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Abstract
Debye summation, which involves the summation of sinc functions of distances between all pair
of atoms in three dimensional space, arises in computations performed in crystallography, small/
wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct
evaluation of Debye summation has quadratic complexity, which results in computational
bottleneck when determining crystal properties, or running structure refinement protocols that
involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation
algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The
algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial
decomposition of the molecule coupled with local harmonic expansions and translation of these
expansions. An even more efficient implementation is possible when the scattering profile is all
that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine
the relationship of the proposed algorithm to existing approximate methods for profile
computations, and show that these methods may result in inaccurate profile computations, unless
an error bound derived in this paper is used. Our theoretical and computational results show orders
of magnitude improvement in computation complexity over existing methods, while maintaining
prescribed accuracy.

1 Introduction
Solution small-angle scattering (SAS) of X-ray and neutrons senses the size and shape of a
molecular object, and therefore is a powerful analytical tool capable of providing valuable
structural information [16, 35]. The ability to study molecules and their interactions under
physiological conditions and with essentially no limitation on the size of the system under
investigation makes SAS an extremely promising complement to high-resolution techniques
such as X-ray crystallography and solution NMR. With the rise of computational power,
SAS studies have become increasingly popular, with the applications covering a broad range
of problems, including structure refinement of biological macromolecules (proteins, nucleic
acids) and their complexes [24, 23, 22, 40], elucidation of conformational ensembles and
flexibility in solution [6, 11, 34, 5], validation of the macromolecular structures observed in
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crystals [11], and even the structure of bulk water [10] and X-ray and neutron diffraction
patterns of various powder samples [45]. At the heart of all SAS applications to structural
studies in chemistry and biology is the ability to predict the scattering data from a given
atomic-level structure. Performing this task accurately and efficiently is critical for
successful use of SAS in chemistry and structural biology. Skipping over the less
computationally challenging preprocessing involved in SAS, the main problem for
computing the scattering profile, I, of a molecular object can be written as the summation of
the sinc kernel between all pairs of atoms in N-atom system,

(1)

where ψj are partial sums, q is the scattering wavenumber (q = (4π/λ) sin ϑ, with 2ϑ being
the scattering angle and λ the wavelength), rj is the coordinate of the jth atom, and fj are the
atomic form factors.

The computational cost of directly evaluating Eq. (1) for each q is O(N2). For larger
molecular systems the number of atoms considered may be extremely large (N ≥ 105),
especially when large crystals, or large molecular complexes are considered. The quadratic
computational cost becomes a prohibitive barrier for atomic level application of the Debye
formula for such systems. This problem is further compounded, when the Debye sum has to
be repeatedly calculated as part of a structural refinement protocol, e.g., [37, 18].

Due to the large computational cost of Eq. (1), numerous methods have been proposed for
efficiently computing its approximation. Two approaches are most commonly used. In the
first approach, the set distances between the point-sets are assigned to a predetermined
number of buckets, and the value of the Debye sum is approximated by summing over the
buckets instead of the full set of distances [46, 25, 45]. This approach is faster than direct
evaluation if the number of q values is large relative to the number of unique {fj(q)} values,
or the {fj(q)} dependence of q can be factored out of the summation, which is the case in
small angle neutron scattering (SANS). In that case after the initial O(N2) computation of
the buckets, each additional summation for a new q value results only in a linear increase in
computation time. While faster for certain problems than direct evaluation, the method is
still limited by the O(N2) cost of bucketization. Further, the error introduced by this
approach has not been carefully ascertained.

The second widely used approach, is to expand the pre-orientationally-averaged scattering
formula (from which the Debye formulation is analytically derived) in terms of infinite
series of spherical harmonics and then analytically average the series using the orthogonality
property of the basis functions [43, 36]. This series is truncated at a conveniently small
truncation number p, reducing the computational complexity to O(p2N) [44]. As will be
shown below, unless the truncation pP is correctly chosen based on the problem size D a
computation that uses a preset constant cutoff can be divergent for the case of large qD,
while at small qD the method may perform wasteful computation. As with the histogram (or
bucketing) approach, the approximations introduced in the computation are not quantified a
priori, and may be significant.

We present a method for computing the Debye sum which has a O(N log N) computational
cost, while providing the user with the ability to bound the accuracy of the computation to
an arbitrary precision ε. Our algorithm is related to the fast multipole method (FMM), first
proposed by [19]. The FMM is a widely used method for solving large scale particle
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problems arising in many diverse areas (molecular dynamics, astrophysics, acoustics, fluid
mechanics, electromagnetics, scattered data interpolation, etc.) because of its ability to
achieve linear or O((N + M) log N) computation time for memory dense matrix vector
products/sums,

(2)

to within a prescribed accuracy ε. Here {rl} and {ρj} are sets of N source and M evaluation
points and Ψ (ρ, r) is the kernel function. It was first developed for the Coulomb kernel
[19], which in 3D is Ψ (ρ, r) = |ρ − r|−1, but has now been successively adapted for a
multitude of other kernels, particularly, for the Green’s function of the Helmholtz equation
(e.g. [29]). This is closely related to the present problem, since the function s (r) in Eq. (1)
also satisfies the Helmholtz equation in three dimensions,

(3)

However, in comparison to the Green’s function for the Helmholtz equation the Debye
function is regular, and this results in a significantly simplified and accelerated algorithm.

We provide complexity estimates and tests of the developed algorithms. In addition, we
show that our method is significantly faster for even moderately large values of N than all
previous methods described, while at the same time providing accurate results, and
demonstrate when the methods presented by previous authors may yield incorrect results.

2 SAS intensity computations
Before describing the new algorithm, we establish notation and show the relation between
the two basic methods for SAS intensity computations, first, based on the Debye sums, and,
second, based on spherical harmonic expansions.

The measured scattering intensity from a system of molecules in solution is proportional to
the averaged scattering of a sample volume:

(4)

where A (q) is the scattering amplitude from the particle in vacuo, 〈〉Ω denotes that the
quantity is averaged over the unit sphere Su (all orientations), and u is a unit orientation
vector. For atomic coordinates rj = rjsj, |sj| = 1, and the corresponding atomic form factors
fj(q), the scattering amplitude of a sample volume is

(5)

2.1 Debye sums
The first method to compute I (q) is to just insert Eq. (5) into formula (4) and do the
integration analytically
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(6)

where ψj are provided by Eq. (1).

2.2 Spherical harmonic expansions
The second method exploits expansions over spherical harmonics (e.g. [44]). In this method
for a given q we introduce regular spherical basis functions

(7)

Functions  here are given in spherical coordinates (r, θ, ϕ), r = r (sin θ cos ϕ, sin θ sin
ϕ, cos θ), where jn(qr) are spherical Bessel functions, while  are the normalized
spherical harmonics of degree n and order m,

(8)

where  are the associated Legendre functions consistent with that in [1], or
Rodrigues’ formulae

(9)

where Pn (μ) are the Legendre polynomials.

