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Abstract

High Content Screening (HCS) platforms allow screening living cells under a wide range of experimental conditions and give
access to a whole panel of cellular responses to a specific treatment. The outcome is a series of cell population images.
Within these images, the heterogeneity of cellular response to the same treatment leads to a whole range of observed
values for the recorded cellular features. Consequently, it is difficult to compare and interpret experiments. Moreover, the
definition of phenotypic classes at a cell population level remains an open question, although this would ease experiments
analyses. In the present work, we tackle these two questions. The input of the method is a series of cell population images
for which segmentation and cellular phenotype classification has already been performed. We propose a probabilistic
model to represent and later compare cell populations. The model is able to fully exploit the HCS-specific information:
‘‘dependence structure of population descriptors’’ and ‘‘within-population variability’’. The experiments we carried out
illustrate how our model accounts for this specific information, as well as the fact that the model benefits from considering
them. We underline that these features allow richer HCS data analysis than simpler methods based on single cellular feature
values averaged over each well. We validate an HCS data analysis method based on control experiments. It accounts for HCS
specificities that were not taken into account by previous methods but have a sound biological meaning. Biological
validation of previously unknown outputs of the method constitutes a future line of work.
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Introduction

Background
Fluorescent markers allow to label virtually any cellular

structure in living cells [1]. Recent advances in sample preparation

and microscopy automation allow cell population imaging on a

large scale [2]. Both technologies lead to the development of High

Content Screening (HCS) platforms which allow screening living

cells under a wide range of experimental conditions. Classically,

the aim is to identify a therapeutic target, or a drug candidate.

One screen consists in taking several pictures of a large number of

cell populations, for example, transfected with RNAi tools or

exposed to small molecules. Each experiment is performed in a

well in which several pictures are taken, called fields. It gives access

to a whole panel of cellular responses to a specific manipulation.

The outcome is a series of cell population images which holds

much more information than the single averaged value of the

cellular response, classically recorded in HTS screens. The

available information accounts for cell variability according to

various features, which is precious to characterize a population of

cells. However, the heterogeneity of cellular responses makes it

difficult to compare and interpret experiments. In the framework

we consider in this work, processing the outputs of such

experiments requires three steps as illustrated in Figure 1.

N Step 1, segmentation: This step consists in identifying cells

in images and extract features that characterize the shape and

texture for each individual cell.

N Step 2, cellular phenotyping: This step usually involves

machine learning algorithms that classify cells according to

different predefined cellular phenotypes based on cellular

features and on a training set of annotated cells for which this

phenotype is known.

N Step 3, population phenotyping: This step aims at

defining phenotypes (or classes) at a population level, using

population descriptors derived from cellular phenotypes, in

order to describe and compare different experiments.

Segmentation and cellular phenotyping steps have been well

studied (steps 1 and 2). There has been a huge amount of work to

apply image processing tools to cell segmentation and cell features

extraction from cell population images. Typical cellular features

used in this context are nucleus and cytoplasm size, texture and

shape. The cellular phenotyping step aims at converting, for each

single cell, the numerical values corresponding to its cellular
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features into predefined biological phenotypes that are relevant at

the cellular scale and characterize the cell status. Typical examples

are cell morphology classes, such as shape and appearance or cell

cycle state (G1, S, G2 or M phases). Coupling the image

segmentation step with supervised machine learning algorithms,

many authors proposed methods to classify cells according to

various predefined cellular phenotypes using HCS data and a

training set of annotated cells [3–5]. These applications developed

in the last decade demonstrate empirically the effectiveness of

machine learning algorithms in this setting. Example of algorithms

used in this context are state of the art classification algorithms

such as support vector machines [6] or boosting [7].

A common practice in HCS analysis is to inspect univariate cell

features averaged over wells [8–10]. This is suited for analysis of a

single channel (for example corresponding to a single cellular

phenotype such as ‘‘apoptosis state’’). However, analysis of

multiple cellular phenotypes may require to take into account

their joint distributions. In our setting, cells from images are

phenotyped in steps 1 and 2. As there are many potential cell

phenotypes of interest, the multivariate setting must be considered,

which constitutes a characteristic of the proposed method.

Moreover, our model accounts for the field variability in each

well, not only averaged values over wells. This constitutes a step

toward cell variability characterization within each well, since

within a population of cells in a well, one may observe a range of

cellular responses to a given experimental condition. Indeed [11]

observe a significant impact of the cell population context on the

cellular phenotypes in siRNA screens. They found that local cell

density, position of a cell in the local cell population or cell size

significantly influence phenotypes such as viral infection or

endocytosis.

