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Background. Complex diseases like amyotrophic lateral sclerosis (ALS) implicate phenotypic and genetic heterogeneity. Therefore,
multiple genetic traits may show differential association with the disease. The Auto Contractive Map (AutoCM), belonging to the
Artificial Neural Network (ANN) architecture, “spatializes” the correlation among variables by constructing a suitable embedding
space where a visually transparent and cognitively natural notion such as “closeness” among variables reflects accurately their
associations. Results. In this pilot case-control study single nucleotide polymorphism (SNP) in several genes has been evaluated
with a novel data mining approach based on an AutoCM. We have divided the ALS dataset into two dataset: Cases and Control
dataset; we have applied to each one, independently, the AutoCM algorithm. Six genetic variants were identified which differently
contributed to the complexity of the system: three of the above genes/SNPs represent protective factors, APOA4, NOS3, and LPL,
since their contribution to the whole complexity resulted to be as high as 0.17. On the other hand ADRB3, LIPC, and MMP3, whose
hub relevancies contribution resulted to be as high as 0.13, seem to represent susceptibility factors. Conclusion. The biological
information available on these six polymorphisms is consistent with possible pathogenetic pathways related to ALS.

1. Background

Investigating the pattern of correlations among large num-
bers of variables in large databases is certainly a quite difficult
task that is seriously demanding in both computational
time and capacity. The statistically oriented literature has
developed a variety of methods with different power and
usability, all of which, however, share a few basic problems,
among which the most outstanding are the nature of the
a priori assumptions that have to be made on the data-
generating process, the near impossibility to compute all
the joint probabilities among the vast number of possible
couples and n-tuples that are in principle necessary to
reconstruct the underlying process’ probability law, and the
difficulty of organizing the output in an easily grasped,

ready-to-access format for the nontechnical analyst. The
consequence of the first two weaknesses is the fact that
when analyzing poorly understood problems characterized
by heterogeneous sets of potentially relevant variables,
traditional methods can become very unreliable when not
unusable. The consequence of the last one is that, also in
the cases where traditional methods manage to provide a
sensible output, their statement and implications can be so
articulated to become practically unuseful or, even worse,
easily misunderstood.

In this paper, we introduce a new methodology based
on an Artificial Neural Network (ANN) architecture, the
Auto Contractive Map (AutoCM) [1], which allows for
basic improvements in both robustness of use in badly
specified and/or computationally demanding problems and
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output usability and intelligibility. In particular, AutoCMs
“spatialize” the correlation among variables by constructing
a suitable embedding space where a visually transparent
and cognitively natural notion such as “closeness” among
variables reflects accurately their associations. Through
suitable optimization techniques that will be introduced
and discussed in detail in what follows, “closeness” can be
converted into a compelling graph-theoretic representation
that picks all and only the relevant correlations and organizes
them into a coherent picture. Such representation is not
actually constructed through some form of cumbersome
aggregation of two-by-two associations between couples of
variables but rather by building a complex global picture of
the whole pattern of variation. Moreover, it fully exploits the
topological meaningfulness of graph-theoretic representa-
tions in that actual paths connecting nodes (variables) in the
representation carry a definite meaning in terms of logical
interdependence in explaining the data set’s variability. We
are aware of the fact that these techniques are novel and
therefore not entirely understood so far in all of their
properties and implications. However, we are convinced that
their actual performance in the context of well-defined,
well-understood problems provides an encouraging test to
proceed in this direction. We applied this new approach
in Amyotrophic Lateral Sclerosis (ALS), a fatal neurode-
generative condition causing progressive motor neuron loss,
leading to death within a few years of onset. There is no
effective treatment for this devastating disease, although
riluzole is reported to have a mild effect in slowing its
progression [2, 3]. This failure is likely to be related to
the poor knowledge of the pathogenetic mechanisms of
ALS, as well as to its heterogeneity. Genetic factors are
known to play an important role; at least nine of genetically
transmitted forms of ALS are known and several genes
possibly influencing the occurrence and the phenotypical
expression of ALS have been identified [4, 5]. However, the
knowledge of the genes that may play a role and of the
mechanisms by which they may cause the phenotype is still
very incomplete. The identification of genes that underlie the
sporadic and the genetic forms of ALS will be highly relevant
since it will identify novel metabolic pathways involved in
neurodegeneration.

Previously we approached the genetic of sporadic ALS
(SALS) disease with artificial neural networks to identify a
possible genetic background predisposing to the sporadic
form. A dataset containing genetic data from 54 SALS
cases and 208 controls was analyzed with three different
analytical approaches: Linear Discriminant Analysis, Stan-
dard Artificial Neural Networks, and Advanced Intelligent
Systems; with this latter approach the predictive accuracy to
discriminate between cases and controls reached an average
of 96% (range 94.4 to 97.6). In addition we identified seven
genetic variants essential to differentiate cases from controls
[6].

The obtained results point out the need to employ
systems really able to handle the disease complexity instead
of treating the data with reductionistic approaches unable
to detect multiple genes of smaller effect predisposing to the
disease.

) Input layer

) Hidden layer

) Output layer

Nc = N(N + 1)

Nc = 20

Figure 1: An example of an AutoCM with N = 4.

