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Abstract How much about our interactions with—and

experience of—our world can be deduced from basic

principles? This paper reviews recent attempts to under-

stand the self-organised behaviour of embodied agents, like

ourselves, as satisfying basic imperatives for sustained

exchanges with the environment. In brief, one simple

driving force appears to explain many aspects of percep-

tion, action and the perception of action. This driving force

is the minimisation of surprise or prediction error, which—

in the context of perception—corresponds to Bayes-opti-

mal predictive coding (that suppresses exteroceptive

prediction errors) and—in the context of action—reduces

to classical motor reflexes (that suppress proprioceptive

prediction errors). In what follows, we look at some of the

phenomena that emerge from this single principle, such as

the perceptual encoding of spatial trajectories that can both

generate movement (of self) and recognise the movements

(of others). These emergent behaviours rest upon prior

beliefs about itinerant (wandering) states of the world—but

where do these beliefs come from? In this paper, we focus

on the nature of prior beliefs and how they underwrite the

active sampling of a spatially extended sensorium. Put

simply, to avoid surprising states of the world, it is nec-

essary to minimise uncertainty about those states. When

this minimisation is implemented via prior beliefs—about

how we sample the world—the resulting behaviour is

remarkably reminiscent of searches seen in foraging or

visual searches with saccadic eye movements.
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Introduction

If perception corresponds to hypothesis testing (Gregory

1980), then visual searches could correspond to experi-

ments that generate sensory data. In this paper, we explore

the idea that saccadic eye movements are optimal experi-

ments, in which data are gathered to test hypotheses or

beliefs about how those data are caused. This provides a

plausible model of visual search that can be motivated from

the basic principles of self-organised behaviour—namely

the imperative to minimise the entropy of hidden states of

the world and their sensory consequences. This imperative

is met if agents sample hidden states of the world effi-

ciently. This efficient sampling of salient information can

be derived in a fairly straightforward way, using informa-

tion theory and approximate Bayesian inference. Simula-

tions of the resulting active inference scheme reproduce

sequential eye movements that are reminiscent of empiri-

cally observed saccades and provide some counterintuitive

insights into the way that sensory evidence is accumulated

or assimilated into beliefs about the world.

Active inference and the free energy principle

We start with the assumption that biological systems

minimise the dispersion or entropy of states in their

external milieu—to ensure a sustainable and allostatic

exchange with their environment (Ashby 1947). Clearly,

these states are hidden and cannot be measured or changed
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directly. However, if agents know how their action changes

sensations—for example, if they know contracting certain

muscles will necessarily excite primary sensory afferents

from stretch receptors—then they can minimise the dis-

persion—or entropy—of their sensory states by countering

surprising deviations from expected values. If the uncer-

tainty about hidden states, given sensory states, is small,

then this minimisation of sensory entropy through action

will be sufficient to minimise the entropy of hidden states.

In this setting, entropy corresponds to average surprise or

uncertainty. However, minimising surprise through action

is not as straightforward as it might seem, because mea-

suring surprise is almost impossible. This is where varia-

tional free energy comes in—to provide an upper bound on

surprise that enables agents to minimise free energy instead

of surprise. However, in using an upper bound on surprise,

the agent now has to minimise the difference between

surprise and the free energy by changing its internal states.

This corresponds to Bayes-optimal perception (Yuille and

Kersten 2006) and associates internal brain states with

conditional or posterior representations of hidden states in

the world (Helmholtz 1866/1962; Gregory 1980; Ballard

et al. 1983; Dayan et al. 1995; Friston 2005).

Predictive coding and action

Neurobiological implementations of free energy minimi-

sation are known as predictive coding and have become a

popular framework for understanding message passing in

the brain—see Fig. 1. In the present context, one can

regard free energy as the amplitude of prediction errors, so

that minimising free energy means optimising predic-

tions—encoded by internal brain states—to suppress pre-

diction errors. Clearly, to make predictions, the brain has to

have a model, or hypothesis, and explaining how sensory

input was generated: this is known as a generative model.

Action can also minimise surprise by minimising free

energy or prediction errors. Neurobiologically, this is just

saying that biological agents have reflexes—in the sense that

they automatically minimise (proprioceptive) prediction

errors. Formally, this corresponds to equipping a predictive

coding scheme with classical reflex arcs—this is called as

active inference. Put simply, agents will move in a way that

they expect to move, so that top–down predictions become

self-fulfilling prophecies and surprising exchanges with the

world are avoided. These predictions can have a rich and

dynamical structure. The example in Fig. 2 is based upon prior

Fig. 1 Schematic detailing the neuronal architectures that might

encode posterior expectations about the states of a hierarchical

generative model. This figure shows the speculative cells of origin of

forward driving connections that convey prediction error from a lower

area to a higher area and the backward connections that construct

predictions (Mumford 1992). These predictions try to explain away

prediction error in lower levels. In this scheme, the sources of forward

and backward connections are superficial and deep pyramidal cells,

respectively. The equations represent a generalised descent on free

energy under the hierarchical models described in Friston (2008).