Using the Gegenbauer series

(10)

one can rewrite Eq. (5) in the form

(11)

and determine the intensity after integration in Eq. (4)

(12)
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In practice the number of modes n can be truncated to p (n = 0, …, p − 1), which provides
summation of p2 terms in Eq. (12). Hence, to compute directly all needed  using Eq.
(11), one needs O(p2N) operations. Obviously, the second method should be faster than the
direct Debye sum computation if p2 < N. Note that p is a growing function of q and should
be selected according to the error bounds given in this paper.

3 Algorithms for the Debye summation
3.1 Factored expansions of the 3D sinc kernel

3.1.1 Regular spherical basis functions—A regular solution of the Helmholtz
equation, ψ(r), can be expanded into a series over spherical basis functions, Eq. (7),

(13)

where  are expansion coefficients.

In [29] a formula is provided that allows the basis function  centered at r = −t to be
expressed as an infinite series over the basis functions { } centered at the origin. The
Debye function can be related to the regular spherical basis function of order and degree

zero,  as follows

(14)

Using the mentioned formula, the Debye function centered at r = rs can be expressed over
the regular basis functions as

(15)

3.1.2 Error bounds—In practical computations the infinite series or integrals should be
replaced by finite series,

(16)

which create truncation errors εp, where p is the “truncation number.” Using the addition
theorem for spherical harmonics and the fact that for the Legendre polynomials of arbitrary
order |Pn (μ)| ≤ 1, |μ| ≤ 1, we can bound the |εp| as follows

(17)
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where θ′ is the angle between vectors rs and r. Let the source rs and the evaluation point r
be enclosed by a sphere of radius a centered at the origin, r ≤ a, rs ≤ a. Because

(see [1]) the error can be bounded as

(18)

Here we used the inequality

(19)

where  are the binomial coefficients.

The above estimate shows that for given qa the series converges absolutely. Although the
estimate (18) can be applied for any qa, for qa ≫ 1 a tighter bound can be established. The
spherical Bessel functions jn(qa) decay exponentially as functions of ηn = (qa)−1/3(n − qa +
1/2). Hence, for ηn ≫ 1 the principal term of the sum in the right hand side of Eq. (17)
provides a good estimate of the entire sum, i.e.

(20)

In fact, the large ηn asymptotic behavior is achieved at moderate values of ηn ≳ 2.

The principal term of jp(qa) of asymptotic expansion for ηp ≫ 1 is [1]

(21)

where Jν and Ai are the Bessel function of order ν and the Airy function of the first kind. It
is proven in [30] that

(22)

where Γ is the gamma-function. Combining Eqs (20)–(22), we obtain
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(23)

The asymptotic region we are interested in is , which provides ηp(qa)1/3 ≪ qa.
If the error is prescribed so that |εp| < ε, we obtain the following expression for p to achieve
this error

(24)

Figure 1 illustrates computations of the series truncation number p using the worst case (rs =
r = a) according to Eq. (17) and the high qa approximation (24). It is not difficult to compute
εp exactly for arbitrary p, since for rs = r = a and p = 0 the sum in the right hand side of Eq.
(17) is equal to 1 [1], while the values for different p can be computed using the recursion

. In the same figure, the dependence phf (ε, qa) provided by Eq. (24)
is also plotted. Note that for the computed values of ε and range of qa shown in the figure,
the maximum difference between the exact and approximate values of the truncation number
p does not exceed 2. We also found that the equation for the truncation number,

(25)

where [] denotes the integer part, provides a value for p not less that the exact truncation
number in the considered range of parameters. This demonstrates an excellent agreement
with the exact value even at low frequencies, so Eq. (25) can be used for fast and accurate
estimation of the truncation number.

Note that dependence of type p ~ qa + f(ε)(qa)1/3 can be found in the FMM literature for the
far field expansions of the Green’s function for the Helmholtz equation (see e.g. [29, 30]).
Comparison with those expressions show that for the same error ε the truncation numbers
for the Debye kernel are smaller. In fact, the present expression f(ε) is approximately equal
to a similar expression g(ε1/2) used in those publications.

3.2 Algorithm 1: “Middleman” method
The “Middleman” method (e.g. see [29]) is the simplest, but for some cases the fastest O(N
+ M) method to compute sums of type (2). The algorithm can be described in a few lines.
Indeed, from Eqs (2) and (16) we have

(26)

If the computational domain is bounded by a sphere of radius a, and the truncation number p

is selected so that an error  is tolerated, then O (p2N) operations are needed to compute
, n = 0, …, p − 1, m = −n, …, n and O (p2M) operations are needed to compute all ψl, l =

1, …, M. The computation of all required 2p2 basis functions  and  is done via
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an O(p2) procedure (using recurrences for the spherical Bessel and associated Legendre
functions) [29]. The total complexity of the algorithm is, therefore O(p2(N + M)).

This algorithm is faster than the brute force direct summation only if

(27)

This condition holds when p is controlled, which means that qa is not very large (see Eq.
(24)). More precisely, assuming M = N, and considering p ~ qa = qD/2 (D = 2a) we can
rewrite condition (27) as

(28)

3.3 Algorithm 2: Hierarchical summation
For larger qD the value of p according to Eq. (24) becomes large leading to increased
computational cost. We propose to use a different algorithm, which subdivides the domain
hierarchically using local expansions about multiple expansion centers, and achieves lower
complexity than the “Middleman” method. Translation operators provide a mathematical
foundation for merging expansions of smaller subdomains into a larger domain, while
maintaining the validity of the overall expansion. The advantage of the hierarchical method
is that only a low order representation of the subdomain is maintained. Optimal conditions
on the number of subdomains, or levels of hierarchical space subdivision are obtained to
minimize the cost at a given acceptable error, as is commonly done in the FMM.

3.3.1 Translations—In contrast to the FMM for singular kernels, here only local-to-local,
or R|R- translations are used, thus significantly simplifying the algorithm. These translations
can be expressed by the action of a linear operator that enables change of the origin of the
expansions. Consider two expansions of the same function (see Eq. (13)),

(29)

where  and  are expansion coefficients for bases centered at r*1 and r*2 respectively.
The basis functions centered at r = −t and r = 0 are related to each other via an infinite

reexpansion matrix, (R|R)T (t), whose entries,  are given in the appendix (e.g.,
see Eq. (52)). Knowing this operator one can represent a basis function centered at r = −t in
terms of basis functions centered at the origin via

(30)

where t is the translation vector. Substituting this reexpansion into the first sum in Eq. (29)

one finds that the coefficients  in the new basis are related to the coefficients in the old
basis  as
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(31)

since the expansion over the basis  is unique. We will stack coefficients into a
single vector and use a more compact notation for translation operator as a matrix

(32)

In a practical numerical realization the series and matrix should be appropriately truncated
and the truncation error should be controlled to stay within the error bound.

