms have also
been reported [4].

Over the past few years, remarkable progress has been
made toward our understanding of the cataractogenesis
process. Currently, there are more than 40 genetic loci to
which isolated or primary cataracts have been mapped, and
more than 26 genes have been characterized, although this
number is constantly increasing [5]. Autosomal dominant
congenital cataracts (ADCC) was reportedly caused by
mutations in different genes [2]. Approximately half of the
mutations are in the crystallin genes and a quarter in connexin
genes, with the remainder divided among genes that encode
heat shock transcription factor-4 (HSF4), aquaporin-0 (AQP0,
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MIP), paired-like homeodomain 3 (PITX3), v-maf
musculoaponeurotic fibrosarcoma oncogene homolog
(MAF), chromatin modifying protein (CHMP4B), lens
intrinsic membrane protein 2 (LIM2), beaded filament
structural protein-2 (BFSP2), and other genes [2,6]. The
crystallin and connexin genes appear to be the most commonly
associated with congenital cataract. So, it is suitable to
consider these genes as the top candidates for developing
congenital cataracts screening strategies.

Congenital cataracts can be classified into several
subtypes according to morphology: total, nuclear, cortical,
anterior polar, posterior polar, lamellar, cerulean, pulverulent,
sutural, coralliform, wedge-shaped, and polymorphic
cataracts and other minor subtypes [2].Congenital cataracts
are genetically heterogeneous [7]. It is known that different
mutations in different genes can cause similar cataract
patterns, while the highly variable cataract morphologies
within some families suggest that the same mutation in a
single gene can lead to different phenotypes [8,9].

In this paper, a four-generation family affected with
congenital polymorphic cataracts was investigated in an
attempt to identify the genetic defect associated with their
cataract phenotype.

METHODS
Clinical evaluations and DNA specimens: Four generations
of a family suffering with ADCC were recruited from the Eye
Center of Affiliated Second Hospital, College of Medicine,
Zhejiang University, Hangzhou, China. Informed consent was
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obtained from all participants in accordance with the Zhejiang
Institutional Review Board and the study protocol adhered to
the tenets of the Declaration of Helsinki. In total, 11
individuals participated: 7 affected and 4 unaffected (Figure
1). Detailed medical histories were obtained by interviewing
all individuals. All participants underwent detailed
ophthalmic examinations including visual acuity, slit lamp
examination with dilated pupils, ultrasonography, fundus
exam, and intraocular pressure measurement. The phenotypes
were documented using slit lamp photography (Figure 2).
Also,100 unrelated ethnically-matched controls with no
family history of congenital cataracts were recruited.

About 2 ml of peripheral blood was collected from the
family members and the controls who took part in the study.
Blood samples were obtained by venipuncture, collected in
Vacutainer tubes (Becton-Dickinson, Franklin Lakes, NJ)
containing ethylene diamine tetraacetic acid (EDTA).
Leukocyte genomic DNA was extracted using the QIAmp
Blood kit (Qiagen, Duesseldorf, Germany).
Mutation analysis: Genomic DNA samples from affected and
unaffected members of the family were screened for
mutations in crystallin alpha A (CRYAA), crystallin alpha B
(CRYAB), crystallin beta A3/A1 (CRYBA3/1), crystallin beta
B2 (CRYBB2), crystallin gamma C (CRYGC), crystallin
gamma D (CRYGD), gap junction protein, alpha 3 (GJA3),
and gap junction protein, alpha 8 (GJA8) genes using direct

sequencing. The coding regions of candidate genes were
amplified using polymerase chain reaction (PCR) with
previously published primer sequences (Table 1) [10-17]. The
cycling conditions for PCR were 95 °C pre-activation for 5
min, 10 cycles of touchdown PCR with a 0.5 °C down per
60 °C to 55 °C cycle, followed by 30 cycles with denaturation
at 95 °C for 25 s, annealing at 55 °C for 25 s, and extension
at 72 °C for 40 s. PCR products were isolated using
electrophoresis on 3% agarose gels and sequenced using the
BigDye Terminator Cycle sequencing kit V 3.1 (ABI–Applied
Biosystems; Sangon Co, China) on an ABI PRISM 3730
Sequence Analyzer (ABI), according to the manufacturer’s
instructions. Sequencing results were analyzed using
Chromas 1.62 and compared with sequences from NCBI
GenBank (CRYAA: 21q22.3; NM_000394, CRYAB: 11q22;
NG_009824, CRYBA1: 17q11-q12; NM_005208, CRYBB2:
22q11.2; NM_000496, CRYGC: 2q33-q35; NM_020989,
CRYGD: 2q33-q35; NM_006891.3, GJA3: 13q11-q13;
NM_021954, and GJA8: 1q21-q25; NM_005267).Direct
sequencing was also used to screen the mutation identified in
CRYBA1on 100 ethnically-matched controls to confirm the
mutation.

