
© 2012 Landes Bioscience.

Do not distribute.

Human Vaccines & Immunotherapeutics 8:4, 494-498; April 2012; © 2012 Landes Bioscience

 CommentAry

494 Human Vaccines & Immunotherapeutics Volume 8 Issue 4

Key words: salmonella, conjugate  
vaccine, polysaccharide vaccine, Vi,  
O polysaccharide, typhoid, paratyphoid, 
non-typhoidal salmonella

Submitted: 12/15/11

Accepted: 12/23/11

http://dx.doi.org/10.4161/hv.19158

*Correspondence to: Raphael Simon; 
Email: rsimon@medicine.umaryland.edu

Salmonella enterica serovars Typhi and 
Paratyphi A and B and certain non-

typhoidal Salmonella enterica (NTS) 
serovars are important causes of invasive 
Salmonella disease worldwide. NTS 
serovars Typhimurium and Enteritidis 
typically cause gastroenteritis in healthy 
children and adults in industrialized 
countries but in certain hosts (e.g., 
young infants, the elderly, immuno 
compromised individuals) they also 
cause invasive infections. These two 
serovars also cause invasive disease in 
infants and young children in sub-
Saharan Africa. Whereas Salmonella 
surface polysaccharides are poor 
immunogens in animal models and do 
not generate immunologic memory, 
conjugation with carrier proteins 
overcomes these limitations. S. Typhi 
expresses a Vi polysaccharide capsule; 
Vi either alone or as a glycoconjugate 
protects humans from typhoid fever. 
In contrast, S. Paratyphi A and B 
and NTS (with rare exceptions) do 
not express capsular polysaccharides. 
Rather, their surface polysaccharides 
are the O polysaccharide (OPS) of 
lipopolysaccharide. In animal studies, 
immunization with Salmonella COPS 
(core polysaccharide-OPS) conjugated 
with carrier proteins generates 
functional immunity and protects 
against fatal Salmonella challenge. 
Conjugating to Salmonella proteins 
(flagellin, porins) may extend immune 
responses to another relevant target for 
antibody generation and enhance the 
glyconjugate’s efficacy.
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Introduction

A relatively restricted number of the  
> 2,500 serovars of Salmonella are 
associated with invasive disease such as 
bacteremia, septicemia and meningitis. 
Four fairly distinct clinico-epidemiologic 
patterns of invasive Salmonella disease 
are recognized and are caused by distinct 
serovars: enteric fever; metastatic purulent 
infections; invasive disease in high risk 
hosts in industrialized and developing 
countries; invasive disease in young 
children in sub-Saharan Africa.

Three human-host-restricted enteric 
fever serovars (also called “typhoidal” 
serovars), Salmonella enterica serovar 
Typhi (S. Typhi), S. Paratyphi A and  
S. Paratyphi B, cause enteric (typhoid 
or paratyphoid) fever, manifested by 
persisting fever, abdominal discomfort 
and headache. If not treated promptly 
with effective antibiotics, typhoid 
and paratyphoid fever may lead to 
complications and death. In the pre-
antibiotic era the case fatality rate of typhoid 
fever was ~15%. In infants, S. Typhi and 
S. Paratyphi bacteremic infections may be 
either clinically mild (with the bacteremia 
clearing spontaneously),1 or severe.2 Two 
serovars, S. Choleraesuis and S. Paratyphi 
C, cause metastatic purulent infections, 
an uncommon clinical form of invasive 
disease.3-5

In the US and Europe, gastroenteritis 
due to NTS serovars, a common disease, 
may occasionally be accompanied by 
invasive bacteremic disease. Susceptible 
hosts for invasive NTS disease include 
infants < 3 mo of age,6-9 the elderly,9 persons 
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Salmonella O Antigens and  
Relevance for Developing  