3.3.2 Data Structures—The algorithm consists of two parts: an initial set-up stage where
data structures and other precomputations are performed, followed by a stage where the
actual sum is obtained at each evaluation point. In a practical implementation where the sum
may be computed for many values of the momentum transfer parameter q, the hierarchical
data structures may only need be set up once, while the sum computations done many times
for the same distribution of atoms.

All sources and evaluation points are enclosed into a cube with side d and diagonal ,
which is termed the “computational domain”. This cube is considered to be a box at level l =
0 in an octree structure [42]. Eight children cubes of level 1 are produced by division of each
side of the initial cube by two. The process of division continues down to level l = lmax,
whose value is determined from cost optimization considerations. At the end of the process
we have an octree of depth lmax. All cubes at each level are indexed using Morton space-
filling curve (spatial z–order) [42]. Such an indexing can be obtained using bit interleaving
[29]. This indexing also enables fast determination of children and parents of all boxes.
Boxes containing sources are called source boxes and boxes containing evaluation points are
called receiver boxes.

To avoid wasteful computations, we make the algorithm adaptive, by skipping all empty
boxes. Further adaptivity can be introduced as in the FMM [9, 29]; however, the space
filling nature of atoms in macromolecules (or crystals) implies that these considerations are
likely to be unimportant in practice for profile computation.

In the present problem, since the computation involves all atom pairs, the “sources” rl and
“receivers” ρj in Eq. (2) are the same point sets. At the stage of generation of data structure
some precomputations of the entries of the translation operators can be performed, which
can be stored and reused during the algorithm. We also determine truncation numbers for
different levels, p0, …, plmax, consistent with the prescribed computation error and an
optimal tree depth. Note that the truncation numbers depend on parameter qD which is
reduced by half as the boxes become finer. At level l this should be taken as qDl, Dl = 2−lD0
= 2−lD. The initial data-structure phase is then followed by the sum evaluation, where initial
expansion, and hierarchical summation for aggregation, and dissemination of the
intermediate results is performed.

3.3.3 Sum evaluation—The sum evaluation part of the algorithm consists of the
following four stages.

1. Initial Expansion: for level l = lmax generate the local expansion for each source
about the center, rb, of box b to which this source belongs and consolidate all such
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expansions for a given box, to obtain the vector of coefficients C(b) due to all
sources in the box. This can be written formally as

(33)

where R̄ is the vector of complex conjugate basis functions with entries

 (see Eq. (26)) and Nsb(l) is the number of the source boxes at level l.

2. Upward pass (Aggregation): Recursively execute the following procedure for
levels l = lmax, …, 1. Translate expansion coefficients for each source box, b′, of
level l to its parent box, b, at level l − 1, and consolidate such expansions for each
parent box. This can be written formally as

(34)

where Children(b) is a set of all children boxes for box b.

3. Downward pass (Disaggregation): Recursively execute the following procedure
for levels l = 0, …, lmax − 1. Translate expansion coefficients for each receiver box,
b′, of level l to its children boxes, b, at level l. This can be written formally as

(35)

where Nrb(l) is the number of the receiver boxes at level l.

4. Evaluation: for level l = lmax evaluate the local expansion for each receiver about
the center, rb, of box b to which this receiver belongs. This can be written formally
as

(36)

Figure 2 schematically shows (in 2D) the steps 2 and 3 of the above algorithm.

3.3.4 Translation operators—Steps 2 and 3 of the above algorithm require translation
operators. In general, since the translation operator is a matrix relating vectors of length p2,
in general form it is a p2 × p2 matrix, and its computation and application are both O(p4)
operations. More efficient computations of the translation operators for the 3D Helmholtz
equations can be found, e.g. in [41, 29, 8]. Using some symmetries of solutions of the
Helmholtz equation, our algorithm achieves this in O(p3) operations. While there exist
asymptotically faster translation methods (e.g. based on diagonal forms [41]), in the present
problem the values of qD are usually not extremely large for which the O(p3) methods are
faster than or are competitive with the O(p2 log p) methods for these qD values. This is
because the asymptotically faster methods have much larger constants associated with them.
We first derive error bounds for R|R translation in order to determine proper cutoff for p in
the representation of the operator, and then describe the O(p3) algorithm for the translation.

Error bounds: Before deriving more rigorous estimates of the translation errors, let us turn
attention to Eq. (17). Assume that the source is located inside a domain of radius a centered
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at the origin, so that rs ≤ a. The estimates of the truncation number obtained above for r ≤ a,
obviously, are not valid if the evaluation point is far from the expansion center. However,
even in this case we can bound the error for p > qa as follows

(37)

Since |jn(qr)| ≤ 1 for any values of n and qr, and for n ≥ p > qa the functions jn(qa) decay
exponentially as functions of ηn, we still can use the principal term for estimation of the
entire sum. This provides

(38)

This can be compared with Eq. (20). We can slightly modify the high qa error bound to
obtain

(39)

From this we obtain, similarly to Eq. (24),

(40)

This coincides with the result obtained in [29] for the expansion of an arbitrary incident
field.

Accurate analysis of the effect of application of truncated translation matrix is provided in
Appendix A. This result shows that this error is consistent with (40), while just a small
correction to the coefficient of log(qa) may be needed (see Eq. (61)). Such a correction
slightly changes p as normally ε < (qa)−1 and 3 log ε−1 is the dominating term. The practical
rule is to use Eqs (40) or (61) where p can be increased by a small value, e.g., unity, from
the computed value phf (ε, qa). Moreover, practical errors are usually two orders of
magnitude smaller than those provided by theoretical error bounds, since not all sources and
evaluation points are located in the worst positions.

Summarizing, we can state that translations can be performed using truncated rectangular p2

× p′2 translation matrices, where p and p′ are truncation numbers assigned to levels of the
octree to which and from which the translation occurs respectively.

RCR-decomposition: To perform translation by direct matrix-vector multiplication from
level to level O(p4) operations are needed, assuming that the matrix is precomputed. As it is
shown in [29] this method is not fast enough to provide overall O(N log N) fast summation
algorithm for 3D spatial distributions, as are encountered here, and at least O(p3) translation
methods are needed. Several methods of this complexity are discussed and presented in [29],
while we focus on the so-called RCR-decomposition (Rotation - Coaxial translation -
Rotation), which first was introduced for the Laplace equation in [47], and further
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successfully implemented for the Laplace and Helmholtz equation in several FMM
realizations (e.g. [29, 28]).

