
Polysome Profiling in Liver Identifies Dynamic
Regulation of Endoplasmic Reticulum Translatome by
Obesity and Fasting
Suneng Fu1, Jason Fan1, Joshua Blanco1, Alfredo Gimenez-Cassina2, Nika N. Danial2, Steve M. Watkins1,

Gökhan S. Hotamisligil1,3*

1 Department of Genetics and Complex Diseases and Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America, 2 Dana-

Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America, 3 Broad Institute of Harvard and MIT, Boston, Massachusetts, United

States of America

Abstract

Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and
lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome
and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic
reticulum (ER)–associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We
discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis
of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial
components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct
role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall
translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of
the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the
reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene
significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine
balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver
translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of
metabolic abnormalities associated with obesity.
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Introduction

Proteins are the main workforces of a cell, and protein synthesis

is highly controlled according to cellular needs. Cells modulate

protein synthesis in response to hormonal cues, nutrient availabil-

ity and episodes of intracellular stress. Anabolic hormones like

insulin can stimulate the uptake of amino acids [1], the

phosphorylation of ribosomal S6 protein, and the assembly of

the eukaryotic initiation factor 4 (eIF4) complex to facilitate

protein synthesis [2,3,4,5]. Alternatively, nutrients, particularly L-

branched amino acids, activate protein synthesis through the

mammalian target of rapamycin pathway (mTOR) and its

downstream effectors such as ribosomal protein S6 kinase

(S6K1) and eukaryotic translation initiation factor 4 binding

protein (eIF4BP1) [6,7,8,9,10]. Moreover, cells also modulate the

rate of protein synthesis in response to stresses invoked by energy

depletion, virus infection, and dysfunctional protein folding,

through AMP-dependent protein kinase (AMPK) and multiple

eukaryotic translation initiation factor 2 alpha (eIF2a) kinases,

such as the interferon-induced, double-stranded RNA-activated

protein kinase (PKR) and the PKR-like endoplasmic reticulum

kinase (PERK) [11,12,13,14]. Due to the fundamental role of

protein synthesis in cellular function, mutations in the protein

synthesis machinery and its regulatory pathways have been

broadly implicated in many diseases [15].

Obesity is a critical risk factor for the development of systemic

metabolic disease and also presents unique challenges to the

protein synthesis machinery. On the one hand, obesity is a

condition of over-nutrition, with characteristic elevations in

plasma amino acid levels as well as hyper-activation of the

mTOR pathway [16,17]. On the other hand, obesity is typically

associated with the development of insulin resistance, chronic

inflammation and ER stress, and the level of eIF2a phosphory-

lation is uniformly increased, which would be expected to inhibit

protein synthesis [18]. How these conflicting inputs are coordi-

nated to modulate protein synthesis in vivo is largely unknown, and

the effect of obesity and diabetes on protein metabolism seems to

be tissue-dependent, and sometimes protein-specific [19–24].
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However, the overall evidence suggests that muscle protein

synthesis in obesity may be impaired at the basal and postabsorp-

tive states, and the consequential loss of lean mass likely plays a

role in the pathogenesis of diabetes by further impairing glucose

and lipid disposal into skeletal muscle [24]. Conversely, stimulat-

ing protein synthesis through dietary amino acid supplementation

(leucine in particular) has been found to result in a loss of adiposity

and improvements in systemic glucose and lipid homeostasis [25].

Moreover, a genetic mouse model that promotes eIF2a dephos-

phorylation displays enhanced protein synthesis, resistance to diet-

induced and genetic obesity, and improved glycemic control [26].

Together these studies suggest that while maintaining protein

synthesis is crucial for systemic glucose and lipid metabolism,

constitutive elevation of protein synthesis in obesity may also

challenge homeostatic metabolism.