RESULTS
Clinical evaluations: The cataract exhibited an autosomal
dominant inheritance pattern in the family (Figure 1).Three of

Figure 1. Pedigree of the autosomal dominant congenital cataract mutation. The proband is marked with an arrow. Squares and circles indicate
males and females, respectively. Black and white symbols represent affected and unaffected individuals, respectively. The asterisks indicate
family members who attend this study.
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the seven patients had undergone lens surgery. All affected
patients had bilateral lens opacification, but the degree of lens
opacities was highly variable (Figure 2).The proband (II:1),
who was a 59-year-old woman, had nuclear cataract with ‘Y’
sutural opacities (Figure 2A,B).The affected member III:3
(Figure 2F-H), who was the daughter of the proband, had
slight nuclear cataract with curd-like peripheral cortical
opacities, while her son (IV:2; Figure 2C,D) showed a
different zonular cataract with ‘Y’ sutural opacities. The
affected member IV:1(Figure 2E) had a simple ‘Y’ sutural
opacity. The clinical evaluation of the affected individuals is
provided in Table 2. Prior to surgery, the affected members
had visual acuity ranging from 0.05 to 0.8. After surgery, all
patients achieved a best-corrected visual acuity of 0.8 to 1.0.
There was no family history of other ocular or systemic
abnormalities.
Mutation screening: Through bidirectional sequencing of the
coding regions of the candidate genes, we identified a c.
215+1G>A substitution in the donor splice site of intron 3 in
CRYBA3/A1 in all affected individuals (Figure 3) that co-
segregated with all affected individuals, whereas this
heterozygous mutation was not present in the unaffected
family members, nor in 100 unrelated Chinese without
cataracts who served as controls.

DISCUSSION

In this study, we identified a splice site mutation within
CRYBA3/A1 in a four-generation Chinese pedigree with
autosomal dominant polymorphic cataract.

Crystallins are known to constitute about 90% of the
water-soluble proteins of the lens and contribute to
transparency and refractive properties by forming a uniform
concentration gradient in the lens. A mutation in the crystallin
gene may alter crystallin stability, solubility, or ability to
oligomerize and may precipitate from solution, resulting in
lens opacity. So, they are considered to be good candidate
genes for congenital cataract [18].The vertebrate crystallins
are divided into two families: α-crystallins and the β- and γ-
crystallin families [19,20]. The β- and γ-crystallins share a
commonly features anti-parallel β-sheets in the proteins,
referred to as the “Greek key motif.” All vertebrate lens β-
crystallins consist of two domains and each one folds into two
similar “Greek key motifs,” with each “Greek key motif”
comprised of four consecutive anti-parallel β-strands [21].

The CRYBA3/A1 gene uses an alternative translation
initiation site to encode both the βA3- and βA1-crystallins.The
βA3-crystallins are longer than the βA1-crystallins by the
addition of 17 amino acids at the 5′-terminal end [22]. An
intermediate form of the βA3-crystallin gene has an N-
terminal arm shortened by 8 amino acids [23]. The βA1-
crystallin aggregates ranged from dimers to octamers and

Figure 2. Slit-lamp photograph of family members with congenital cataracts. A, B: The proband (II:1) had nuclear cataract with 'Y' sutural
opacities. C, D: The affected member IV:2 showed a different zonular cataract with 'Y' sutural opacities. E: The affected member IV:1 had
simple 'Y' sutural opacities. F-H: The affected member III:3 had slight nuclear cataract with curd-like peripheral cortical opacities.
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TABLE 1. POLYMERASE CHAIN REACTION PRIMERS AND PRODUCT SIZES.