Formally, the RCR-decomposition of the translation matrix can be represented as

(41)

where operator Rot(t/t) provides rotation in the way that the unit vector t/t becomes the z-
axis basis vector of the new reference frame, operator (R|R)(t) provides coaxial translation
by distance t along the z-axis, and Rot−1 (t/t) is inverse to Rot(t/t) (back rotation). Each of
these operators has O (p3) complexity. For a rectangular p2 × p′2 matrix (R|R) (t) matrices
Rot(t/t) and Rot−1 (t/t) are truncated to square matrices p′2 × p′2 and p2 × p2, respectively,
while matrix (R|R ) (t) has size p2 × p′2. The saving comes from the fact that all these
matrices are block-sparse, as they act only on subspaces of expansion coefficients { }
invariant to rotation (n) and invariant to coaxial translation (m), so the total number of non-
zero elements is O(p3) for each matrix. Entries of these matrices can be computed for cost
O(p3) using recursive procedures described in [26, 29]. Improved versions of these
procedures are provided in Appendix B and C. Note that we found that the recursive process
for rotation coefficients described in the above references is unstable for large p ( p ≳ 80).
We provide in the appendix an improved process, which we found to be stable even for very
large p (tested up to several thousands).

3.3.5 Algorithm complexity and optimization—The algorithm for sum of non-
singular functions described above has different complexity and optimization than the FMM
which involves summation of singularities. The singularities in the FMM are avoided by
building neighborhood data structures, matrix decomposition to sparse (local) and dense
(far) parts and a balance between the major costs of the local summation and translations.
Translation costs are heavily dominated by the many multipole-to-local translations. These
expensive parts of the FMM are all removed in the present algorithm. Also the data structure
for the present algorithm is much simpler, since the elimination of multipole to local
translation means that we do not need neighborhood lists.

In Step 1, the cost of generation of the initial plmax-truncated local-expansion for a single

source in the domain of size qDlmax is , where Bexp is some constant. Similarly, the
cost of evaluation of the expansion, in Step 4, is the same for a single receiver point. The
total cost of the expansion generation and evaluation for N sources and M receivers is

.

Cost of a single translation from level l to l − 1 can be estimated as  using the O(p3)
algorithms. (Truncation numbers for levels l and l − 1 are of the same order – for large qD
they differ by a factor of two). Here Btrans is some constant of order 1, which for simplicity
is taken to be the same for all levels, and which is asymptotically correct for large qD. For
estimations we can assume that all boxes in the octree are occupied, as is expected in the
macromolecular scattering. In this case at level l we have 8l boxes. We note then that if all
boxes are occupied then the cost of translations in the upward and downward passes of the
algorithm are the same, and so the total complexity of the algorithm can be estimated as

(42)
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where Cexp and Ctrans are total expansion and translation costs.

The hierarchical algorithm is appropriate for large qD, where pl ~ qDl/2. Since Dl = 2−lD we
have

(43)

It is seen then that for a given qD, N, and M, the function Ctrans (lmax) is growing, while the
function Cexp (lmax) is decaying, so that there is an optimal value for their sum, Ctot. This
minimum can be found simply from the condition that the derivative of Ctot with respect to

lmax is zero. This provides the optimum maximum level, , and the cost of the optimized

algorithm, :

(44)

So for fixed qD the optimal algorithm is scaled as O(log(N + M)), while for fixed N the
scaling is approximately O((qD)3).

Now, if we consider a system of N = M atoms with typical interatomic distance da, which

occupies a cube with diagonal D and edge  then  and the above estimates
for optimum settings become

(45)

This shows that for fixed qda and increasing N the number of levels should increase as O(log
N ) and the algorithm scales as O(N log N). Another asymptotic behavior is also interesting
– for fixed N and increasing qda the number of levels should decrease (!), while the total
algorithm complexity is approximately scaled as O((qda)3). The first fact is only due to the
p3 translation scheme, where for large qD the amount of translations (and so the levels)
should be reduced in a scheme of minimal complexity. Formally, for qda ≳ N2/3 the number
of levels becomes less than 1, in which case one should use the “Middleman” scheme. In
practical applications of the small angle scattering qda usually does not exceed qda ~ 102,
which shows that the high qa switch to the “Middleman” algorithm may happen only for
relatively small N ≲ 103. On the other hand, the “Middleman” scheme is not practical for
large qD (see Eq. (28)), and such a switch may never happen in practice. For larger systems
several levels (lmax ≥ 1) are required.

We note that for small or moderate qD the truncation number does not depend strongly on
qD, which affects the optimization estimates. If, for these values of qD we take the
truncation number to be some constant that is used for all levels, we can see from Eq. (42)
that Cexp does not depend on lmax, while Ctrans is a monotonically increasing function of
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lmax. This means that  is reached for lmax, which is as small as possible, i.e. lmax = 0
and we revert to the “Middleman” scheme.

3.3.6 Combined algorithm—The above complexity consideration shows that a combined
algorithm which includes a switch between the “Middleman” and the hierarchical algorithm
can perform better for certain values of N and qda. Practical values for such a switch depend
on the algorithm implementation, hardware, etc. However, we can estimate this region of
parameters qualitatively, using Eq. (42), where we can put more accurate estimates for the
truncation number and study the parametric dependencies Ctot(qD, N ) numerically. We note
then that if the “Middleman” scheme is used, then Eq. (24) should be used, which is
different from Eq. (40) (which shows up for small and moderate qD). So, for the qualitative

model we assume Bexp = Btrans = 1, M = N, ε = 10−6, compute cost  of the
“Middleman” method as Cexp for lmax = 0 and p provided by Eq. (24), while compute the
cost of the hierarchical scheme as Ctot with pl determined by a = Dl−1/2 and Eq. (40) for
optimal lmax (this always overestimates Ctrans), which we determine by finding the minimum
of Ctot over a range of lmax (we will add const p = 1 to both Eq. (24) and (40) to have at least
one term in the expansion even for qa → 0). The switch for any particular values in the

parametric space (qD, N) then is determined by the comparison of Ctot and . We note

that we also have a “brute force” algorithm of complexity . In the comparison
shown in Fig. 3 we also indicate the cases when this is faster.

For qD ≲ 10 the difference in performance between the Middleman and Hierarchical
algorithms is small. Fig. 3 also shows, as expected, that the brute force computations are
more efficient than methods based on expansions for large qD and not very large N.

Fig. 4 shows that more accurate estimation of the truncation number substantially affects the
scaling of the algorithm with respect to qD (and, in fact to N). While asymptotically the
scaling should be close to O((qD)3), such scaling is realized only for very high qD ≳ 103.
For qD ≪ 103 the dependence of the complexity on this parameter is weaker.

4 Faster versions for SAS profile computation
The SAS intensity computations based on the Debye sums can be accelerated at least two
times (in fact, even more) due to the following facts: 1) for these computations the source
and receiver sets are the same; 2) the final result are not the Debye sums, but sums (6). Let
us consider modifications of the Middleman method and the Hierarchical algorithm in this
case.

4.1 Modified Middleman method for profile computation
Substituting ψj from Eq. (26) into Eq. (6) and neglecting the error term, we obtain

(46)

It is also not difficult to see by comparison of Eqs. (26) and (11) that
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(47)

Obviously, due to these relations Eq. (12) turns into identity.