Liver is the main site for the production of glucose, cholesterol

and very-low-density-lipoproteins (VLDL), perturbations of which

commonly underlie the development of diabetes and cardiovas-

cular complications precipitated by obesity. Liver also secretes

copious amounts of plasma proteins that regulate immune

response and peripheral tissue metabolism. However, the status

of hepatic protein synthesis in animal models of insulin resistance

is not well studied [19,20]. To address this question, we performed

polysome profiling and global analyses of polysome-bound

transcripts in the liver of genetically obese mice under fasted

and ad libitum fed states in comparison to lean controls. Our results

demonstrated dynamic regulation of protein synthesis by states of

obesity and nutrient availability, and revealed novel mechanisms

linking bile acid metabolism to metabolic homeostasis in obesity.

Results

Suppression of ER–associated protein synthesis in the
obese liver

There are two main sites of protein synthesis in a cell: the

cytosol and the endoplasmic reticulum (ER), with an additional

small fraction of proteins synthesized in the mitochondrion. In this

study, we have utilized polysome profiling to separate and quantify

ribosome subunits and monosomes, which are not actively

involved in protein synthesis, and polysomes, which have multiple

ribosomes loaded onto single mRNA molecules and thus are an

indication of active protein synthesis. Furthermore, comprehensive

and quantitative analyses of polysome-bound transcripts allowed

the identification and quantification of mRNA transcripts being

actively translated, and it has been previously shown that the

majority of proteins can be synthesized from both ER and

cytosolic compartments, but membrane proteins and secreted

proteins are almost exclusively synthesized in the ER-bound

compartment [27]. Since obesity is characterized by ER dysfunc-

tion [18], we chose to profile ER-polysomes instead of cytosolic

polysomes as they would provide more insights into organelle

homeostasis as well as the secretory/systemic functions of the liver

under the challenges of obesity. For this analysis, we fractionated

and quantitatively determined the amount of ER-associated

polysomes to evaluate the level of protein synthesis in the liver

of lean and obese (ob/ob) mice. We found that the amount of

membrane-bound ribosomes is dramatically reduced in the liver of

obese mice (Figure 1A), consistent with our proteomic profiles that

have shown down-regulation of ribosomal proteins associated with

hepatic ER [28]. The reduction of protein synthesis on the obese

ER is age dependent: in fact, younger mice (2 months) exhibited

modestly higher levels of protein synthesis than wild type lean

controls while older mice (3 and 6 months) exhibited progressively

reduced ER-associated protein synthesis characterized by a

decrease in the amount of mRNA bound, peptide synthesizing

ribosomes (Figure 1B–1D). Direct measurement of protein

synthesis using 35S-Methionine tracing experiments in isolated

primary hepatocytes of lean and obese mice confirmed ,50%

reduction in overall protein synthesis in the obese liver (Figure 1E).

However, despite the decrease in total ER-bound ribosomes in the

obese liver, its overall ribosome profile was shifted toward

polysomes, suggesting that, on average, there are more ribosomes

bound to each translating mRNA molecule. It has been well

established that the obese liver exhibits ER stress and is

characterized by uniformly higher levels of eIF2a phosphorylation

in both obese mouse models and in obese humans [29,30], which

should suppress protein synthesis by reducing the rate of

translation initiation and the disassembly of polysomes to

monosomes, as evidently displayed in lean, fasted mice

(Figure 1F). However, the translational suppression in the obese

liver is not associated with polysome disassembly. Instead, the

overall polysome profiling of the obese mice was shifted to higher

polysomes (Figure 1B and 1C), suggesting the contribution of an

eIF2a phosphorylation-independent mechanism(s) in translational

depression in the obese mice.

Perturbation of liver translatome by obesity
Systematic analyses of the polysome-bound transcripts were