We report here the application of a new developed
analytical approach to the SALS dataset, based on Auto-CM
system and Maximally regular graph theory.

The idea was to test the power of this new algorithm in
a medical context such as SALS disease to shed light on the
puzzling of the disease.

2. Methods

2.1. Database. We used a previously described dataset [6].
Briefly, genotypes derived from 60 biallelic polymorphisms
within 35 genes that were selected from pathways of lipid
and homocysteine metabolism, regulation of blood pressure,
coagulation, inflammation, cellular adhesion, and matrix
integrity. All subjects tested were of Caucasian origins, 54
were SALS and 208 were controls. SALS patients consist of
28 males (56.4 years; 46.9–65.8) and 26 females (62.9 years;
57.8–67.9), mean age at onset of disease 59.62 years; (range
53.7–65.5 years), clinical onset was spinal in 61.1% (33/54)
and bulbar in 38.9% (21/54) of cases, mean disease duration
at the time of observation was 3.2 years ( range 1–10 years).

Controls subjects were 144 males and 67 females; age
range from 21 to 75 years, (average 38.94).

2.2. The Auto Contractive Map. We begin our analysis with
a relatively concise but technically detailed presentation of
the ANN architecture that provides the basis for all of the
subsequent analysis: the Auto Contractive Map (AutoCM)
[7, 8]. The AutoCM is characterized by a three-layer
architecture: an input layer, where the signal is captured
from the environment, a hidden layer, where the signal is
modulated inside the AutoCM, and an output layer, through
which the AutoCM feeds back upon the environment on the
basis of the stimuli previously received and processed.

Each layer contains an equal number of N units, so that
the whole AutoCM is made of 3N units. The connections
between the Input and the Hidden layers are monodedicated,
whereas the ones between the hidden and the output layers
are fully saturated, that is, at maximum gradient. Therefore,
given N units, the total number of the connections, Nc, is
given by Figure 1.

All of the connections of AutoCM may be initialized
either by assigning a same, constant value to each, or by
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assigning values at random. The best practice is to initialize
all the connections with a same, positive value, close to zero.

The learning algorithm of AutoCM may be summarized
in a sequence of four characteristic steps:

(1) signal transfer from the input into the hidden layer;

(2) adaptation of the values of the connections between
the input and the hidden layers;

(3) signal transfer from the hidden into the output layer;

(4) adaptation of the value of the connections between
the hidden and the output layers.

Notice that steps 2 and 3 may take place in parallel.
We write as m[s] the units of the input layer (sensors),

scaled between 0 and 1; as m[h] the units of the hidden layer
asm[t] the units of the output layer (system target). We more-
over define v, the vector of monodedicated connections; w,
the matrix of the connections between the hidden and the
output layers; n, the discrete time that spans the evolution
of the AutoCM weights, or, put another way, the number of
cycles of processing, counting from zero and stepping up one
unit at each completed round of computation: n ∈ T .

In order to specify the steps 1–4 that define the AutoCM
algorithm, we have to define the corresponding signal
forward-transfer equations and the learning equations, as
follows.

(a) Signal transfer from the input to the hidden layer:

m[h]
i(n)
= m[s]

i

(
1− vi(n)

C

)
, (1)

where C is a positive real number not lower than
1, which we will refer to as the contraction param-
eter (see below for comments), and where the (n)
subscript has been omitted from the notation of the
input layer units, as these remain constant at every
cycle of processing. It is useful to set C = 2

√
N , where

N is the number of variables considered.

(b) Adaptation of the connections vi(n) through the vari-
ation Δvi(n) , which amounts to trapping the energy
difference generated according to (1):

Δvi(n) =
(
m[s]
i −m[h]

i(n)

)
·
(

1− vi(n)

C

)
,

vi(n+1) = vi(n) + α · Δvi(n) .

(2)

(c) Signal transfer from the hidden to the output layer:

Neti(n) =
N∑
j=1

m[h]
j(n)
·
(

1− wi, j(n)

C

)
, (3)

m[t]
i(n)
= m[h]

i(n)

(
1− Neti(n)

C

)
. (4)

(d) Adaptation of the connections wi, j(n) through the
variation Δwi, j(n) , which amounts, accordingly, to
trapping the energy difference as to (4):

Δwi, j(n) =
(
m[h]
i(n)
−m[t]

i(n)

)
·
(

1− wi, j(n)

C

)
·m[h]

j(n)
,

wi, j(n+1) = wi, j(n) + α · Δwi, j(n) .

(5)

First of all, we need to specify that α is the learning
coefficient of AutoCM. This coefficient has to be chosen
taking into consideration 3 different condition:

(1) AutoCM weights are updated at every cycle;

(2) the order of selection of any record at each epoch is
random (a epoch is the number of cycles we need to
update every record of the dataset);

(3) after every cycle the AutoCM is closer to its converge
point, T , and the amount of updating between n = 0
and n = T decreases up to zero.

For this reason it is necessary to set up the learning
coefficient in a way that AutoCM can update its weights after
a reasonable number of epochs, without to be influenced by
the random order of the records at each cycle.