Hence, the Middleman method is simply equivalent to the spherical harmonic expansion
method, with properly chosen truncation numbers. To compute the intensity there is no need
to evaluate ψj, but simply sum up the norms of the expansion coefficients . The procedure
of obtaining these coefficients is twice as cheap as the computation of the Debye sums ψj
since generation of the expansion has approximately the same cost as its evaluation. In
practice the savings may be more substantial, since there is no need to store and retrieve ψj
from memory to provide a summation of N terms. This equivalency of the methods also
establishes the error bound for the spherical expansion method, as p can be selected exactly
as for the Middleman method and the error bound (25) can be applied.

4.2 Hierarchical algorithm for profile computation
It should be noticed that the upward pass (34) ends up with expansion coefficients C for the
entire domain, which are nothing but coefficients { } in the Middleman method, since the
expansion over the regular basis functions is unique (we note that in all methods we can
select the center of the entire domain as the center of the minimal sphere containing all
atomic centers rj to reduce the radius of the domain). Hence, we can use Eq. (46) to compute
the intensity. In this case we do not need the downward pass, as all { } are obtained in the
upward pass results. Because the costs of the upward and downward passes are
approximately the same, this reduces the computational time by factor 2. As mentioned
above the actual savings can be larger, since in this case we do not need to store N quantities
ψj and provide an additional summation (which for large N may also introduce additional
roundoff errors). Such savings can be especially significant at large N (e.g. for N ~ 106 – 107

we observed 3–4 times acceleration of the algorithm).

5 Numerical examples
We implemented the algorithms described above and conducted performance tests in several
settings, including random distributions, and profile computation of SAS for randomly
generated proteins and for several real biomacromolecules. Since our algorithms were
adapted from previous FMM implementations [32] they were already parallelized for shared
memory multicore architectures, and it is the setting we describe our results in. The
parallelization efficiency was high (≳90%), so the reported computation times can be scaled
to different configurations and clusters. In all test cases the source and evaluation points
were the same, and double precision computations were used for all algorithms.

5.1 Random distribution tests
In the first test we distributed N = 103 – 107 source points uniformly and randomly inside a
cube, and measured the wall clock time and errors for different qD = 0.1 – 300 and
prescribed accuracy ε = 10−12 – 10−3. The upper limit for qD is mainly related to the
memory of the PC used, while for qD ≳ 400 we also observed an increase in the error due to
lack of precision in the computation of the expansions and translation operators. These
errors reduced to below the theoretical bounds if the algorithms are executed quadruple-
precision. However this increases the time and memory needed, and qD must be selected
within this limit for the present code.
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For comparisons and error computations, we compute the exact solution for Neval ~ 102

randomly selected points from the total set and computed a relative L2 error for these points.
The experimental error performance is always better than the prescribed tolerance, which is
based on a worst case analysis, as is confirmed by Fig. 5. The performance depends on the
prescribed accuracy and we observed a 2 to 3 times increase of the computational time
between the extreme cases of ε = 10−3 and 10−12. The cases presented in the figure are the
ones typically used in applications. We do not provide the errors for the “Middleman”
method, for which the computation time is much larger. However, it is worth mentioning
that the errors for that method were usually a few orders of magnitude smaller than for the
hierarchical algorithm. In both cases we used a truncation number p = 2 + [phf ], where phf is
provided by Eq. (24) for the former case and Eq. (61) for the latter case.

Table 1 shows the wall clock time in seconds for some cases measured for a 4 core PC (Intel
Core 2 Extreme QX6700, 2.66GHz, 8GB RAM, all algorithms were parallelized via
OpenMP). The prescribed accuracy was ε = 10−3. For all these cases the hierarchical
algorithm (H) outperforms the “Middleman” (M) and the brute force (B) methods. The two
slowest methods have almost perfect time scaling of O(N) and O(N2), respectively, at large
run times (the estimated times are shown in the parentheses). In the reported times we
excluded the times for computing the data structure and for precomputations which are done
separately, and the cost of which is amortized over a set of computations. In any case, such
times never exceeded the run time of the algorithm. The times for the hierarchical algorithm
were computed for the optimal octree depth, lmax, which was found experimentally. The

relation , restricted by lmax < 7 with  from Eq. (44) for Bexp = Btrans = 1 is
in good agreement with the experimentally observed optimal lmax – in almost all cases the
difference between them does not exceed 1 (a slight increase is seen for large qD and a
decrease for small qD). Fig. 6 displays computed data for an extended range.

It is seen from Table 1 and Figure 6 that for qD ≲ 10 the performance of the Middleman
algorithm is comparable with that of the hierarchical algorithm, while the hierarchical
algorithm becomes significantly faster for large qD. Scaling with respect to N of the
hierarchical algorithm for a fixed large qD is sublinear (theoretically, O(log N) for large N,
but this is not realized). It is also seen in Figure 6 that the qD dependence (for fixed N) in
the computed range of parameters does not scale as O((qD)3), but is weaker. Qualitatively,
this is consistent with the model shown in Fig. 4 and explainable by the nonlinear
dependence of the truncation number on the domain size and momentum transfer parameter
for qD ≪ 103. We also note that the largest time demonstrated by the hierarchical algorithm
in the tested range was a relatively quick 28.6 s, even for an extremely large problem size
with N = 107 and qD = 300.

5.2 Error in the existing profile computation approaches
We compare our theoretical and computational results to several previously proposed
methods for approximate computation of the Debye formula. These methods rely on pseudo-
uniform sampling, quadrature integration over a sphere, or harmonic expansion in order to
avoid O(N2) computation of the Debye formula. For all these methods a constant value of
samples or expansions has been given, which gives them an O(N) complexity. For example,
in both SoftWAXS [2] and AquaSAXS [39] a constant value of 900 has been suggested as
adequate for most problems sizes, while in AXES [21] a value of 1589 has been used.

The error in these methods can be understood as follows. The integrand for averaging over
the sphere in Eq. (12) can be approximated by a p = O(qD) band limited function in a
spherical harmonic basis (the value of p appears as a critical value, p = qD/2, of the order of
spherical Bessel functions, jp(qD/2) at which they change behavior from being oscillatory to
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exponentially decaying functions). This is a natural basis in the space of square integrable
functions on a unit sphere. We observe that it is insufficient to use p smaller than qD/2 as
this violates Nyquist sampling for an oscillatory function. Since the number of the spherical
harmonic basis functions of bandwidth less than p is p2, one can see that at least p2 =
O(q2D2) sampling points are needed to provide an accurate integration for bandwidth p (this
is actually a well known result, e.g. see [29] and references cited there). Hence, any accurate
quadrature method applied for computation of the intensity for N atoms has complexity
O(q2D2N).

The most popular method for solving Eq. (6) is harmonic expansion, introduced in the
program CRYSOL [44]. CRYSOL expands the integrand using spherical harmonics, and
uses their orthogonality property to analytically account for averaging over all possible
orientations. The method assumes a constant cutoff for harmonic order (set to 15 by default,
and capped at a maximum of 50), giving the method a complexity of O(N). We demonstrate
the potential magnitude of the errors in Table 2 for proteins of various sizes for the harmonic
expansion approach suggested in [44], though the error could appear in any of the methods
with a fixed sampling in either the order of expansion, or the number of quadrature samples.