Once, in an HCS experiment, all cells of a population (namely

all cells of a well) have been assigned cellular phenotypes, the aim

is to characterize this cell population (step 3). In other words, we

would like to define a population phenotype based on the cellular

phenotypes of all the individual cells it contains, since different

cells taken from a the same well can display different cellular

phenotypes, even when exposed to the same experimental

conditions. Therefore, cellular phenotypes cannot be used as

population phenotypes in a straightforward manner, and it

remains a challenging issue to fill the gap between phenotypical

characterization of a population of cells and single cell phenotypes.

In particular, definition of population phenotypes is an important

issue that one must solve in order to compare cell populations

subject to different treatments. For example [12] carry out the

segmentation and cellular phenotyping steps and propose a

distance learning method to compare different cell populations,

and generalize known relations between experiments in a third

step. In a different experimental setting, [13] use trajectories

defined by time varying cell population responses to compare

treatments.

Contribution of this study
In the present study, we develop a method to describe and

compare populations of cells in HCS experiments by defining

population phenotypes. The input of the proposed method is a

table in which each row is a field (an image) and each column is a

population descriptor for these fields. For each well several fields

are recorded, and well assignment information is available for each

field. However, the behaviour of fields within the same well might

be different. We refer to this aspect as ‘‘within-population

variability’’. Moreover, population phenotyping should not only

take into account each single population descriptor individually,

but also the joint distribution of these descriptors. We refer to this

as ‘‘dependence structure of cell population descriptors’’. Taking

this dependence structure into account improves the description

power of the model. Illustration of these aspects of our HCS

dataset and further biological motivations will be presented in the

method section.

Going back to the HCS data analysis framework presented in

Figure 1, the proposed method tackles step 3: population

phenotyping. A natural approach to characterize a population of

cells is to consider the output of the first two steps as descriptors for

the population of cells. The total number of cells and the

proportion of cells assigned to each predefined cellular phenotype

describe the joint behaviour of all cells in a given population. The

Figure 1. HCS data acquisition and processing. After experimental acquisition, we have four images, or fields, per well. Step 1 consists of
isolating each cell in each image and computing cell features by means of image processing tools. These features are used to classify cells in each
image according to different predefined cell phenotypes in a second step (for example M, G2 phases or apoptosis). This classification provides
population descriptors that can be used to define population phenotypic classes.
doi:10.1371/journal.pone.0042715.g001
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problem is now to assign a population phenotype based on the

descriptors of this cells population. For example, in the present

study, we aim at defining population phenotypes based on the

following population descriptors : cell count, and cellular

phenotypes which are represented by proportions of cells in the

different stages of the cell cycle. A population phenotype is meant

to characterize the biological state of the cell population in a given

experiment. Each population phenotype (or class) should gather

cells which behaviours are similar, and population of cells showing

dissimilar behaviours should be assigned to different classes. The

conceptual difference with the cellular phenotyping step (step 2) is

that we do not have predefined population phenotypes, nor do we

have annotated cell populations according to population pheno-

types. Indeed the question of how to define such population

phenotypes is still open. Therefore, while a supervised framework

is suited for solving step 2, because there exists predefined cellular

phenotypes, we propose an unsupervised method to tackle the

population phenotyping step (stpe 3) where predefined cell

population phenotypes are unknown.

We model a cell population using a hierarchical mixture model

which is a specific kind of bayesian network, a widely-used class of

probabilistic models [14]. ‘‘Within-population variability’’ is

modelled using a hierarchical structure and ‘‘dependence structure

of cell population descriptors’’ is modelled using multivariate

probability distributions. The output of the method characterizes

the density of the input fields in the population descriptors space

and assigns a phenotypic class to each field. A copula-based

parametrization was compared to a gaussian parametrization of

the proposed mixture model (details are found in the methods

section). To validate our hypotheses regarding ‘‘within-population

variability’’ and ‘‘dependence structure of cell population descrip-

tors’’, we compare performances of the two preceding models to a

baseline gaussian mixture model with diagonal covariance matrix

which would correspond to ignoring those two aspects of the data.