Vaccines to Prevent Invasive NTS 
Disease and Paratyphoid Fever

Since NTS and S. Paratyphi A and B 
do not express capsular polysaccharides, 
investigators have studied vaccines 
that contain the repeating polymer of 
O-polysaccharide (OPS) as the basis 
of eliciting antibody-based protection 
in a manner analogous to what Vi 
polysaccharide and Vi conjugates have 
been able to accomplish in preventing  
S. Typhi disease. The lipopolysaccharide 
(LPS) of Salmonella is comprised of lipid A 
(endotoxin) attached to a highly conserved 
core polysaccharide and a repeating OPS 
polymer. The overwhelmingly majority of 
invasive Salmonella isolates from humans 
fall into Salmonella groups A, B, C or 
D. OPS of Salmonella groups A, B and 
D are similar in overall structure. They 
share a common trisaccharide backbone 
→2) -α -D-Manp - (1→4) -α -L -R hap -
(1→3)-α-D-Galp-(1→ (which serologically 
constitutes epitope 12). A dideoxy 
hexose saccharide linked α-(3→6) at the 
mannose of the repeating trisaccharide36 
results in an immunodominant epitope 
that confers Salmonella group identity. 
Thus, if the dideoxy hexose linked to 
the mannose is a paratose, this provides 
immunodominant epitope 2, specifying 
a Group A Salmonella. If the α-(3→6)-
linked dideoxyhexose is an abequose, 
immunodominant epitope 4 specificity 
is conferred, indicative of Group B. If 
the α-(3→6)-linked dideoxyhexose is a 
tyvelose, immunodominant epitope 9 
results, putting the isolate into Group D. 
The rhamnose in the backbone →2)-α-D-
Manp- (1→4)-α-L-Rhap- (1→3)-α-D-
Galp-(1→ trisaccharide repeat of S. 
Paratyphi A is also partially O-acetylated; 
however, there is no antigenic epitope 
recognized in association with this 
modification.37,38

In some Group B serovars such as  
S. Typhimurium, phage conversion 
modifies the galactose of the trisaccharide 
backbone epitope 12 so that it becomes 
α-(1→6) glucosylated and minor epitope 1 
can be detected.39 Some Group B serovars 
also express minor epitope 5, resulting 
from a chromosomal gene product that 

Vi conjugated to recombinant exoprotein 
A of Pseudomonas aeruginosa (Vi-rEPA) 
developed at the US National Institute of 
Child Health and Human Development. 
Vi-rEPA was tested in clinical trials in a 
high typhoid incidence area in Vietnam 
where, following demonstration of safety 
and immunogenicity in older children and 
adults,22-25 it was evaluated for efficacy in a 
randomized, controlled phase 3 field trial 
in pre-school children.23,24 A high level of 
protection was observed over 46 mo of 
follow-up.23,24 Vi-rEPA is immunogenic 
in Vietnamese infants when administered 
concomitantly with other pediatric 
vaccines that are part of the Vietnamese 
Expanded Program on Immunization 
(EPI).26 Several investigators proposed 
a minimal threshold protective level of 
serum IgG anti-Vi that can facilitate 
the clinical development of new Vi 
conjugates.19,23,26 Carrier proteins utilized 
in Vi conjugates include diphtheria 
toxoid (DT),27 tetanus toxoid (TT), and 
CRM

197
.28 Phase 1 and 2 clinical trials 

with Vi-CRM
197

 have shown its’ safety and 
immunogenicity in adults and teenagers. 
Vi-CRM

197
 elicited comparable levels of 

antibody at 1/20th of the standard dose of 
unconjugated Vi polysaccharide vaccine.29 
One Vi-TT conjugate has been licensed in 
India but no peer review publications have 
presented the safety and immunogenicity 
data generated with this vaccine. The 
paucity of published data on this specific 
conjugate has led to some controversy in 
India.30-32

S. Paratyphi C and some clones of  
S. Dublin also express Vi capsular 
polysaccharide but no field data have 
documented the efficacy of Vi conjugate 
vaccines against these serovars. Some 
have raised the theoretical concern that 
widespread use of Vi-based parenteral 
vaccines exert immunologic pressure 
selecting for the emergence of Vi-negative 
strains of S. Typhi.33,34 Vi-negative strains 
are generally rare but one study using 
molecular diagnostics convincingly 
detected Vi-negative S. Typhi uncommonly 
in blood.35

with hemoglobinopathies and those with 
immunocompromise (inadequately treated 
HIV infection, etc.).9 The most common 
NTS serovars associated with invasive 
disease in the US include S. Typhimurium,  
S. Enteritidis, S. Heidelberg, S. Dublin 
and S. Schwarzengrund.9