State units are in black and error units in red. Here, neuronal

populations are deployed hierarchically within three cortical areas (or

macrocolumns). Within each area, the cells are shown in relation to

cortical layers: supragranular (I–III) granular (IV) and infragranular

(V–VI) layers
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beliefs about visual and proprioceptive input that are realised

by action to produce handwriting movements. These move-

ments are driven by reflexes that fulfil predictions that the

agent’s arm will be drawn to a succession of points that are

prescribed by a high-level attractor or central pattern gener-

ator. Crucially, this sort of scheme lends itself not only to

explaining itinerant motor behaviour—in terms of high-level

attractors encoding prior beliefs—but also accommodates

action observation of the sort associated with the mirror

neuron system (Miall 2003; Rizzolatti and Craighero 2004).

Sampling and agency

Hitherto, we have assumed that minimising sensory surprise

or prediction errors is sufficient to minimise the entropy of

the hidden states that cause sensations. As noted above, this

rests on sampling sensory information that leaves little room

for uncertainty about hidden states. However, we can relax

this assumption if agents believe that they will sample sen-

sations that minimise this uncertainty. In other words, one

only has to believe that hidden states will disclose themselves

efficiently and action will make these beliefs come true. This

corresponds to sampling the world to maximise the posterior

confidence in predictions. Crucially, placing prior beliefs

about sampling in the perception–action cycle rests upon

having a generative model that includes the effects of

selective sampling. In other words, this sort of Bayes-optimal

search calls on an internal model of how the environment is

sampled. Implicit in a model of sampling is a representation

or sense of agency, which extends active inference in an

important way.

Fig. 2 This schematic summarizes the results of the simulations of

action observation reported in Friston et al. (2011). The left panel
pictures the brain as a forward or generative model of itinerant

movement trajectories (based on a Lotka-Volterra attractor, whose

states are shown as a function of time in coloured lines). This model

furnishes predictions about visual and proprioceptive inputs, which

prescribe movement through reflex arcs at the level of the spinal cord

(insert on the lower left). The variables have the same meaning as in

the previous figure. The mapping between attractor dynamics and

proprioceptive consequences is modelled with Newtonian mechanics

on a two jointed arm, whose extremity (red ball) is drawn to a target

location (green ball) by an imaginary spring. The location of the

target is prescribed (in an extrinsic frame of reference) by the

currently active state in the attractor. These attractor dynamics and

the mapping to an extrinsic (movement) frame of reference constitute

the agent’s prior beliefs. The ensuing posterior beliefs are entrained

by visual and proprioceptive sensations by prediction errors during

the process of inference, as summarized in the previous figure. The

resulting sequence of movements was configured to resemble

handwriting and is shown as a function of location over time on the

lower right (as thick grey lines). The red dots on these trajectories

signify when a particular neuron or neuronal population encoding one

of the hidden attractor states was active during action (left panel) and

observation of the same action (right panel): More precisely, the dots

indicate when responses exceeded half the maximum activity and are

shown as a function of limb position. The left panel shows the

responses during action and illustrates both a place-cell-like selec-

tivity and directional selectivity for movement in an extrinsic frame

of reference. The equivalent results on the right were obtained by

presenting the same visual information to the agent but removing

proprioceptive sensations. This can be considered as a simulation of

action observation and mirror neuron-like activity
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In summary, an imperative to maximise the posterior

confidence about the causes of sensations emerges natu-

rally from the basic premise that self-organising biological

systems—like the brain—minimise the dispersion of their

external states when immersed in an inconstant environ-

ment. This imperative—expressed in terms of prior beliefs

how the world is sampled—is entirely consistent with the

principle of maximum information transfer and formula-

tions of salience in terms of Bayesian surprise (Barlow

1961; Bialek et al. 2001; Grossberg et al. 1997; Humphreys

et al. 2009; Itti and Baldi 2009; Itti and Koch 2001;

Olshausen and Field 1996; Optican and Richmond 1987).

In what follows, we consider the neurobiological imple-

mentation of this prior belief, in the setting of visual search

and salience: here, salience refers to the posterior confi-

dence about the hidden causes of sensory input, as a

function of where or how input is sampled.