In summary, the proposed method is a tool for analysing cell

population data. It relies on prior image segmentation and cellular

phenotype assignment which corresponds to steps 1 and 2 of this

analysis framework. The main purpose of the method is to extract

cell population phenotypes and to assess phenotypic variability at

the level of cell populations. The model allows to take advantage of

HCS specific information: ‘‘dependence structure of population

descriptors’’ and ‘‘within-population variability’’, which our

experiments suggest to consider in our context. This can be used

to tackle the problem of novelty detection (for example, outlier

genes in a siRNA experiment) which is one of the main goals of

HCS experiments. We validate a HCS data analysis method based

on control experiments. It accounts for HCS specificities that were

not taken into account by previous methods but have a sound

biological meaning. Biological validation of previously unknown

outputs of the method constitutes a future line of work.

Materials and Methods

Experimental acquisition
siRNA screening was performed on shA673-1C Ewing sarcoma

derived cell line [15] by the Biophenics platform at Institute Curie.

Two experimental conditions were considered: cells were either

transfected with a negative siRNA controls (Luciferase GL2

siRNA, Qiagen) or a positive siRNA control (KIF11). Cell

numeration and mitotic figures were determined using DAPI

staining, cycle phases distinction were determined using EdU (for

S Phase) and Cyclin B1 (for G2-M transition) immunofluorescence

staining. Apoptosis was detected by cleaved caspase 3 immuno-

fluorescence staining. Images were acquired on IN Cell1000

Analyzer (GE Healthcare Life Sciences) and segmented using IN

Cell Investigator software.

Dataset
Our dataset is comprised of 2688 fields belonging to 672 wells

for which we have total cell count and proportions in S, G2, M

and Apoptotic phases. Each well is either related to a GL2 or a

KIF11 experiment. In addition, we have well assignment

information for each fields (336 wells64 wells per fields62

manipulations = 2688 fields). Note that cellular phenotypes are

not exclusive here. This dataset is one example of output of the

two first steps we mentioned in the introduction and the purpose of

this paper is to validate our method based on it. The proportion of

cells in the G0/G1 phases is deduced from the total of those in the

S, G2, M.

Preliminary data analysis
To motivate the need for accounting for ‘‘dependence structure

of population descriptors’’ and ‘‘within-population variability’’, we

present two simple observations arising from the dataset described

in the previous section.

First we studied the association between cell population

descriptors. More precisely, we searched for potential positive or

negative correlation between the cell count and the other

population descriptors. As shown in Table 1, there is no

association between number of cells and S-phase proportion, as

expected: DNA replication is a process of quite constant duration

because it mainly depends on the species and the size of the

genome. Therefore, the length of the S phase should not depend

on the proliferation status or the size of the cell population, as

observed. There is a slight positive association between cells

number and G1/G0-phase proportion. A plausible biological

interpretation is that, at a higher number of cells in a well, the

population tends to reach confluence, a situation in which the cell

cycle is arrested and cells are known to accumulate in phases G0/

G1. In addition, we observed stronger dependences between

population descriptors. A positive association is observed between

cells number and G2-phase proportion, as well as a negative

association between cell number and M-phase proportion. This is

a biological observation which has not been generally reported, at

least to our knowledge. It may be specific to our experimental

design, in which the field with the highest number of cells are

reaching the limit of confluence and these cells may tend to slow

the G2 phase and consequently displaying a reduced number of

mitosis. Whatever the interpretation of the above observations

might be, these results indicate that the cell descriptors used in this

study present a dependent structure, and this justifies the choice of

a model that can account for this dependency.

Second, we compared the dispersion of fields belonging to the

same well to that of fields randomly selected in the dataset. By

dispersion, we mean how close a set of fields are one to the other.

The distance used is the euclidean distance and the population

descriptors used are cell count and proportion of cells in S, G2, M

and apoptotic phases. We scaled the data beforehand and used the

measure of dispersion of multivariate analysis of variance proposed

in [16]. This is the sum of squared pairwise distances. If we

consider the set of fields fx1, . . . ,x4g, then the dispersion measure

is:

X4

i,j~1

DDxi{xj DD2:

This is equal to the sum of squared distances of each point from
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the mean, up to a constant multiplicative factor, and therefore

measures how dispersed the fields are. Figure 2 indicates that : (i)

fields belonging to the same wells do display some variability,

which should be taken into account by the model, (ii) this

variability is smaller from that of randomly selected fields. Indeed,

fields belonging to the same well are part of the same experiment

and therefore, are expected to display less phenotypic variability

than randomly selected fields. Taken together, these two

observations are respectively in good agreement with the ideas

of modelling the experimental data taking into account (i) ‘‘within-

population variability’’ (ii) within a hierarchical model.