Name Primer sequence (5′-3′) Product size
(bp)

CRYBA3/1
Exon-1 F 5′GGCAGAGGGAGAGCAGAGTG 3′ 207
Exon-1 R 5′CACTAGGCAGGAGAACTGGG 3′  
Exon-2 F 5′AGTGAGCAGCAGAGCCAGAA 3′ 293
Exon-2 R 5′GGTCAGTCACTGCCTTATGG 3′  
Exon-3 F 5′AAGCACAGAGTCAGACTGAAGT 3′ 269
Exon-3 R 5′CCCCTGTCTGAAGGGACCTG 3′  
Exon-4 F 5′GTACAGCTCTACTGGGATTG 3′ 357
Exon-4 R 5′ACTGATGATAAATAGCATGAACT 3′  
Exon-5 F 5′GAATGATAGCCATAGCACTAG 3′ 290
Exon-5 R 5′TACCGATACGTATGAAATCTGA 3′  
Exon-6 F 5′CATCTCATACCATTGTGTTGAG 3′ 295
Exon-6 R 5′GCAAGGTCTCATGCTTGAGG 3′  

CRYAA
Exon-1 F 5′CTTAATGCCTCCATTCTGCT 3′ 593
Exon-1 R 5′TGGCTGGTGCCTTACAAA 3′  
Exon-2 F 5′ CACCTGACCATAGCCAAACAAC 3′ 512
Exon-2 R 5′ TCTCCCAGGGTTGAAGGCA 3′  
Exon-3 F 5′ GGGGCATGAATCCATAAATC 3′ 487
Exon-3 R 5′ GGAAGCAAAGGAAGACAGACAC 3′  

CRYAB
Exon-1 F 5′ AACCCCTGACATCACCATTC 3′ 469
Exon-1 R 5′ GGAGGAAGGCACTAGCAACC 3′  
Exon-2 F 5′ TGCAGAATAAGACAGCACCTG 3′ 296
Exon-2 R 5′ AATGTAGCCAGCCTCCAAAG 3′  
Exon-3 F 5′ TCTGCCTCTTTCCTCATT 3′ 473
Exon-3 R 5′ CCTTGGAGCCCTCTAAAT 3′  

CRYBB2
Exon-2 F 5′ TGCTCTCTTTCTTTGAGTAGACCTC 3′ 385
Exon-2 R 5′CCCATTTTACAGAAGGGCAAC 3′  
Exon-3 F 5′ ACCCTTCAGCATCCTTTG G 3′ 314
Exon-3 R 5′ GCAGACAGGAGCAAGGGTAG 3′  
Exon-4 F 5′ GCTTGGAGTGGAACTGACCTG 3′ 244
Exon-4 R 5′ GGCAGAGAGAGAAAGTAGGATGATG 3′  
Exon-5 F 5′ GCCCCCTCACCCATACTC 3′ 242
Exon-5 R 5′ CCCCAGAGTCTCAGTTTCCTG 3′  
Exon-6 F 5′ CCTAGTGGCTTATGGATGCTC 3′ 347
Exon-6 R 5′ TCTTCACTTGGAGGTCTGGAG 3′  

CRYGC
Exon-1.2 F 5′ TGCATAAAATCCCCTTACCGCTGA 3′ 524
Exon-1.2 R 5′ ACTCTGGCGGCATGATGGAAATC 3′  
Exon-3 F 5′AGACTCATTTGCTTTTTTCCATCCTTCTTTC 3′ 407
Exon-3 R 5′GAAAGAATGACAGAAGTCAGCAATTGCC 3′  

CRYGD
Exon-1.2 F 5′ CCTCGCCTTGTCCCGC 3′ 340
Exon-1.2 R 5′ TTAACTTTTGCTTGAAACCATCCA 3′  
Exon-3 F 5′ TGCTTTTCTTCTCTTTTTATTTCTGGGTCC 3′ 400
Exon-3 R 5′AGTAAAGAAAGACACAAGCAAATCAGTGCC 3′  

GJA3
Exon-1–1 F 5′ CTCTTCTGGCTCTGGCTTCC 3′ 741
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further complexity is related to temporal and spatial regulation
of expression as well as posttranslational modifications [24].