Modelling saccadic eye movements

To illustrate the sorts of behaviour that follow from the

theoretical arguments above, we will look at visual sear-

ches and the control of saccadic eye movements. This

treatment is based on four assumptions:

• The brain minimises the free energy of sensory inputs

defined by a generative model.

• This model includes prior expectations that maximise

salience.

• The generative model used by the brain is hierarchical,

nonlinear and dynamic.

• Neuronal firing encodes posterior expectations about

hidden states, under this model.

The first assumption is the free energy principle, which

leads to active inference in the embodied context of action.

The second assumption follows from need to minimise

uncertainty about hidden states in the world. The third

assumption is motivated easily by noting that the world is

dynamic and nonlinear and that hierarchical causal struc-

ture emerges inevitably from a separation of temporal

scales (Ginzburg and Landau 1950; Haken 1983). Finally,

the fourth assumption is the Laplace assumption that—in

terms of neural codes—leads to the Laplace code that is

arguably the simplest and most flexible of all neural codes

(Friston 2009).

Given these assumptions, one can simulate many neu-

ronal processes by specifying a particular generative

model. The resulting perception and action are specified

completely by the above assumptions and can be imple-

mented in a biologically plausible way; as described in

many previous applications—see Table 1. In brief, the

simulations in Table 1 use differential equations that

minimise the free energy of sensory input using a gener-

alised descent—see Fig. 1 and (Friston et al. 2010).

_~lðtÞ ¼ D~lðtÞ � o~lFð~s; ~lÞ
_aðtÞ ¼ �oaFð~s; ~lÞ

ð1Þ

These coupled differential equations describe perception

and action, respectively, and say that internal brain states—

posterior expectations about hidden states—and action

change in the direction that reduces free energy. The first is

known as (generalised) predictive coding and has the same

form as Bayesian (Kalman-Bucy) filters used in time series

analysis; see also (Rao and Ballard 1999). The first term in

Eq. (1) is a prediction based upon a time derivative

operator. The second term—usually expressed as a mixture

of prediction errors—ensures the changes in posterior

expectations are Bayes-optimal predictions about hidden

states of the world. The second differential equation says

that action also minimises free energy—noting that free

energy depends on action through sensory states. The

differential equations in (1) are coupled because sensory

input depends upon action, which depends upon percep-

tion through the posterior expectations. This circular

dependency leads to a sampling of sensory input that is

both predicted and predictable, thereby minimising free

energy and surprise. To perform neuronal simulations it is

Table 1 Processes and paradigms that have been modelled using the

active inference scheme in Eq. 1

Domain Process or paradigm

Perception Perceptual categorisation (bird songs) (Friston

and Kiebel 2009a, b)

Novelty and omission-related responses (Friston

and Kiebel 2009a, b)

Perceptual inference (speech) (Kiebel et al. 2009)

Sensory learning Perceptual learning (mismatch negativity)

(Friston and Kiebel 2009a, b)

Attention motor

control

Attention and the Posner paradigm (Feldman and

Friston 2010)

Attention and biased competition (Feldman and

Friston 2010)

Retinal stabilization and oculomotor reflexes

(Friston et al. 2010)

Saccadic eye movements and cued reaching

(Friston et al. 2010)

Motor trajectories and place cells (Friston et al.

2011)

Sensorimotor

integration

Bayes-optimal sensorimotor integration (Friston

et al. 2010)

Behaviour Heuristics and dynamical systems theory (Friston

and Ao 2011)

Goal-directed behaviour (Friston et al. 2009)

Action

observation

Action observation and mirror neurons (Friston

et al. 2011)
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only necessary to integrate or solve Eq. (1) to simulate the

neuronal dynamics that encode posterior expectations and

ensuing action. Figure 3 presents a simulation of saccadic

eye movements, using prior expectations that lead to

salient sampling. This is similar to the handwriting

example in Fig. 2; however, eye movements are attracted

Fig. 3 This figure shows the results of simulations in which a face

was presented to an agent, whose responses were simulated using the

active inference scheme described in the main text. In this simulation,

the agent had three internal images or hypotheses about the stimuli it

might sample (an upright face, an inverted face and a rotated face).