Consequently, we suggest to chose the learning coef-
ficient taking into account the contractive factor, C, the
number of variables, N , and the number of records, M, of
the assigned dataset:

α = N

M · C . (6)

2.3. AutoCMs: A Theoretical Discussion. There are a few
important peculiarities of Auto-CMs [9–12] with respect to
more familiar classes of ANNs that need special attention and
call for careful reflection.

(i) AutoCMs are able to learn also when starting from
initializations where all connections are set at the
same value, that is, they do not suffer the problem
of the symmetric connections.

(ii) During the training process, AutoCMs always assign
positive values to connections. In other words, Auto-
CMs do not allow for inhibitory relations among
nodes, but only for different strengths of excitatory
connections.

(iii) AutoCMs can learn also in difficult conditions,
namely, when the connections of the main diagonal
of the second layer connection matrix are removed.
In the context of this kind of learning process, Auto-
CMs seem to reconstruct the relationship occurring
between each couple of variables. Consequently, from
an experimental point of view, it seems that the
ranking of its connections matrix translates into the
ranking of the joint probability of occurrence of each
couple of variables.

(iv) Once the learning process has occurred, any input
vector, belonging to the training set, will generate a
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null output vector. So, the energy minimization of the
training vectors is represented by a function trough
which the trained connections absorb completely the
input training vectors. Thus, AutoCM seems to learn
how to transform itself in a “dark body”.

(v) At the end of the training phase (Δwi, j = 0), all the
components of the weights vector vreach up the same
value:

lim
n→∞vi(n) = C. (7)

The matrix w, then, represents the AutoCM knowl-
edge about the whole dataset.

One can use the information embedded in the w
matrix to compute in a natural way the joint probability of
occurrence among variables:

pi, j =
wi, j∑N
j=1 wi, j

; (8)

P
(
m[s]

j

)
=

N∑
i

pi, j = 1. (9)

The new matrix p can be read as the probability of transition
from any state variable to anyone else:

P
(
m[t]
i

∣∣∣m[s]
j

)
= pi, j . (10)

(i) Alternatively, the matrix w may be transformed into
a non-Euclidean distance metric (semimetric), when
we train the AutoCM with the main diagonal of the
w matrix fixed at value N . Now, if we consider N as a
limit value for all the weights of the w matrix, we can
write

di, j = N −wi, j . (11)

The new matrix d is again a squared symmetric
matrix, where the main diagonal entries are null (i.e.,
they represent the zero distance of each variable from
itself), and where the off-diagonal entries represent
“distances” between each couple of variables.

2.4. AutoCM and Minimum Spanning Tree. Equation (11)
transforms the squared weights matrix of AutoCM into a
squared matrix of distances among nodes. Each distance
between a pair of nodes may therefore be regarded as the
weighted edge between these pair of nodes in a suitable
graph-theoretic representation, so that the matrix d itself
may be analyzed through the graph theory toolbox.

A graph is a mathematical abstraction that is useful for
solving many kinds of problems. Fundamentally, a graph
consists of a set of vertices, and a set of edges, where an edge
is an object that connects two vertices in the graph. More
precisely, a graph is a pair (V, E), where V is a finite set and
E is a binary relation on V, to which it is possible to associate
scalar values (in this case, the distances di, j).

At this point, it is useful to introduce the concept of
Minimum Spanning Tree (M.S.T.) [9–12].

The Minimum Spanning Tree problem is defined as
follows: find an acyclic subset T of E that connects all of
the vertices in the graph and whose total weight (namely, the
total distance) is minimized, where the total weight is given
by:

d(T) =
N−1∑
i=0

N∑
j=i+1

di, j , ∀di, j . (12)

T is called a spanning tree, and the MST is the T whose
weighted sum of edges attains the minimum value:

Mst = Min{d(Tk)}. (13)

From conceptual point of view, the MST represents the
energy minimization state of a structure. In fact, if we
consider the atomic elements of a structure as vertices of
a graph and the strength among them as the weight of
each edge, linking a pair of vertices, the MST represents
the minimum of energy needed so that all the elements of
the structure preserve their mutual coherence. In a closed
system, all the components tend to minimize the overall
energy. So the MST, in specific situations, can represent the
most probable state for the system to tend.

To determine the MST of an undirected graph, each edge
of the graph has to be weighted. Equation (11) shows a way to
weight each edge whose nodes are the variables of a dataset,
and where the weights of a trained AutoCM provide the
(weight) metrics.

Obviously, it is possible to use any kind of Auto-
Associative ANN or any kind of Linear Auto-Associator to
generate a weight matrix among the variables of an assigned
dataset. But it is hard to train a two-layer Auto-Associative
Back Propagation ANN with the main diagonal weights fixed
(to avoid autocorrelation problems). In most cases, the Root
Mean Square Error (RMSE) stops to decrease after a few
epochs, and especially when the orthogonality of the records
is relatively high, a circumstance that is frequent when it
is necessary to weight the distance among the records of
the assigned dataset. In this case, it is necessary to train
the transposed matrix of the dataset. By the way, if a linear
Auto-Associator is used to the purpose, all of the nonlinear
association among variables will be lost.

Therefore, AutoCM seems to be the best choice to date
to compute a complete and a nonlinear matrix of weights
among variables or among records of any assigned dataset.