The CRYBA3/A1 gene consists of six exons: the first two
exons encode the N-terminal arm, and the subsequent four
exons are responsible for the Greek key motifs [25]. So far,
four mutations within the CRYBA3/A1 gene was reportedly
associated with congenital cataract in different families (Table
3).One is the c.215+1G>A mutation which we reported here,
another is the c.215+1G>C [26], the third type is c.215+1G>T
[27],and the fourth is a 3-bp deletion at positions 279–281 (c.
279_281del) in exon 4, which causes an in-frame deletion of
a glycine residue at position 91 (p.Gly91del) [28-31].

Previously, five geographically distinct families have
been reported to possess the c.215+1G>A mutation, which is
associated with diverse phenotypes including zonular,
lamellar, nuclear, cortical,sutural, and posterior polar cataract
[6,32-35].Diverse cataract phenotypes caused by exactly the
same mutation within CRYBA3/A1 in different ethnic
backgrounds suggest that ethic background including
environmental factors or, more likely, other genetic modifiers
may influence the expression and function of this gene in lens
development and cataract formation. In the family we studied,
the phenotypes show considerable variation in morphology,

and the severity of the disease ranged from requiring surgery
to unawareness of the affliction before this study. Of the four
patients who had pictures of their affected eyes taken,II:1
(nuclear cataract with ‘Y’ sutural) and IV:2 (zonular cataract
with ‘Y’ sutural), are more severe than III:3 (mild nuclear
cataract) and IV:1 (simple ‘Y’ sutural cataract). In addition,
after a 5-year followed up of this family, we found the
opacities of lens in the affected individuals are not
progressive. So, the phenotype of this family was identified
as polymorphic.Splice-site mutation is a genetic
mutation that inserts or deletes several nucleotides at the splice
junction during mRNA processing. It was reported to
contribute to exon skipping, activation of cryptic splice sites,
creation of pseudo-exon within an intron, or intron retention,
which commonly results in exon skipping [36].As speculated
by Kannabiran et al. [35], the c.215+1G>A mutation (position
474) would result in skipping of a donor splice junction,
recruitment of a cryptic splice site (position 460),or possibly
both. All possibilities would cause improper folding of the
first Greek key motif, which leads to structural instability of
βA1/A3-crystallin and subsequent cataract formation.

Conclusions: In conclusion, we have identified a
polymorphic form of congenital cataracts associated with a c.

TABLE 1. CONTINUED.

Name Primer sequence (5′-3′) Product size
(bp)

Exon-1–1R 5′ CACCTCGAACAGCGTCTTGA 3′  
Exon-1–2 F 5′ CTTCCCCATCTCCCACATCC 3′ 749
Exon-1–2 R 5′ GGTGGCCGTTGTAGAGCTTG 3′  
Exon-1–3 F 5′ TCCGCCAAGCTCTACAACG 3′ 535
Exon-1–3 R 5′ GAAACCTGATCTCTCCTCCAT 3′  

GJA8
Exon-2–1 F 5′ CAGATATTGACTCAGGGTTG 3′ 542
Exon-2–1R 5′ GATGATGTGGCAGATGTAGG 3′  
Exon-2–2 F 5′ GGCAGCAAAGGCACTAAG 3′ 465
Exon-2–2 R 5′ CTCCACCATCCCAACCTC 3′  
Exon-2–3 F 5′ ATCGTTTCCCACTATTTCC 3′ 492
Exon-2–3 R 5′ GGCGTCACTTCATACGGTTA 3′  

TABLE 2. CLINICAL FEATURES OF AFFECTED INDIVIDUALS.

Affected individual Gender Age Surgery age Phenotype
II:1 Female 59 59 Nuclear cataract with ‘Y’ sutural opacities
II:4 Male 55 43 IOL, after cataract surgery
II:6 Male 53 41 IOL, after cataract surgery
III:1 Female 34 29 IOL, after cataract surgery
III:3 Female 33 No surgery Nuclear cataract with curd-like peripheral

cortical opacities
IV:1 Female 6 No surgery ‘Y’ sutural opacities
IV:2 Male 8 8 zonular cataract with ‘Y’ sutural opacities

and peripheral cortical opacities
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215+1G>A mutation of the CRYBA1/A3 gene in a Chinese
family. This mutation supports the role of the CRYBA3/A1
gene in human cataract formation and provides additional
evidence for the genetic heterogeneity of congenital cataracts
in a different ethnic background.
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