Model
The proposed model aims at describing HCS data, i.e. a set of

wells, each of them containing four fields. The input of the method

is a representation based on cell descriptors at the field level (cell

count, proportion of cells in S, G2, M and apoptotic phases in our

case), coupled to well assignment information. The output is an

ensemble of population phenotypes (classes) represented by

multivariate distributions. To each image (field), the method

assigns a distribution over population phenotypes. We added the

quite natural constraint that fields belonging to the same well

should correspond to the same class. This hypothesis allows to take

into account the ‘‘within-population variability’’ in a given well,

which should be part of the population phenotype characteriza-

tion. This is made possible thanks to the hierarchical structure of

the proposed model.

We tested two different parametrizations for this model :

copula-based and gaussian-based. Copulas have been studied since

the middle of the 20-th century [17] and have been successfully

applied to finance [18], hydrology [19], meteorology [20],

neurosciences [21] or gene expression data [22]. We introduce

copula-based distributions, to build probabilistic densities that

represent cell population phenotypic classes. The use of copula for

model-based clustering has been suggested by [23], and proposed

by [24] in a semi-parametric framework.

Formulation of the model. We observe Xo which is

composed of N wells fX1, . . . ,XNg. We assume that we have M

fields in each well Xn. Each field is a vector in Rd . Therefore we

represent each well Xn by a M-tuple of vectors

Xn~fxn1, . . . ,xnMg where xni[Rd for n~1 . . . N and

i~1, . . . ,M. In our application, we have d~5 and M~4. The

components of this representation are cell counts and proportions

of cells in different phases of the cell cycle. In order to model

different classes of wells, we introduce the latent variable

Z[f1, . . . ,Kg associated to each well where K is fixed in advance.

We also assume that given the value of Z, the fields belonging to

one well are independent and that wells are independent and

identically distributed. These are typical assumptions made in

graphical models literature. If H represents the parameters of this

model, the density associated to Xn~fxn1, . . . ,xnMg is then

P(XnDH)~
XK

Z~1

P(ZDH) P
M

j~1
P(xnj DZ,H) ð1Þ

With this definition, the likelihood of the total dataset Xo becomes

P(XoDH)~ P
N

n~1
P(XnDH)~ P

N

n~1

XK

Z~1

P(ZDH) P
M

j~1
P(xnj DZ,H) ð2Þ

Given H, this model can be viewed as a generative process which

explains how to generate the data from a probabilistic point of

view. To generate a cell population (a well Xn), this process takes

the following form:

N Choose a population phenotype (a class) from a fixed list. This

amounts to sample Z*P(ZDH).

N Given the population phenotype, generate several sub-

populations (fields) according to the multivariate distribution

related to this population phenotype. This amounts to sample

for 1ƒjƒM, xnj*P(xnj DZ,H)

Given P(ZDH) (a multinomial) and the class conditional density

P(xnj DZ,H), the main issue is to perform inference and learning,

which is reversing the generative process defined above to estimate

the class distribution related to each well, P(ZDXn,H), and estimate

the parameters of the distributions representing phenotypic classes.

We propose gaussian class conditional distributions and copula-

based distributions which we now describe.

Copula-based class conditional distributions. Copulas

became popular in statistical literature at the end of the twentieth

century. However, the study of these probabilistic objects goes

back to the middle of the century, see [25] for a general review

about copulas. The usefulness of copulas comes from Sklar’s

theorem which states that multivariate distributions can be

formalized in term of copula and univariate marginal [26].

We use the gaussian copula family which has been introduced in

2000 by [27]. We use the density function formulation of these

copulas which let us work with probabilistic densities. A gaussian

copula density function is parametrized by a correlation matrix R.

We refer to the gaussian copula density function as cgR. Let

fFh1
, . . . ,Fhd

g be a set of univariate marginal distributions,

ffh1
, . . . ,fhd

g the corresponding univariate densities, such that

hi[Rz�|Rz� for all i. We parametrize fh1
as a gamma

distribution with parameters fh11,h12g. This is a distribution over

strictly positive numbers which represents cell counts here.

Moreover, we parametrize fhi
,iw1 as a beta distribution with

parameters fhi1,hi2g. This is a distribution over �0,1½ which

represents proportions of cells showing different cellular pheno-

types. Plugging these marginals in the gaussian copula cgR, which

correlation matrix is R, allows to parametrize a distribution which

support is exactly the one our variables are limited to, and to

model the dependence structure between univariate marginals. If

x~(x1, . . . ,xn)[Rz�|�0,1½d{1
, it takes the form:

P(xDR,h1, . . . ,hd )~cgR(Fh1
(x1), . . . ,Fhd

(xd )DR) P
d

j~1
fhi

(xi)

Moreover, we notice that such a parametrization of the class

conditional distribution involves exactly the same number of

parameters as a standard gaussian model: one correlation matrix

and two parameters per univariate marginal. For copula-based

densities, standard parameter estimation by maximum likelihood

Table 1. Association between population descriptors.