2.5. Graph Complexity: The H Function. Now we introduce a
new indicator: the degree of protection of each node in any a
directed graph.

This indicator defines the rank of centrality of each node
within the graph, when an iterative pruning algorithm is
applied. The pruning algorithm was found and applied for
the first time as a global indicator for graph complexity by
Giulia Massini at Semeion Research Center in 2006 [13]: (See
Algorithm 1).

The higher the rank of a node, the bigger the centrality
of its position within the graph. The latest nodes to be
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Rank = 0;
Do
{
Rank++;
Consider All Nodes with The Minimum Number of Links ();
Delete These Links ();
Assign a Rank To All Nodes Without Link (Rank);
Update The New Graph ();
Check Number of Links ();
} while at least a link is present

Algorithm 1: Pruning algorithm.

pruned are also the kernel nodes of the graph. In the present
paper, this algorithm is generalized to measure the global
complexity of any kind of graph.

The pruning algorithm can be used also to define the
quantity of graph complexity of any graph. If we take μ
as the mean number of nodes without any link, at each
iteration, as the pruning algorithm is running, we can define
the hubness Index, H0, of a graph with N nodes. In order
to properly define this quantity, we need to introduce a
few preliminary concepts. We define a cycle or iteration of
the pruning algorithm as a given round of application of
the algorithm. At each cycle, there corresponds a gradient,
which can be different from cycle to cycle. Insofar as two
subsequent cycles yield the same gradient, they belong to the
same pruning class. As the gradient changes degli one cycle
to the other, the previous class ends and a new one begins.
We are now in the position to define hubness as follows:

H0 = μ · ϕ− 1
A

; 0 < H0 < 2; (14)

μ = 1
M

M∑
i

Ndi = N

M
; (15)

ϕ = 1
P

P∑
j

STG j . (16)

A is number of links of the graph (N-1 for trees); N is
Number of Nodes; M is number of cycles of the pruning
algorithm; P is number of states implied into a change of
gradient, during the pruning process;Ndi is number of nodes
without link at the j-th iteration; STG j is summation of the
gradient of the states implied into a change of gradient,
during the pruning process.

Equation (15) measures the mean gradient of the graph.
Equation (16) measures the dynamics of the gradient

changes during the pruning process.
Equation (14) is a complex ratio between the mean

gradient and the dynamics of this gradient, from one side
and the global graph connectivity from the other side.

Using H0 as a global indicator, it is possible to define to
what extent a graph is hub oriented.

TheH indicator (14), (15), and (16) represents the global
hubness of graph. WhenH = 0, the tree is a one-dimensional

line and its complexity is minimal. When H = 1, the tree
presents only one hub, and its complexity is the maximum
than a tree can attain. The complexity of a graph, in fact, is
connected to its entropy. The quantity of information in a
graph is linked to the graph diameter and to the connectivity
of the vertices: given the number of vertices, the shorter the
diameter, the bigger the entropy. Starting from the classical
notion of entropy we can thus write

E = −K ·
N∑
i

pi · ln
(
pi
)
. (17)

If we name E(G) the topological entropy of a generic tree-
graph, we can write

E(G) = − A

M
·

N∑
i

Ci
A
· ln
(
Ci
A

)
; 0 < E(G) <∞, (18)

Where A is number of graph edges (N − 1, when the graph
is a tree); N is number of graph vertices; M is number of
pruning cycles necessary to deconnect the graph completely;
Ci is degree of connectivity of each vertex.

The quantity Ci/Ameasures the probability that a generic
node Cj , where j /= i, has to be directly linked to the node Ci.
This means that the entropy of a graph, E(G), will increase
when the number of vertices with a large number of links
increases. Accordingly, the probability to arrange the links of
N vertices, using a random process, into a linear chain is the
lowest. Therefore, the higher the number of pruning cycles,
M, needed for a graph, the smaller is graph entropy. Equation
(18) shows clearly that a “hub tree” has more entropy than
a “chain tree”. Consequently, when the H index of a tree
increases, its redundancy increases as well.

2.6. The Delta H Function. Considering how the structure of
a given graph is changed by a pruning process, it becomes
natural to think of what happens to graphs, and in particular
to MSTs, as one or more of their nodes are deleted. In which
way will the graph has to be organized to continue to reflect
as best as possible the underlying structure of relationships
once one or more nodes are taken away? How will the other
nodes rearrange their links on the basis of the underlying
metric and constraints, to connect each other once again?
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Define a H index for each one of N different MSTs,
generated from the original distance matrix by deleting one
different vertex at each step:

Hi = μi · ϕi − 1
A− 1

; 0 < Hi < 2;

μi = 1
M

M∑
j

Ndj = N

M
;

ϕi = 1
P

P∑
k

STGk .

(19)

A is number of links of the graph (N − 1 for trees); N is
Number of Nodes; M is number of cycles of the pruning
algorithm; P is number of states implied into a change of
gradient, during the pruning process;Ndi is number of nodes
without link at the j-the iteration; STGk is Summation of
the gradient of the states implied into a change of gradient,
during the pruning process.