From Table 2 we see that for p = 15 the error becomes significantly larger than experimental
errors in the q ≤ 0.5Å −1 region of the profile, even for relatively small molecules. Note that
the errors are related to the maximum distance between atoms, so a sparse pseudo-molecule,
like the one used in DAMMIF [18] or in coarse amino-acid level representation, would have
large errors even for small N. Increasing the value of p to 50 moves the region of the error to
higher values of q and larger proteins, but the error can still be seen. Using the proper value
of p as derived in this paper ensures that a low error is achieved throughout. The reason for
this error is that terms which are neglected may be non-ngeligible. In Figure 7 we plot the
relative contributions to profile values of components for a given value of the spherical
harmonic degree for different values of q for a given molecule. It is seen that for q = 0.5Å−1

p = 15 is inadequate, while p = 50, while ensuring accurate computations, pays a penalty of
over 50 % of wasteful computations, since a value of p = 40 would have sufficed. A value of
p = 80 would have been sufficient for q = 1.0Å−1, but not for q = 2.0 where the right p is
about 160. The scaling of p with qD is also seen here.

Therefore, all the previously described methods, if implemented accurately using the
presented error bounds, would have a fundamental theoretical complexity of at least
O(q2D2N), which is higher than the theoretical complexity of our proposed hierarchical
method, and is identical to our proposed middleman approach.

5.3 Performance Results for Profile Computation
When we compute the SAXS or SANS scattering profile of a molecule, the relation between
qD and N is constrained by the atomic density of protein/RNA/DNA complexes in solution,
and the range 0Å−1 < q < 0.5Å−1, for which the experimental data are usually collected. In
the typical ab initio reconstruction of the scattering profile 50 uniformly spaced samples of q
in that range are used. The number of atoms in a molecule can range from around 1000 for
small molecules like ubiquitin, to 1, 000, 000+ for ribosomal systems, with the atomic
density of such systems being around d = 0.02Å−3 (assuming a uniformly packed structure
inside a bounding sphere).

In order to show that the performance of the present hierarchical method is orders of
magnitude faster for the SAS experimental domain, we first demonstrate the speed of the
method on randomly generated proteins as well as several real structures from the PDB
database, similar or identical to those which have been previously analyzed by SAS. To
generate an N size random protein we randomly assign N atom in a sphere of radius (3N/
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4dπ)1/3, while avoiding steric collisions. All proteins structures include the associated
hydrogen atoms, which are treated explicitly in the computation.

Below we compare the performance of our hierarchical algorithm at computing an ab initio
SAS profile relative to two popular approaches. The first method is a direct summation of
Eq. (1) (what we previously referred to as the brute force method) as provided by the
function “calculate profile reciprocal” in the IMP v1.0 software package [33], we refer to
this method as “IMP”. This method is exact, to within machine precision. The second
method is our implementation of the direct harmonic expansion method, similar to the one
used in the ATSAS software package, primarily in the popular CRYSOL [44] and
DAMMIN/F [18] programs. However, to avoid the errors introduced by a fixed order of
expansion, we vary the truncation number according to the value of qD by using Eq. (25).
This is denoted as our “Middleman” method for SAS profiles.

Note that in the performance tests shown below we used IMP as is, without parallelizing the
code. The hierarchical and Middleman methods were parallelized. The benchmark cases
were executed on a Dual Quad-Core Intel Xeon X5560 CPU @ 2.80GHz 64bit Linux
machine with 24GB ECC DDR3 SDRAM (8 cores). The wall clock time was measured for
generating a SAS profile made out of 50 uniformly spaced evaluations in the range 0.01Å−1

≤ q ≤ 0.5Å−1, for randomly generated molecule with atomic density of d = 0.02Å−3. The
results for the randomly generated data are presented in Fig. 8, while the results for real
PDB structures are shown in Table 3.

From Fig. 8 we can see that our hierarchical method (“H”) is order of magnitude faster than
the two previous approaches described here. In fact, the hierarchical method exhibits sub-
linear performance for the tested problem domains, while maintaining prescribed accuracy.
Table 3 confirms similar performance on actual molecular structures. Overall, the
hierarchical method is about 10 to 60 times faster than the Middleman method (“M”) on the
benchmark problem domains, while the brute force IMP method (“B”) is computationally
infeasible on all but the very small molecules. It is seen that the “H” algorithm for cases
with large enough N substantially outperforms the “M” algorithm (which in its turn
outperforms the “B” algorithm).

Note that the timing results did not include the translation operators or setting of the data
structure for the hierarchical algorithm, since it is amortized over the set of computations or,
in the case of translation operators, can be precomputed and stored in a lookup table.
Comparison to other existing software requires additional analysis of the pre-processing and
post-processing modules, and is therefore outside the scope of this paper.

6 Conclusion
We have developed and demonstrated a fast new algorithm for Debye summations based on
hierarchical decomposition of the molecule, coupled with local harmonic expansion and
translation. The developed hierarchical algorithm, in all computed cases, is faster and
provides significantly better scaling than two of the popular methods tested, while at the
same time providing accurate and theoretically provable results to within any prescribed
accuracy. In addition, we have provided the theoretical framework for analyzing the
accuracy and computational cost of several of the previously proposed methods and
demonstrated their computational dependence on N as well as, previously unpublished,
dependence on qD. The dependence on qD is critical for computing accurate results, as well
as determining the computationally optimal sampling/cutoff value. As shown here, in the
harmonic expansion approach (proposed in [44]) an incorrect cutoff introduces significant
error in the computation.
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Since this is only a prototype, we anticipate further improvements, such as further
optimization for our specific problem type, GPU parallelization [31], and algorithmic
improvement in local-to-local translations, could further significantly speedup the
computation, and are the focus of our future research. The above software is being made part
of a new high performance software package, ARMOR, which will also include additional
NMR restraints [3, ?]. We hope that the computational improvement of our fast Debye
summation method will lead to tighter integration of SAS into current structure refinement
protocols.

Acknowledgments
This study has been partially supported by the New Research Frontiers Award of the Institute of the Advanced
Computer Studies of the University of Maryland. NG and RD acknowledge partial support from Fantalgo, LLC;
KB and DF acknowledge partial support from National Institutes of Health grants GM065334 and GM095755.

References
1. Abramowitz, M.; Stegun, IA. National Bureau of Standards. Washington D.C: 1965.