Finally, it has also become recognized 
that NTS commonly cause invasive 
bacterial disease among children < 3 y 
of age in many regions of sub-Saharan 
Africa.10-16 Prior to the introduction 
of programmatic immunization with 
Hemophilus influenzae type b (Hib) 
or Streptococcus pneumoniae conjugate 
vaccines in countries in sub-Saharan 
Africa, invasive NTS disease was as 
common as invasive Hib or pneumococcal 
disease.10-16 Of these clinico-epidemiologic 
syndromes caused by different serovars, 
all represent a sufficiently large burden 
as to be considered as targets for control 
by vaccines (except for S. Choleraesuis 
and S. Paratyphi C metastatic purulent 
infections, which are relatively rare). 
Whereas licensed vaccines are available to 
prevent typhoid fever, no specific licensed 
vaccines are available against S. Paratyphi 
A or B or NTS serovars.

Vi Based Conjugate Vaccines 
for Protection against S. Typhi 

Infections

Capsular polysaccharides of Hib,  
S. pneumoniae and Neisseria meningitidis 
have been linked to carrier proteins as the 
basis of well tolerated, immunogenic and 
efficacious licensed conjugate vaccines, 
documenting that the conjugate vaccine 
strategy is reliable, robust and flexible for 
polysaccharide-encapsulated pathogens 
that invade via the bloodstream. S. Typhi 
expresses a capsular polysaccharide, Vi 
antigen, which mediates resistance to 
bactericidal killing and opsonophagocytic 
uptake by the alternative arm of the 
complement system.17 Serum IgG anti-Vi 
is a correlate of protection in humans.17-19 
Like most polysaccharides,20 Vi is poorly 
immunogenic in infants and fails to 
induce immunologic memory.21 However, 
conjugation of Vi to a carrier protein 
overcomes these limitations,20,21 as has been 
documented through clinical trials with a 
pioneering conjugate vaccine consisting of 
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COPS or OPS in humans administered 
parenterally as a polysaccharide vaccine. 
In the early 1960s, clinical studies 
assessed the clinical acceptability and 
immunogenicity of two LPS-based 
vaccines containing purified S. Typhi 
LPS. The efficacy of these parenteral 
vaccines was also examined in large-scale 
field trials that included killed whole 
cell S. Typhi vaccines, also administered 
parenterally.56,57 Whereas the parenteral 
killed whole cell vaccines conferred a 
moderate level of protection against 
typhoid fever, the unconjugated LPS 
vaccines provided little or no protection. 
Vi PS expressed by wild type S. Typhi may 
have interfered with the ability of anti-LPS 
antibodies to bind to LPS on the bacteria 
present in blood, perhaps explaining the 
poor efficacy of these early LPS-based 
vaccines. However, evidence from studies 
in mice also suggests that Salmonella 
COPS as an isolated polysaccharide is 
a poor immunogen.37,58,59 In contrast, 
conjugation of Salmonella COPS to 
protein carriers results in vaccines that 
have been effective in generating anti-
OPS in animal models.37,52,53,58,59 NTS 
COPS conjugate vaccines have also 
demonstrated protection against mortality 
in the mouse model of lethal Salmonella 
infection. In one study, conjugation of  
S. Typhimurium COPS to the 
homologous strain porin proteins elicited 
increased levels of anti-COPS IgG, and 
demonstrated protection against an LD

100
 

challenge with virulent S. Typhimurium.53 
Antibodies elicited by this conjugate in 
mice, as well as an OPS conjugate with 
bovine serum albumin (BSA) in rabbits, 
exhibited functional opsonophagocytic 
antibody that could transfer protection by 
passive immunization.52,53,60 Similar results 
were seen following immunization of 
mice with a conjugate of S. Typhimurium 
COPS with TT.59 A S. Paratyphi A 
COPS-TT conjugate also increased 
the immunogenicity of COPS in mice, 
and elicited antibodies demonstrating 
complement-mediated bactericidal 
killing.37 S. Paratyphi A COPS-TT was 
safe and immunogenic in humans in phase 
1 and 2 clinical trials; serum from the 
vaccinated humans displayed functional 
bactericidal activity.61 A conjugate vaccine 