S G2 M Apoptosis G0/G1

rho 0.04 0.51 20.44 20.09 0.01

p-value 0.144 2e-16w 2e-16w 0.0006 0.0004

Association between cell count and proportion of cells in different states based
on negative controls. The measure of association is Spearman’s rho and the p-
value is computed via the asymptotic t approximation [36].
doi:10.1371/journal.pone.0042715.t001
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[28] requires computationally intensive numerical optimization.

Approximations of this procedure have been proposed to avoid

this. Among them, inference function for margin [29,30] and a

semi-parametric procedure [17] which we used to estimate the

parameters of our model. This second method consists in using a

non parametric estimate of the univariate marginals and

computing the copula parameter that maximizes a pseudo-

likelihood function. [31] observed empirically that this procedure

is more robust to marginals misspecification than the standard

maximum likelihood and inference functions for margin. We

empirically show in the Results sections that even though this is a

crude approximation to maximum likelihood estimator, this

parametrization is quite competitive compared to the gaussian

one.

Inference and learning. Assume that we have a parame-

trized class probability distribution P(ZDH) (a multinomial) and a

class parametrized conditional distribution P(xDZ,H), gaussian or

copula-based in our case. Finding the best parameters for our

mixture model amounts to maximize (2) or the logarithm of (2).

Optimizing this objective with respect to H is made difficult by the

presence of a sum over latent classes. Approximate inference has

shown to be efficient in this kind of setting. [32] provides a general

framework for EM type inference among others, which we used to

learn the parameters of the model and to infer phenotypic classes

of wells in our dataset. Sufficient statistics can be used in the

gaussian case. In the copula model case, we implemented the semi-

parametric estimation procedure of [17]. After optimizing the

model parameter H, we obtain K classes represented by class

proportions P(ZDH) and class distribution P(xDZ,H). Each well X

can be represented as a mixture of cell population phenotypes

given by P(ZDX,H), which is inferred during the optimization

process.

Baseline comparison. The proposed model accounts for

‘‘within population variability’’ through its hierarchical structure

and ‘‘dependence structure of cell population descriptors’’ through

multivariate probability distributions that model dependence

between variables. Those two aspects of the model are motivated

by observations arising from the data. In order to validate those

hypotheses, we compare the performances of those two models to

a standard gaussian mixture model with diagonal correlation

matrices. This model does not take into account the fact that

different fields come from the same well. It also assumes an

absence of dependency between population descriptors, because

the gaussian class conditional distribution covariances matrices are

constrained to be diagonal.

Results and Discussion

Data was generated from a siRNA based HCS on a Ewing

sarcoma derived cell line. The considered population descriptors

were cell count and proportion of cells showing different cellular

phenotypes (S, G2, M phase or apoptotic state). From these data,

positive and negative siRNA controls were used in this work to

illustrate our approach. GL2 siRNA is a negative control that does

not affect proliferation and cellular phenotypes. KIF11 siRNA is a

Figure 2. Within population variability. Comparison of the dispersion of fields belonging to the same wells (boxplot A) and randomly selected
fields (boxplot B). The measure of dispersion is the sum of squared pairwise distances. The population descriptors (cell count and proportions of cells
in S, G2, M and apoptotic states) have been scaled beforehand.
doi:10.1371/journal.pone.0042715.g002
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positive control that induces cell death and therefore leads to

massive alteration of cellular phenotypes.

As presented in the ‘‘Preliminary data analysis’’ of Materials and

Methods section, we observed that the population descriptors

displayed a dependent structure, and that fields belonging to the

same well presented less dispersion than fields randomly selected

from the dataset (see Figure 2). These preliminary results justify the

use of the proposed gaussian or copula based models.

We first compare the gaussian and copula based parametriza-

tions of the model in terms of model fitting and generalization

properties (See model fitting section). Once parameters of the

model are fitted to the data, we build an object representing the

density of the data we considered. This is useful in term of novelty

discovery. In our case, it would correspond to finding cell

populations that are different from the negative control population

(GL2 silencing siRNA transfected cells), which behaviour is

supposed to be hardly affected by this transfection. Confronting

a test dataset to the model, evaluating the likelihood of this new

data with respect to this model, allows to measure how different

from the training set the test set is. We observe that the proposed

method allows to separate positive and negative controls (see

section ‘‘Novelty detection and positive controls’’).