2. Bardhan J, Park S, Makowski L. J Appl Crystallography. 2009; 42:932–943.

3. Berlin K, O’Leary DP, Fushman D. J Am Chem. 2010; 132:8961–8972.

4. Berlin K, O’Leary DP, Fushman D. Proteins: Struct, Funct, Bioinf. 2011; 79:1097–0134.

5. Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI. J Am Chem Soc. 2007;
129:5656–5664. [PubMed: 17411046]

6. Bernado P, Modig K, Grela P, Svergun DI, Tchorzewski M, Pons M, Akke M. Biophys J. 2010;
98:2374–2382. [PubMed: 20483347]

7. Chen SH. Ann Rev Phys Chem. 1986; 37:351–399.

8. Cheng H, Crutchfield WY, Gimbutas Z, Greengard L, Ethridge F, Huang J, Rokhlin V, Yarvin N,
Zhao J. J Comput Phys. 2006; 216:300–325.

9. Cheng H, Greengard L, Rokhlin V. J Comput Phys. 1999; 155:468–498.

10. Clark GN, Hura GL, Teixeira J, Soper AK, Head-Gordon T. Proc Natl Acad Sci USA. 2010;
107:14003–14007. [PubMed: 20647388]

11. Datta AB, Hura GL, Wolberger C. J Mol Biol. 2009; 392:1117–1124. [PubMed: 19664638]

12. Debye P. Ann Phys (Leipzig). 1915; 351:809–823.

13. Dongarra JJ, Sullivan F. Computing in Science & Engineering. 2000; 2:22–23.

14. Engelman DM, Moore PB. Ann Rev Biophys Bioeng. 1975; 4:219–241. [PubMed: 1098555]

15. Epton MA, Dembart B. SIAM J Sci Comput. 1995; 16:865–897.

16. Feigin, LA.; Svergun, DI. Plenum Press. New York: 1987.

17. Förster F, Webb B, Krukenberg KA, Tsuruta H, Agard DA, Sali A. J Mol Biology. 2008;
382:1089–1106.

18. Franke D, Svergun DI. J Appl Cryst. 2009; 42:342–346.

19. Greengard L, Rokhlin V. J Comput Phys. 1987; 73:325–348.

20. Greengard L, Rokhlin V. Acta Numerica. 1997; 6:229–269.

21. Grishaev A, Guo L, Irving T, Bax A. J Am Chem Soc. 2010; 132:15484–15486. [PubMed:
20958032]

22. Grishaev A, Wu J, Trewhella J, Bax A. J Am Chem Soc. 2005; 127:16621–16628. [PubMed:
16305251]

23. Grishaev A, Ying J, Canny MD, Pardi A, Bax A. J Biomol NMR. 2008; 42:99–109. [PubMed:
18787959]

24. Grishaev A, Tugarinov V, Kay LE, Trewhella J, Bax A. J Biomol NMR. 2008; 40:95–106.
[PubMed: 18008171]

25. Grover RF, McKenzie DR. Acta Cryst. 2001; A57:739–740.

26. Gumerov NA, Duraiswami R. SIAM J Sci Comput. 2003; 25:1344–1381.

Gumerov et al. Page 19

J Comput Chem. Author manuscript; available in PMC 2013 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



27. Gumerov NA, Duraiswami R. J Comput Phys. 2006; 215:363–383.

28. Gumerov, NA.; Duraiswami, R. Univ of Maryland Tech Rep, UMIACS-TR-#2005-09. 2005.
http://www.cs.umd.edu/Library/TRs/CS-TR-4701/CS-TR-4701.pdf

29. Gumerov, NA.; Duraiswami, R. Elsevier. Oxford, UK: 2005.

30. Gumerov NA, Duraiswami R. J Comput Phys. 2007; 225:206–236.

31. Gumerov NA, Duraiswami R. J Comput Phys. 2008; 227:8290–8313.

32. Gumerov NA, Duraiswami R. J Acoust Soc Am. 2009; 125:191–205. [PubMed: 19173406]

33. IMP v1.0 software. available from http://salilab.org/imp/

34. Jehle S, Vollmar BS, Bardiaux B, Dove KK, Rajagopal P, Gonen T, Oschkinat H, Klevit RE. Proc
Natl Acad Sci USA. 2001; 108:6409–6414. [PubMed: 21464278]

35. Koch MH, Vachette P, Svergun DI. Q Rev Biophys. 2003; 36:147–227. [PubMed: 14686102]

36. Lattman EE. Proteins. 1989; 5:149–155. [PubMed: 2748578]

37. Lipfert J, Doniach S. Ann Rev Biophys Biomol Struct. 2007; 36:307–327. [PubMed: 17284163]

38. Palosz B, Grzanka E, Gierlotka S, Stelmakh S. Zeitschrift für Kristallographie: 225, 12, 12th
European Powder Diffraction Conference. 2010:588–598.

39. Poitevin F, Orland H, Doniach S, Koehl P, Delarue M. Nucleic Acids Res. 2011; 39:W184–189.
[PubMed: 21665925]

40. Pons C, D’Abramo M, Svergun DI, Orozco M, Bernado P, Fernandez-Recio J. J Mol Biol. 2010;
403:217–230. [PubMed: 20804770]

41. Rokhlin V. Appl Comput Harmon Anal. 1993; 1:82–93.

42. Samet, H. Morgan Kaufmann. San Francisco: 2006.

43. Stuhrmann HB. Acta Cryst. 1970; A26:297–306.

44. Svergun D, Barberato C, Koch MHJ. J Appl Crystallogr. 1995; 28:768–773.

45. Thomas NW. Acta Cryst. 2010; A66:64–77.

46. Walther D, Cohen F, Doniach S. J Appl Crystallogr. 2000; 33:350–363.

47. White CA, Head-Gordon M. J Chem Phys. 1996; 105:5061–5067.

48. Yang S, Park S, Makowski L, Roux B. Biophys J. 2009; 96:4449–4463. [PubMed: 19486669]

A Appendix

A.1 Error bounds for translation
Assume that we perform translation from domain of radius a′ centered at r = 0 for which we
have truncation number p′ to domain of radius a centered at r = t for which the truncation
number is p. We will estimate the translation matrix truncation error for a single sinc source.

According to Eq. (16) the expansion coefficients for a single source are , n′ =
0, …, p′ − 1, m′ = −n′, …, n′. So for translation of this expansion we have

(48)

The error in the sinc function computed at point r and its approximation obtained via the
truncated translation of the truncated expansion then is
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(49)

Substituting here expansion (16) about center r = t, we obtain

(50)

Note now that by definition of the translation coefficients and symmetry

 (see [29]), we have

(51)

We also have the following integral representation of the translation coefficients [29]

(52)

Substituting Eqs (51) and (52) into Eq. (50) and using the addition theorem for spherical
harmonics, we obtain

(53)

Since

(54)

the error can be bounded as

(55)

Since qrs ≤ qa′, p′ > qa′ the second sum can be bounded by |εp′| given by Eq. (38) (where
primes should be placed near a and p). The first sum can be bounded using |jn(q |r − t|)| ≤ 1,
in which case the sum of odd numbers from 0 to 2p − 1 is p2 and we obtain
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(56)

Note that the last term here, |εp|, can be ignored, since for p given by Eq. (40) actual
expansion error (23) is approximately square of error (39). We also note that coefficient p2

of the first term can be improved due to the following lemma.