complex; surface deposition of C3b also 
enhances opsonophagocytosis.47,48

Evidence that Salmonella OPS 
Antibodies can Protect Animals 

and Humans

Passively transferred IgG or IgM 
monoclonal antibodies specific for S. 
Typhimurium OPS protected mice 
against S. Typhimurium challenge.49 A 
study to assess the protection related to 
specific epitopes within OPS suggests 
that antibodies to the immunodominant 
group-specific epitope constitute the 
primary protective species; IgG or IgM 
specific for epitope 4 protected to a greater 
extent than an IgG to epitope 12.50 A 
monoclonal IgA directed against epitope 
5 has also been shown to prevent mucosal 
infection with S. Typhimurium given to 
mice by oral challenge.40,51 Polyclonal 
antibodies elicited by COPS conjugates 
in rabbits and mice also provide passive 
immunity against fatal NTS challenge in 
mice.52,53

While the protective efficacy of 
antibody against NTS OPS and COPS 
is well documented in animal studies, 
the functionality of anti-COPS in 
humans is less clear. Antibody to S. 
Typhimurium LPS from HIV positive 
individuals in Africa was shown to 
interfere with complement mediated 
bactericidal killing of a serum sensitive 
prototype African S. Typhimurium 
strain.54 Anti-LPS IgG however does not 
interfere with opsonophagocytosis and 
oxidative burst in human neutrophils with 
either complement resistant or sensitive  
S. Typhimurium strains.46 NTS isolates 
from the blood also frequently display 
marked resistance to complement 
mediated bactericidal killing.55 Further 
work is needed to better define the role 
of anti-OPS in serum bactericidal and 
opsonophagocytic killing in immunity to 
invasive NTS infection in humans.

Salmonella COPS and OPS as 
Vaccine Antigens in Humans and 

in Animal Models

Little is known regarding the 
immunogenicity of purified Salmonella 

acetylates the 2-hydroxyl group of the 
abequose residue.40,41

OPS of Salmonella serogroups C are 
structurally and serologically distinct from 
Groups A, B and D.36,39 Salmonella isolates 
with OPS exhibiting immunodominant 
epitopes O:6,7 characterize Salmonella 
Group C

1
. Isolates lysogenized with 

phage 14, resulting in the antigen pattern 
O:6,7,14, used to be designated group C

4
 

but are presently considered as members 
of Group C

1
. Salmonella isolates bearing 

immunodominant O:8 comprise Group 
C

2
, whether or not they also express 

epitope 6. In older typing regimens, isolates 
bearing O:6,8 were referred to as C

2
 to 

distinguish them from isolates bearing 
only O:8, which were designated C

3
.

The critical issues revolving around the 
use of OPS-based conjugate vaccines to 
prevent invasive NTS disease and paraty-
phoid fever include whether O antibodies 
to NTS and Paratyphi A and B serovars 
in humans can mediate protection, the 
biological activities of anti-LPS antibod-
ies in humans and whether antibodies to 
an OPS-based vaccine made with puri-
fied OPS from one serovar cross-protect 
against other serovars within the same O 
serogroup, as would be expected.

Biological Activity 
of anti-O Antibodies

Although Salmonella are intracellular 
pathogens, they are vulnerable while 
extracellular when IgG and IgM directed 
against the surface polysaccharides of 
Salmonella can bind them leading to 
bacteriolysis or opsonophagocytosis. 
The importance of serum immunity is 
underscored by the increased virulence 
seen for Salmonella that can evade the 
alternative pathway of complement 
through alteration in the length and 
structure of their OPS and expression 
of the resistance to complement 
killing (rck) gene.42-45 Antibodies to 
Salmonella surface carbohydrates 
mediate opsonophagocytosis through 
Fc receptors on phagocytes that can kill 
by oxidative burst.46 Activation of the 
antibody mediated complement pathway 
by IgM and IgG can also kill directly via 
formation of the C9 membrane attack 
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against virtually all the serovars that 
presently cause invasive disease globally. 
Thus, for example, a multivalent 
vaccine formulation consisting of COPS 
conjugates from S. Paratyphi A (group A), 
S. Typhimurium (group B), S. Enteritidis 
(group D) and S. Choleraesuis (Group 
C), along with a Vi-conjugate, would 
constitute a broad-based vaccine covering 
almost all invasive Salmonella disease.
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