Each Hi represents the tree complexity of the same,
original distance matrix when the ith vertex is deleted.
Consequently, the difference between the complexity of the
whole MST (i.e., H0) and the complexity of any of the MSTs
that are obtained by deleting one of the graph vertices (Hi),
is the measure of the contribution of that specific (i) vertex
of the graph to the original graph’s global complexity:

δHi = H0 −Hi. (20)

This new index measures to what extent each vertex of a
graph contributes to increase (δHi < 0) or to decrease (δHi >
0) the redundancy of the original, overall graph. We have
named this function Delta H function; it can be applied to
any kind of graph.

2.7. AutoCM and Maximally Regular Graph (MRG). The
MST represents what we could call the “nervous system”
of any dataset. In fact, summing up all of the connection
strengths among all the variables, we get the total energy
of that system. The MST selects only the connections that

minimize this energy, that is, the only ones that are really
necessary to keep the system coherent. Consequently, all the
links included in the MST are fundamental, but, on the
contrary, not every “fundamental” link of the dataset needs
to be in the MST. Such limit is intrinsic to the nature of MST
itself: every link that gives rise to a cycle into the graph (viz.,
that destroys the graph’s “treeness”) is eliminated, whatever
its strength and meaningfulness. To fix this shortcoming and
to better capture the intrinsic complexity of a dataset, it is
necessary to add more links to the MST, according to two
criteria:

(i) the new links have to be relevant from a quantitative
point of view;

(ii) the new links have to be able to generate new cyclic
regular microstructures, from a qualitative point of
view.

Consequently, the MST tree-graph is transformed into an
undirected graph with cycles. Because of the cycles, the new
graph is a dynamic system, involving in its structure the time
dimension. This is the reason why this new graph should
provide information not only about the structure but also
about the functions of the variables of the dataset.

To build the new graph, we need to proceed as follows:

(i) assume the MST structure as the starting point of the
new graph;

(ii) consider the sorted list of the connections skipped
during the derivation of the MST;

(iii) estimate the H function of the new graph each time
that you add a new connection to the MST basic
structure, to monitor the variation of the complexity
of the new graph at every step.

We will call Maximally Regular Graph (MRG) the graph
whose H function attains the highest value among all the
graphs generated by adding back to the original MST, one by
one, the missing connections previously skipped during the
computation of the MST itself. Starting from (14), the MRG
may be characterized as follows:

Hi = f (G(Ai,N))/“Generic Function on a graph with Ai arcs and N nodes at i th test”

Hi = μi · ϕi − 1
Ai

/“Calculation of H Function, where H0 represents MST complexity”/

H∗ = Max{Hi}/“Graph with highest H= MRG”/

R∗ = Max arg{Hi}/“Number of links added by MRG”/

i ∈ [0, 1, 2, . . . ,R]/“Index of H Function”/

N − 1 < Ai <
N · (N − 1)

2
“interval of the number of graph arcs”/

R ∈
[

0, 1, . . . ,
(N − 1) · (N − 2)

2

]
/“Number of the skipped arcs during the MST generation”/

(21)
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The R number is a key variable during the computation
of the MRG. R could in fact be also null, when the
computation of the MST calls for no connections to be
skipped. In this case, there is no MRG for that dataset.

R, moreover, makes sure that the last, and consequently
the weakest, connection added to generate the MRG is always
more relevant that the weakest connection of the MST. The
MRG, finally, generates, starting from the MST, the graph
presenting the highest number of regular microstructures
that make use of the most important connections of
the dataset. The higher the value of the H Function at
the connections selected to generate the MRG, the more
meaningful the microstructures of the MRG.

The MRG calculation is also useful to define the MST
compactness: less is the number of arcs skipped during the
MST generation, more the MST is representative; in other
terms:

compactness (Mst)

φ = 1.0− R

P
;

P = (N − 1) · (N − 2)
2

.

(22)

Another important index is the Relevance of MRG: this index
depends on 2 other indexes:

(i) the MRG Hubness, H∗, (21):

•
H= H∗ −H0

H∗ (23)

(ii) and the number of new links added by MRG genera-
tion:

•
R= R∗

R
. (24)

The fuzzy combination of these two indexes can express the
MRG Relevance:

relevance (MRG)

ϕ =
( •
H +

•
R

)
−
( •
H · •R

)
.

(25)

At this point it is we can approximate a new index to measure
the amount of information provided by MRG respect to
MST:

information (MRG)

ψ = φ · ϕ.
(26)

3. Results

We have divided the ALS dataset into: the Cases dataset
(58 records) and the Control dataset (207 records). Then
we have independently applied to each one the AutoCM
algorithm. The AutoCM algorithm generates two weighted
MST and the Delta H function points out the key variables
of the two datasets (see Figure 2(a) and Figure 2(b)). The
two MSTs are different topologically and locally (different
variables connections) and the Delta H function shows a very
interesting situation (see Table 1).

(i) 3 variables (APOA4 glu360his, NOS3 A 922 G,
LPL ser447term) seem to be the reason of the low
complexity of the cases MST: when each one of them
is removed, the MST increases its complexity, taking
the same H value of the global MST of the control
dataset (H Cases = 0.171429 versus H Control =
0.17193);

(ii) 3 variables (ADRB3 trp64arg, LIPC C 480 T,
MMP3 5A 6A) seem to be the reason of the high
complexity of the control MST: when each one of
them is removed, the MST decreases its complexity,
taking the same H value of the global MST of the
cases dataset (H Cases = 0.137427 versusH Control =
0.136905);

If these considerations should have a biological reason,
the AutoCM algorithm and the Delta Function procedure
have shown to be very capable to catch the hidden informa-
tion into the medical datasets.