Lemma 1

For x ≥ 0 the following bound holds , where C1 and C2 are
some real positive numbers.

Proof—For n > x functions jn(x) decay exponentially and the series converges. So

(57)

where C is some constant of order 1. Since jx(x) is a monotonic decaying function of x, we
have jx(x) < j0(0) = 1. The first sum can be bounded since the function in the right hand side
is continuous and has some maximum on the interval [0, 1], while for x > 1, 0 < n ≤ [x] we
have |jn(x)| < B/x, where B is some constant. Hence,

(58)

This completes the proof.

Remark 2
We computed this function numerically for 10−2 < x < 103 and found that C1 < 2, C2 < 1.

So, the error can be bounded as

(59)

where C1 and C2 are some constants of order 1. For large qa we have p ~ qa which is two
times larger or smaller than p′ ~ qa′. Using Eq. (39) we have then

(60)

which provides a slightly larger truncation number for a region of size a (we replaced p′
with p and qa′ with qa).

(61)
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A.2 The coaxial translation
Coaxial translation can be described as

(62)

(in the general matrix  for m′ ≠ m). Recursive computations of  can be
performed only for non-negative |m| and for n ≥ n′ (or n′ ≥ n) due to symmetries

(63)

The recursive process starts with the initial values

(64)

Advancement in m can be performed using

(65)

Advancement in n′ can be performed using

(66)

In Eqs (65) and (66) the recursion coefficients are

(67)

where sgn(m) is defined as

(68)

A.3 Expressions for the rotation of coefficients
In general, an arbitrary rotation transform can be specified by three Euler angles of rotation.
For rotation of spherical harmonics it may be more convenient to use slightly modified Euler
angles, and use angles α, β, γ which are related to the spherical polar angles (θt, ϕt) of the
unit vector t/t = (sin θt cos ϕt, sin θt sin ϕt, cos θt) as β = θt, α = ϕt (see Fig. 9). The original
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axis z in the rotated reference frame has spherical polar angles (β, γ), which is the definition
of the third rotation angle. Since the rotation transform is a function of the rotation matrix
Q(α, β, γ) for which Q−1(α, β, γ) = Q(γ, β, α), we describe only the forward rotation, since
the inverse rotation simply exchanges angles α and γ.

The rotation transform can be described by

(69)

where  are the entries of a real dense matrix that can be computed recursively.

The basic recursion used for computation is derived in [29]

(70)

and sgn(m) is provided by Eq. (68). This recursion, however, should be applied carefully,
due to potential recursion instabilities. For angles 0 < β < π/2 the maximum values of

 are reached on the main diagonal m′ = m and subdiagonals m′ = m ± 1. Figure 10
illustrates organization of the recursive process in this case (for the boundary points, m = n,
recursion coefficients ). The values on the diagonals and subdiagonals are computed
via the axis flip transform, which corresponds to β = π/2:

(71)

Even though we could use this equation to compute all , because the cost of
computation will be O (p4), we only use it for computation of the diagonal and subdiagonal

coefficients for an O (p3) procedure. This requires knowledge of the coefficients .
A stable recursive process based on Eq. (70) can be applied (Fig. 10). To start this process

the values of  are needed for m′ = 0, 1 and m = 0, …, n, as well as the values for

m = n and m′ = 0, …, n. These can be found from analytical expressions for 

(72)

and the recurrence [29]

(73)
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where  and  are provided by Eq. (67). For small and moderate n this recursion can be
used to obtain all rotation coefficients immediately, as it was done in [29], but for large n
this is not stable. So we use Eqs (72) and (73) only for β = π/2 and Eq. (73) only for m = 0

to obtain . Note than that the following symmetries are used for faster
computations

(74)

The last equation provides an additional symmetry for β = π/2, while for other β it can be
used to reduce all computations to the range 0 ≤ β ≤ π/2. In fact, for the present algorithm
only rotations with β = π/4 and β = 3π/4 are needed. So the latter can be reduced to the

former case, and only the constant coefficients  are needed. In principle, these
coefficients can be precomputed and stored to reduce the run time.
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Figure 1.
Minimum truncation number p(ε, qa) (solid lines) and its approximation, Eq. (24) (dashed
lines) for prescribed values of error ε.
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Figure 2.
Schematic illustration of the Upward pass (aggregation, on the left) and the Downward pass
(disaggregation, on the right) of the proposed fast hierarchical algorithm.
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Figure 3.
Qualitative map in parameter space (qD, N) of the region of best performance for the three
different algorithms to compute Debye sums. The numbers in the graph indicate the optimal
maximum level of the octree for the hierarchical algorithm.
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Figure 4.
The cost Ctot of the algorithm for different N and varying qD. The dashed lines are
computed using Eq. (44) (M = N) for N = 104, 105, and 106, while the solid lines are
computed using dependence (40) of the truncation number on qD.
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Figure 5.
Actual L2-norm relative error of the hierarchical algorithm measured over 100 random
sample points. Different curves correspond to different prescribed algorithm errors, ε,
shown near the curves.
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Figure 6.
The wall clock time for the hierarchical (H), “Middleman” (M), and brute force (B)
algorithms at different N and qD. The empty and filled markers correspond to the “M” and
“H” algorithms at the same fixed parameter values shown near the curves.
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Figure 7.
The relative contribution (scaled such that the maximum contribution is unity) to profile
values by coefficients corresponding to different values of n (the degree of the expansion, n
≤ p, where p is the truncation number). For this particular molecule, a value of p = 15 causes
an error for all values of q, while a value of p = 50 is adequate (but wasteful of
computations) for the q = 0.5Å −1 case, but inadequate for q = 1.0Å −1 or q = 2.0Å −1. A
properly chosen truncation number can ensure accurate computations, while ensuring that no
wasteful computations are performed.
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Figure 8.
Timing results for computation of uniformly spaced 50 point SAS profile on uniformly
dense, spherical, randomly generated proteins, with 0.01Å−1 ≤ q ≤ 0.5Å−1 and ε = 10−3.
“Linear” line represents an ideal O(N) linearly scaled algorithm.
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Figure 9.
Rotation specified by angles α, β, and γ, where α and β are the spherical polar angles of the
translation vector t in the original reference frame.
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Figure 10.
A scheme for stable recursive computation of the rotation coefficients. On the left, the
process of recursive computation of the values of the coefficient for different values of m, m
′ (displayed on a grid) is shown. The ● values are computed from the main diagonal for
which the values are directly obtained. These are indicated by ○. To compute values at all
nodes in the shaded area one needs the values on the subdiagonal (the dashed line). These
values are obtained via the flip transform from the rotation coefficients for β = π/2, which
are computed recursively via the process shown on the right. Initial values at the nodes
marked by ○ are computed using analytical formulae. The values of the rotation coefficients
in the entire domain m′, m = −n, …, n can be obtained from the values in the shaded
domains using symmetry relations.
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