Moreover, given the training set, the model classes define the

population phenotypes and account for the joint distribution of cell

population descriptors. We investigate the properties of these

phenotypic classes and underline that the copula based parame-

trization extracts more meaningful phenotypic classes (see section

‘‘Model classes as population phenotypes’’). Moreover, we show

how those population phenotypes account for different cell

behaviours by relating the population phenotypes to cellular

phenotypes (see section ‘‘Relation between population phenotypes

(classes) and cellular phenotypes’’).

We discuss the advantage of the proposed model compared to

previous approaches focusing on one specificity of the approach,

‘‘within-population variability’’ consideration (see section account-

ing for ‘‘within population variability’’). We first describe the cross

validation experiment that was carried out to evaluate properties

of the model.

Cross validation
We performed 5-fold cross validation experiments on the

negative controls dataset composed of 336 wells which represents

1344 fields. This set is split into five subsets of roughly equal sizes.

Each subset is taken in turn as a test set, the model is trained on

the remaining four sets, and the likelihood of the test set is then

evaluated with respect to the model built with the training set.

Because the optimization result relies on the initial parameter

value, we performed five random restarts for each fold. This allows

to evaluate the generalization performances of the model for the

whole dataset. We performed this experiment for the gaussian and

copula-based models, as well as the baseline model, for a number

of population phenotypes ranging from 2 to 20. The number of

classes is a parameter of the proposed method. We repeated this

experiment ten times over different splits of the dataset. The model

giving the best generalization property, i.e. the model with the

highest test likelihood, was then trained on the whole negative

controls set and the corresponding classes were analysed.

Model fitting
The cross validation experiment allows to compare different

model performances on this dataset. Because all the proposed

model are probabilistic in nature, the first criterion we choose to

compare different models is the likelihood computed for a test

dataset. We proposed two parametrization of the mixture models,

a gaussian and a copula-based parametrization which we review in

the method section. We compare those two parametrization to the

baseline model using this criterion.

Figure 3-a shows the training log likelihood of the two models

and the baseline model for different numbers of classes. This

training likelihood was evaluated using the whole training set. It

appears that the copula-based model results in a higher value of

the training likelihood. This observation is valid for the whole

range of number of classes we considered. It also appears that the

baseline fits much less to training data.

Figure 3-b represents the test log likelihood, evaluated by cross

validation, for the two models with different numbers of classes.

Again, it appears that the copula-based model has better

generalization properties independently from the number of

classes. Here again the baseline model provides worse fit on test

data.

This experiment shows that the proposed model outperforms

the baseline model on both training and test datasets for both

gaussian and copula based parametrization. This observation

validates assumptions encoded in the model which we referred to

as ‘‘dependence structure of population descriptors’’ and ‘‘within-

population variability’’. We consider now comparing in more

details the two parametrizations of the proposed model.

The copula-based model outperforms the gaussian model

providing better fit on training data and higher generalization

properties on a the negative control dataset, while involving

exactly the same number of parameters. The copula-based density

support matches the domain where our dataset is spread, while the

gaussian support is the whole space. Similar results have been

reported in other comparative studies of copula models based on

different datasets: [33] is an example.

Based on these results, we pick up the model providing the best

generalization performances and fit it to the whole negative

control set, restarting randomly the algorithm 10 times to avoid

local optimum for the parameters values. The results are presented

in the two following sections.

Novelty detection and positive controls
One of the objectives of modelling the negative controls density

is to show that we can detect cell populations that are different

from these controls, because they could correspond to experiments

that are relevant for the studied biological question. To illustrate

this point, we used, as controls, cell populations that were

transfected with a KIF11 silencing siRNA. We refer to these cell

populations as positive controls. It is known that these controls

should have a very different behaviour compared to negative

controls. Panels (a) to (e) in Figure 4 represent the densities of

positive and negative controls univariate cell population descrip-

tors averaged over wells. Panel (f) in Figure 4 represents the

densities of positive and negative control log likelihood. Here the

model is trained on negative controls.

Positive controls are found to be very different from negative

controls. It is easy to distinguish them from negative controls only

looking at cell count, for example. The panel (f) in Figure 4

represents the distribution of log likelihood over wells. The log

likelihood given by the model separates the two types of controls.

Training our multivariate model on negative controls and testing it

on experiments is not less powerful than using univariate methods.