As a second step of this analysis, we have calculated the
MRG of the two dataset (see Figures 3(a) and 3(b)). Also
in this case the MRG shows a low complexity of hubbness
and Links in the cases dataset and a very high complexity
in the control dataset. This seems to confirm that in an
ideal health condition the living organisms manifest a high
ratio of complex regularity and redundancy of structures and
functions.

4. Discussion

Healthy physiologic function is characterized by a complex
interaction of multiple control mechanisms that enable an
individual to adapt to the exigencies and unpredictable
changes of everyday life. The disease process appears to be
marked by a progressive impairment in these mechanisms,
resulting in a loss of dynamic range in physiologic function
and, consequently, a reduced capacity to adapt to stress. The
emerging concept is that loss of redundancy, entropy and
complexity is an hallmark of disease and in particular of
chronic diseases.

Defining and quantifying the complexity of variables
interactions are very difficult tasks from a mathematical
point of view. Complex network theory by establishing
criteria to define hubs in a particular variables network
provides a framework on which building up parameters
corresponding to an increase or loss of complexity in relation
to the presence or absence of a particular variable in a
variables set.

In this paper we have applied a novel revolutionary
methodology to establish which of polymorphisms poten-
tially involved in SALS occurrence play a fundamental role
in protecting or in increasing the vulnerability for the disease
occurrence increasing or reducing the hubness of a graph
encoding the dynamic relation among genotypes many to
many.

Six genetic variants were identified which differently
contributed to the complexity of the system: apolipopro-
tein A-IV (APOA-IV) glu360his (rs5110), nitric oxide
synthase 3 (NOS3)-922A/G (rs1800779), lipoprotein lipase
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Variables not linked

Key variables

(a)

(b)

Figure 2: (a) The MST of the cases databest. Into the blue circles the key variables of the graph. (b) The MST of the controls databest. Into
the red circles the key variables of the graph.
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Figure 3: (a) The MRG of the cases databest. In red the MRG connections. (b) The MRG of the controls databest. In red the MRG
connections.
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Table 1: The Delta H function with the relative hubness into the Controls and Cases datasets.