The agent was presented with an upright face and its posterior

expectations were evaluated over 16 (12 ms) time bins, until the next

saccade was emitted. This was repeated for eight saccades. The

ensuing eye movements are shown as red dots at the location (in

extrinsic coordinates) at the end of each saccade in the upper row. The

corresponding sequence of eye movements is shown in the insert on

the upper left, where the red circles correspond roughly to the

proportion of the image sampled. These saccades are driven by prior

beliefs about the direction of gaze—based upon the saliency maps in

the second row. Note that these maps change with successive

saccades as posterior beliefs about the hidden states, including the

stimulus, become progressively more confident. Note also that

salience is depleted in locations that were foveated in the previous

saccade. This reflects an inhibition of return that was built into the

prior beliefs. The resulting posterior beliefs provide both visual and

proprioceptive predictions that suppress visual prediction errors and

drive eye movements, respectively. Oculomotor responses are shown

in the third row in terms of the two hidden oculomotor states

corresponding to vertical and horizontal displacements. The associ-

ated portions of the image sampled (at the end of each saccade) are

shown in the fourth row. The final two rows show the posterior beliefs

and inferred stimulus categories, respectively. The posterior beliefs

are plotted in terms of posterior expectations and the 90 % confidence

interval about the true stimulus. The key thing to note here is that the

expectation about the true stimulus supervenes over its competing

expectations and—as a result—posterior confidence about the stim-

ulus category increases (the confidence intervals shrink to the

expectation). This illustrates the nature of evidence accumulation

when selecting a hypothesis or percept the best explains sensory data.

Within-saccade accumulation is evident even during the initial

fixation with further stepwise decreases in uncertainty as salient

information is sampled by successive saccades
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not to points encoded by a central pattern generator but to

locations that have the greatest salience. Here, salience is a

function of location in visual space and reports the

posterior confidence in current beliefs about the cause of

sensory input that would be afforded by fictive sampling

from that location.

The ensuing active inference can be regarded as a for-

mal example of active vision (Wurtz et al. 2011)—some-

times described in enactivist terms as visual palpation

(O’Regan and Noë 2001) and illustrates a number of key

points. First, it discloses the nature of evidence accumu-

lation in selecting a hypothesis or percept the best explains

sensory data. Figure 3 shows that this proceeds over two

timescales—within and between saccades. Within-saccade

accumulation is evident even during the initial fixation,

with further stepwise decreases in uncertainty as salient

information is sampled. The within-saccade accumulation

is formally related to evidence accumulation as described

in models of perceptual discrimination (Gold and Shadlen

2003; Churchland et al. 2011). The transient changes in

posterior expectations, shortly after each saccade, reflect

the fact that new data are being generated as the eye

sweeps towards its new target location. It is important to

note that the agent is not just predicting visual input, but

also how input changes with eye movements—this induces

an increase in posterior uncertainty during the fast phase of

the saccade. However, due to the veracity of the posterior

beliefs, the posterior confidence shrinks again when the

saccade reaches its target location. This shrinkage is usu-

ally to a smaller level than in the preceding saccade.

This illustrates the second key point, namely the circular

causality that lies behind perception. Put simply, the only

hypothesis that can endure over successive saccades is the

one that correctly predicts the salient features that are

sampled. This sampling depends upon action or an

embodied inference that speaks directly to the notion of

active vision and visual palpation (O’Regan and Noë 2001;

Wurtz et al. 2011). This means that the hypothesis pre-

scribes its own verification and can only survive if it is a

correct representation of the world. If its salient features

are not discovered, it will be discarded in favour of a better

hypothesis. This provides a nice perspective on perception

as hypothesis testing, where the emphasis is on the selec-

tive processes that underlie sequential testing. This is

particularly pertinent when hypotheses can make predic-

tions that are more extensive than the data that can be

sampled at any one time.

Conclusion

These simulations suggest that we can understand explo-

ration of the sensorium in terms of optimality principles

based on straightforward ergodic or allostatic principles. In

other words, to maintain the constancy of our external

milieu, it is sufficient to expose ourselves to predicted and

predictable stimuli. Being able to predict what is currently

seen also enables us to predict fictive sensations that we

could experience from another viewpoint. Information

theory suggests that the best viewpoint is the one that

confirms our predictions with the greatest precision or

certainty. In short, action fulfils our predictions, while we

predict the consequences of our actions will maximise confi-

dence in those predictions. This provides a principled way in

which to explore and sample the world—for example, with

visual searches using saccadic eye movements. These theo-

retical considerations are remarkably consistent with a num-

ber of compelling heuristics; most notably, the Infomax

principle or the principle of minimum redundancy and recent

formulations of salience in terms of Bayesian surprise.

In summary, we have tried to formalise the intuitive

notion that our interactions with the world are akin to

sensory experiments, by which we confirm our hypotheses

about its causal structure in an optimal and efficient fash-

ion. This mandates prior beliefs that the deployment of

sensory epithelia and our physical relationship to the world

will disclose its secrets—beliefs that are fulfilled by action.

The resulting active or embodied inference means that not

only can we regard perception as hypotheses, but we could

regard action as performing experiments that confirm or

disconfirm those hypotheses.
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