Model classes as population phenotypes
We propose to use several densities in a mixture model to define

population phenotypes by the classes of the model, which

corresponds to a mathematical definition. The number of classes

was chosen by cross validation.
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We inspected the univariate marginal densities. Figure 5

compares the empirical density and the density fitted by the

model for one population descriptor, proportions of apoptotic

cells, for two phenotypic classes. We notice that the model

densities fitted by the copula model are closer to the empirical

density compared to those fitted by the gaussian model. In

addition, the parameters of the copula distributions represent

physically valid distributions. For example, proportions of cells in

apoptosis is higher than 0. As shown in Figure 5, the copula-based

model accounts for this, while the gaussian model does not.

One example of use of the classes proposed by our model is the

detection of atypical behaviours in the training set. Indeed, we

inspected visually the cell images of negative control wells that

were found in classes containing very few wells (3 classes with 5, 6

and 9 wells respectively over a total of 336). We found that 17

among these 20 wells were not relevant for the negative control

modelling because they were experimental outliers. These wells

presented a recurrent atypical behaviour, and therefore, a few

small classes were inferred to account for this during the learning

procedure. Figure 6 shows bivariate scatter plots of the negative

Figure 3. Model fitting. Train (a) and test (b) log likelihood of the negative control data for the two proposed models, and the baseline, varying the
number of phenotypic classes. Green corresponds to the copula based model, red corresponds to the gaussian model, and black corresponds to the
baseline model. For training log likelihood, we picked the best model among 10 random restarts of the algorithm. For the test log likelihood, the
boxes account for the variability among ten different splits of the data in a cross validation setting. Given a data split, for each fold and each number
of classes, we picked the best model among 5 random restarts of the algorithm.
doi:10.1371/journal.pone.0042715.g003

Figure 4. Novelty detection and positive controls. Density plot of cell population descriptors averaged over wells (panel (a) to (e)) and log
likelihood (panel (f)) given by the model trained on negative controls. Positive controls are very different from negative controls. It is easy to
distinguish them from negative controls only looking at cell count. The log likelihood given by the model separates the two type of controls. We
observe that the discriminative power of the univariate descriptors is not lost when considering the model likelihood.
doi:10.1371/journal.pone.0042715.g004
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control fields and with these outliers. The proposed method

provides clues for detection of such cases.

Moreover, we observed that the other classes containing a

higher number of wells could account for experimental variability

over cell populations. For example some particular classes

contained mainly fields in which cell populations had reached

confluence, while others did not, as we could observe in the

corresponding images. All the classes do not necessarily account

for biologically interpretable differences, because the diversity of

cell population showing the same behaviours may require several

classes to model it accurately. The number of classes was inferred

based on cross validation generalization accuracy which is a much

more objective criterion.

Relation between population phenotypes (classes) and
cellular phenotypes

We considered negative controls and removed the outlier classes

since, as mentioned above, they corresponded to irrelevant fields.

We inspected differences between remaining classes based on the

population descriptors (which were defined from cellular pheno-

types), because this could provide some clues about the biological

interpretation of population phenotypes. Figure 7 represents the

field distribution of population descriptors for each class. It shows

that each population descriptor can separates some of the classes,

but that none of the descriptors separates all of the classes on its

own. This suggests that there is no redundancy between the

population descriptors and that the classes reflect possible

combinatorial association between population descriptors. The

multivariate character of the proposed model allows to account for

this fact, while it would not be possible using each population

descriptor individually.

Accounting for ‘‘within population variability’’
HCS experiments do not provide an average behaviour

characterization, but a whole panel of cell responses within

different sub populations (fields) taken from the same well. This

information is much richer than a simple average response. The

data account for the variability of the responses within a given

population. As observed in the Materials and Methods section, this

variability is not the same as the global field variability. The

hierarchical structure of the model allows to take this into account

which cross validation suggested to be a correct modeling

assumption. Indeed, since all fields of a given well correspond to

the same experiment, we therefore impose that they belong to the

same phenotypic class. The corresponding density must account

for the observed variability between those fields.

We illustrate this point in Figure 8 which compares one

particular negative control well with the whole set of negative

controls. Vertical red bars represented in Figure 8 show that

population descriptors averaged over wells do not account for field

variability (see Figure legend). Looking at panel (a) to (e) and blue

vertical lines, the well looks similar to the majority of the negative

controls. This would correspond to the single descriptor averaged

over wells approach. However the red bars in those panels show

that there is a lot of variation between the fields taken from this

well, and some fields actually fall in tails of the distribution. This is

reflected in the (f) panel where the vertical blue line is close to the

tail of the distribution. Thus the methods could help to eliminate a

potential experimental bias while a simpler approach would not.