Control

Variables Hub relevance Variables Hub relevance

Global 0.17193 NOS3 C 690 T 0.171429

ADRB3 trp64arg 0.136905 NOS3 glu298asp 0.171429

LIPC C 480 T 0.136905 DCP1 ins del 0.171429

MMP3 5A 6A 0.136905 AGTR1 A1166C 0.171429

APOC3 C 641 A 0.171429 AGT met235thr 0.171429

APOC3 C 482 T 0.171429 NPPA G664A 0.171429

APOC3 T 455 C 0.171429 NPPA T2238C 0.171429

APOC3 C1100T 0.171429 ADD1 gly460trp 0.171429

APOC3 C3175G 0.171429 SCNN1 trp493arg 0.171429

APOC3 T3206G 0.171429 SCNN1A ala663thr 0.171429

APOE cys112arg 0.171429 GNB3 C825T 0.171429

APOE arg158cys 0.171429 ADRB2 arg16gly 0.171429

APOA4 thr347ser 0.171429 ADRB2 gln27glu 0.171429

PPARG pro12ala 0.171429 APOB thr71ile 0.171429

APOA4 glu360his 0.171429 F2 G20210A 0.171429

LPL T 93 G 0.171429 F5 arg506gln 0.171429

LPL asp9asn 0.171429 F7 del ins 0.171429

LPL asn291ser 0.171429 F7 arg353glu 0.171429

LPL ser447term 0.171429 PAI G5 G4 0.171429

PON1 met55leu 0.171429 PAI G11053T 0.171429

PON1 gln192arg 0.171429 FGB G 455 A 0.171429

PON2 ser311cys 0.171429 ITGA2 G873A 0.171429

LDLR Ncol Ncol 0.171429 ITGB3 leu33pro 0.171429

CETP 630 0.171429 SELE ser128arg 0.171429

CETP 628 0.171429 SELE leu554phe 0.171429

CETP ile405val 0.171429 ICAM gly214arg 0.171429

LTA thr26asn A 0.171429 TNFa G 376 A 0.171429

MTHFR C677T 0.171429 TNFa G 308 A 0.171429

NOS3 A 922 G 0.171429 TNFa 244 0.171429

TNFa 238 0.171429

LTA thr26asn B 0.171429

Cases

Variables Hub relevance Variables Hub relevance

Global 0.137127 AGTR1 A1166C 0.136905

APOA4 thr347ser 0.136905 AGT met235thr 0.136905

APOB thr71ile 0.136905 NPPA G664A 0.136905

APOC3 C 641 A 0.136905 NPPA T2238C 0.136905

APOC3 C 482 T 0.136905 ADD1 gly460trp 0.136905

APOC3 T 455 C 0.136905 SCNN1 trp493arg 0.136905

APOC3 C1100T 0.136905 SCNN1A ala663thr 0.136905

APOC3 C3175G 0.136905 GNB3 C825T 0.136905

APOC3 T3206G 0.136905 ADRB2 arg16gly 0.136905

APOE cys112arg 0.136905 ADRB2 gln27glu 0.136905

APOE arg158cys 0.136905 MMP3 5A 6A 0.136905

ADRB3 trp64arg 0.136905 F2 G20210A 0.136905

PPARG pro12ala 0.136905 F5 arg506gln 0.136905

LIPC C 480 T 0.136905 F7 del ins 0.136905

LPL T 93 G 0.136905 F7 arg353glu 0.136905

LPL asp9asn 0.136905 PAI G5 G4 0.136905

LPL asn291ser 0.136905 PAI G11053T 0.136905

PON1 met55leu 0.136905 FGB G 455 A 0.136905
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Table 1: Continued.

Cases

Variables Hub relevance Variables Hub relevance

PON1 gln192arg 0.136905 ITGA2 G873A 0.136905

PON2 ser311cys 0.136905 ITGB3 leu33pro 0.136905

LDLR NcoI NcoI 0.136905 SELE ser128arg 0.136905

CETP 630 0.136905 SELE leu554phe 0.136905

CETP 628 0.136905 ICAM gly214arg 0.136905

CETP ile405val 0.136905 TNFa G 376 A 0.136905

LTA thr26asn A 0.136905 TNFa G 308 A 0.136905

MTHFR C677T 0.136905 TNFa 244 0.136905

NOS3 C 690 T 0.136905 TNFa 238 0.136905

NOS3 glu298asp 0.136905 LTA thr26asn B 0.136905

DCP1 ins del 0.136905 APOA4 glu360his 0.171429

NOS3 A 922 G 0.171429

LPL ser447term 0.171429

(LPL) ser447term (rs328), adrenergic, beta-3 receptor
(ADRB3) trp64arg (rs4994), hepatic lipase (LIPC)-480C/T
(rs1800588) and matrix metallopeptidase 3 (MMP3)-1171
5A/6A (rs3025058). Three of the above genes/SNPs represent
protective factors, APOA4 glu360his, NOS3-922A/G and
LPL ser447term, since their contribution to the whole
complexity resulted to be as high as 0.17 (see table 1). On
the other hand ADRB3 trp64arg, LIPC-480C/T, and MMP3-
1171 5A/6A, whose hub relevancies resulted to be as high as
0.13, seem to represent susceptibility factors (see Table 1).

Among the genes/SNPs conferring risk or protection
from the disease, we noted that four of these are involved
in the lipid pathways, APOA4, LPL, LIPC, ADRB3 while two
are involved also in oxidative stress, angiogenesis, and cellular
cytoskeletal (NOS3 and MMP3).

The protective genes/SNPs here identified include the
gene for apo A-IV, mapping on chromosome 11q2 and
coding a glycoprotein whose primary translation product is
a 396-residue preprotein which after proteolytic processing
is secreted. Although its precise function is not known, apo
A-IV is a potent activator of lecithin-cholesterol acyltrans-
ferase in vitro and displays antioxidant and antiatherogenic
properties in vitro, and the antiatherogenic properties of
apoA-IV suggest that this protein may act as an anti-
inflammatory agent [14]. The second protective gene/SNPs
still involved in lipid pathways is LPL ser447term; the gene
maps on chromosome 8p22 and encodes a lipoprotein
lipase, which is expressed in heart, muscle, and adipose
tissue. LPL has the dual functions of triglyceride hydrolase
and ligand/bridging factor for receptor-mediated lipoprotein
uptake. Several DNA variants at the LPL gene locus have
been found to be associated with the plasma lipid levels,
in particular the Ser447ter has the potential to elevate the
plasma high-density lipoprotein (HDL) levels [15]. The role
of HDL in ALS disease is still controversial, hyperlipidemia
was shown to be a significant prognostic factor for survival of
patients with ALS, linked to a better outcome [16]. However,
recent findings in Italian ALS patients did not support
this observation, even though some evidence emerged that
respiratory impairment, but not a worse clinical status or a

lower body mass index, was related to a decrease in blood
lipids and LDL/HDL ratio [17].

The last protective factor, NOS3-922A/G variant, belongs
to a gene localized to chromosome 7q36 and coding the
cytosolic enzyme of endothelial cells, a key actor in the
process of modulation of vascular tone by producing nitric
oxide (NO), a vasodilator agent. Constitutive NO release
from microvascular endothelium seems to be responsible
to prevent leukocyte margination under physiological con-
ditions by modulating oxidative metabolism in endothelial
cells. In this mechanism NO act as antioxidant agent
to prevent the formation of iron-mediated hydroperoxide.
Accumulating evidences indicate that ALS is associated with
oxidative damage induced by free radicals. Enhancement of
oxidative damage markers and signs of increased compen-
satory response to oxidative stress was found in patients with
SALS [18], and since different antioxidant systems seem to
be involved in ALS compared to other neurodegenerative
diseases, oxidative stress may be a cause rather than a
consequence of the neuronal death [19].

Considering now the vulnerability factors, the LIPC-
480C/T belongs to a gene located on chromosome 15q21–23
and coding a glycoprotein involved in metabolism of several
lipoproteins. The C/T substitution at −480 of the promoter
region of the gene has been shown to be significantly
associated to lower lipase activity [20] and it is also involved
in anti-inflammatory and antioxidant activity [21]. Again,
the lipid pathway is still involved.

The ADRB3 gene has been localized to chromosome
8p12-8p11.1 and it codes for a member of the adrenergic
receptor group of G-protein-coupled receptors; it is located
mainly in adipose tissue and is involved in the regulation
of lipolysis and thermogenesis. Some β3 agonists have
demonstrated antistress effects in animal studies, suggesting
it also has a role in the CNS [22]. In addition, the trp64arg
polymorphism seems to be associated to an increased
BMI [23] and recently this polymorphism seems to be
associated with elite endurance performance [24]. This is
quite interesting since the literature supported the concept
of soccer, and consequent head trauma, and ALS being
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interrelated, with high levels of athleticism/physical activity
perhaps playing an additive part in the pathogenesis of the
disease [25]. Even though the role of exposure to physical
exercise, together with trauma, in ALS has been debated, in
a recent pilot study comprising 61 patients and 112 controls
the authors demonstrate that physical exercise but not with
traumatic events [26] is related.

Regarding the last at risk factor, MMP3-1171 5A/6, this
belongs to a gene mapping on chromosome 11q22.3 and
coding a protein of the matrix metalloproteinase family
(MMPs). MMPs a family of zinc-dependent endoproteinases,
are effector molecules in the breakdown of the blood-
brain and blood-nerve barrier, and promote neural tissue
invasion by leukocytes in inflammatory diseases of the
central and peripheral nervous systems. Moreover, MMPs
play an important role in synaptic remodeling, neuronal
regeneration, and remyelination [27]. MMPs have been
suggested to play an important role in ALS pathology and
several studies are still ongoing both in animal models as well
as in human to find evidence of that link.

We know that motor neuron death in ALS is the cul-
mination of multiple aberrant biological process involving
also nonneuronal cells such microglia and astrocyte, what
emerge from our data is that lipid homeostasis, oxidative
stress and cellular remodelling are strictly related to ALS.
We have just previously commented the role of the specific
here identified variants in the cellular/molecular pathways.
A recent finding has been reported on how lipid molecules
can induce the cytotoxic aggregation of Cu/Zn superoxide
dismutase, the major gene linked to the familial and
sporadic form of the disease, under physiological conditions
suggesting that it might provide a possible mechanism for the
pathogenesis of ALS [28]. Recently, lower serum lipid levels
are shown to be related to respiratory impairment in patients
with ALS [29].In addition, in amyotrophic lateral sclerosis-
parkinsonism dementia complex (ALS-PDC) common in
the western Pacific area and repeatedly linked to the use of
seeds of various species of cycad, it has been demonstrated
in vitro the effects of cholesterol β-D-glucoside, cholesterol
and cycad phytosterol glucosides on respiration and reactive
oxygen species generation in brain mitochondria [30].
Indeed cholesterol homeostasis dysfunctions may lead to
human brain disease such as Alzheimer’s disease [31] and
Huntington’s disease [32], for example.

In a first work about ALS [6], we showed an evolutionary
method to select the most predictive variables able to
distinguish between ALS patients and controls. In that work
the question was which are the independent variables whose
a priori probability distribution separates in a better way
cases from controls? A set of seven variables showed to do
this job in a suitable manner (an average accuracy in blind
testing of 96%).

In this work we pose to the scientific community a
different question: which genetic polymorphisms (variables)
protect or make more vulnerable the ALS patients and the
control subjects?

There is not a necessary intersection between these two
questions: small differences in an organ at work can produce
big differences in symptoms, because of the interactions with

other organs. Therefore, some polymorphisms can work as
more evident symptoms of a disease without to be the main
reason of that disease. In the same way, the seven variables
of the previous work can be optimal predictors of the ALS,
without to be the main reason of the ALS syndromes: they
are useful to recognize the ALS, but they are not a necessary
explanation of the ALS.

The more predictive features in a disease are not
necessary the same features able to explain better the
dynamics of that disease; an example: in the case of alcohol
addiction, the main reason to become an alcoholic could
be a sociopsychological condition, but the more predictive
features to understand if someone is an alcoholic can be the
analysis of the functional state of his/her liver.

In the actual work, using a completely new adaptive
algorithm, we have tried to understand which genetic poly-
morphisms explain better the deep difference between Cases
and Controls. In other words how all the polymorphisms
are arranged in different networks, with different links and
connections strength, into the two subsamples.

5. Conclusion

We applied here a revolutionary methodology able to
deal with complex disease such as sporadic ALS. This
new approach allowed to identify genes/SNPs conferring
susceptibility or protection to the disease, we were not able to
discriminate which allele of the six variants identified is really
involved, and this is due to how the database was realized.
From the dataset here analyzed we extrapolate biological
information coherent with possible pathogenetic pathways
related to ALS. Our data clearly demonstrate the power
of this new approach and it would be of great interest to
test with other more complex ALS database to get more
information.
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