Conclusion and future work
In this work, we tackled the cell population phenotyping step in

the HCS data analysis framework. This step is performed after

image segmentation and cellular phenotyping (steps 1 and 2). It

aims at comparing experiments, and gathering cells with similar

behaviours in the same class (i.e. assigning them to the population

phenotype). The main difficulties in achieving this task are linked

to ‘‘dependence structure of population descriptors’’ and ‘‘within-

population variability’’ which should be taken into account.

Simple observations showed that these are naturally occurring

facts observed in our HCS data.

We implemented and compared the performances of two

different parametrization of a mixture model, and baseline model

that does not account for the specific aspects of the data

underlined above. This was performed based on a dataset

Figure 5. Model and empirical distributions. Examples of classes found by the model (Copula model on the left, gaussian model on the right).
The proportion of cells in apoptotic state is represented for the cell populations belonging to those classes. We compare for two classes the
univariate marginal densities. For each class the empirical density is represented with a solid line and the density fitted by the model is represented
with a broken line.
doi:10.1371/journal.pone.0042715.g005
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comprised of two types of cell populations. A comparison of model

fitting on test data, using cross validation, suggest that the two

specific aspect of the data we focused on when building the model

should be considered when studying this kind of data. Moreover,

the copula-based parametrization of the proposed model outper-

forms the gaussian parametrization. However this copula-based

model has some disadvantages from the computational point of

view, model fitting being much slower and requiring approxima-

tions compared to the gaussian formulation.

The main features of cell populations that the model is able to

describe are:

N Univariate variables (cell count or cellular phenotype propor-

tions in our case), described by parametric densities

N Multivariate dependence structure, described by a copula

N Variability within a cell population, described by the

hierarchical structure of the mixture model

These features constitute the specificity of HCS data. The

proposed model takes them into account to build a phenotypic

characterization at the population level. Cross validation exper-

iments suggest that taking into account these aspects of the data

provides better models. The literature is very scarce regarding

population phenotypes definition. To our knowledge, none of the

proposed methods take into account the ‘‘within-population

variability’’, which underlines the originality of the proposed

model. Pushing this idea further, a future line of work includes

modelling at the cell level. [34] propose to infer cell classes from

Figure 6. Negative control outliers. Bivariate scatter plots of negative controls. The red points correspond to fields belonging to small classes.
They were indeed considered as outliers after checking the images (they were found to be irrelevant). Enough of these wells were present in the
dataset so that separate classes were inferred by the model to account for this atypical behaviour.
doi:10.1371/journal.pone.0042715.g006
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HCS data using single cell measurement. A future work direction

is to add a level in the model to infer cell phenotypic classes and

population phenotypic classes at the same time in a global model.

However the inference computational cost increases a lot and

online inference should be used such as in [35].

One application of this model is novelty detection, which is

measuring how a cell population related to a given experimental

condition is different from a control population. Once a control

density is estimated, one can attribute a likelihood to each test

experiment which allows to rank them according to how different

they are from the controls. For example, the model can detect

which siRNA phenotypes are different from a set of controls, and

provide orientations toward the most relevant wells in a set of test

experiments. The present work constitutes a preliminary valida-

tion of this procedure based on two limit cases.

Moreover, the method can help gathering cell populations that

show similar behaviours into phenotypic classes. We observed that

it can be useful for detection of irrelevant pictures gathered in

separate phenotypic classes. The most important future work is to

assess to which extend the inferred phenotypic classes are

biologically meaningful. For example, wells in which siRNAs

target genes with similar biological functions or incubated with

drugs with the same target should belong to the same phenotypic

class. Future work also include application of the model to target

identification. This would require further experimental study for

the validation of potential target genes which is far beyond the

scope of this paper.

Reproducible research
Data and source code to reproduce the results presented in this

paper are available from http://cbio.ensmp.fr/,epauwels/

CellPhen/codeAndData.zip

Figure 7. Relation between classes and population descriptors. The classes are represented on the x axis. For each class, the boxplot shows
the distribution of population descriptors among the fields of this class. Outlier classes were removed. The cell count descriptor has a similar
distribution for classes 2 and 3, but other descriptors also allow to differentiate them. Similarly, classes 3 and 5 have have a similar proportion of
apoptotic cells, but other descriptors also allow to differentiate them. More generally, each descriptor separates different classes. This suggests that
there is no redundancy between population descriptors, and that the classes reflect the combinatorial association between population descriptors.
doi:10.1371/journal.pone.0042715.g007
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