carried out to analyze potential alterations in the obese

translatome, particularly preferential alterations in translated

messengers, besides the overall decrease in ER-associated poly-

some content. A total of 2261 differentially regulated genes (1402

decreased and 859 increased in expression level, obese/lean,

p,0.05) were identified between the obese liver ER translatome

and that of lean controls, with many of them confirmed and

validated by quantitative real time RT-PCR (Figure 2A–2B, Table

S1). The most significantly regulated genes include those involved

in bile acid synthesis (Cyp7b1, down in obese), bile acid transport

(Slco1a1, down in obese), estrogen sulfotransferase (Sult1e1, up in

obese) and cell death-inducing DNA fragmentation factor, alpha

Author Summary

Chronic diseases including obesity and associated meta-
bolic abnormalities have become the greatest threat to
human health worldwide. How metabolic organs and
organelles adapt to nutritional fluctuations, or fail to do so,
remains incompletely understood. To explore these issues,
we developed a new platform to explore translational
responses in the liver, a critical organ for metabolic
homeostasis. In this translatomic platform, we integrated
polysome profiling and global analysis of polysome-
associated mRNAs to systematically quantify protein
synthesis on each transcript in obesity and during fasting.
Our analysis demonstrated for the first time that protein
synthesis is progressively suppressed in the obese liver and
that the overall translatome profile of obese liver markedly
resembles that of fasting lean mice, particularly in
mitochondrial function and bile metabolism. We also
examined the physiological impact of some of these
alterations and concluded that aberrant bile acid metab-
olism in the obese liver represents a novel mechanism
contributing to hyperglycemia and continuous weight
gain. Together, our work reveals abnormal translational
regulation as a novel aspect of obesity that could impact
future directions in metabolic disease treatment, and we
believe translatome profiling represents a new approach
to unravel complex mechanisms regulating cellular func-
tion and disease pathology.

Dynamics of ER Translatome in Obesity and Fasting
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subunit-like effector A (Cidea, up in obese) (Table S1). Gene

ontology analyses (DAVID, v6.7 [31]) revealed two prominent

features associated with obese translatome (Figure 2C). First, we

found that the synthesis of proteins involved in transcription,

mRNA splicing and transport were all significantly downregulated

(Figure 2C, Table S1). Indeed, measurement of RNA synthesis by
32P-UTP tracing in the primary hepatocytes isolated from lean

and obese mice found significant reduction in the rate of UTP

incorporation into nascent RNA molecules under the obese

condition (Figure 2D). This concerted downregulation of tran-

scription, mRNA splicing and transport functions in the obese

translatome suggest a reinforcing mechanism deploying multiple

devices to keep protein synthesis under control in obesity. Second,

we observed strong dysregulation in the translation of many

mitochondrial proteins (45 up, 48 down). Consistent with the

overall down-regulation of protein synthesis in the obese liver, the

synthesis of mitochondrial ribosomal proteins was also reduced in

the obese translatome, suggesting a repression of mitochondrial

protein synthesis. We also observed down-regulation of proteins in

the mitochondrial electron transport complex but not those

involved in the tricarboxylic acid (TCA) cycle (Figure 2E). The

NAD-dependent deacetylase sirtuin 3 (SIRT3) has been shown to

be a major regulator of mitochondria function by modifying the

acetylation status of mitochondrial proteins [32–34]. We found

that SIRT3 is reduced in the obese translatome, and overall

mitochondrial protein acetylation is consequently increased in the

obese liver (Figure 2E and 2F, Table S1). In particular, we found

that the acetylation of succinate dehydrogenase (SDHA), a well-

established substrate of SIRT3, was significantly increased despite

the down-regulation of its total protein level (Figure 2F). Consis-

tent with these analyses, mitochondria function is indeed reduced

as measured by oxygen consumption rate in obese primary

hepatocytes compared to matching lean controls (Figure 2G).

Dynamic regulation of liver translatome by food
deprivation

Obesity is traditionally considered a state of over-nutrition and

dietary restriction is often the first line of treatment recommended

to improve glucose control and induce weight loss. Interestingly

however, in our studies we observed translational suppression,

protein catabolism, and down-regulation of oxidative phosphor-

ylation pathways in the obese translatome (Figure 1 and Figure 2),

suggesting that obesity may, in some aspects, resemble a condition

of nutrient deprivation at this site. This observation prompted us

to comprehensively evaluate the relationship between obesity and

nutrient regulation by systematic analysis of fractionated poly-

some-bound transcripts from lean and obese mice, comparing

fasted and fed states. We found that overnight fasting altered the

translation of ,1700 genes, with nearly one quarter of these genes

overlapping with the translatomic changes present between lean

and obese nonfasted controls (Figure 3A). Importantly, an

overwhelming majority of those changes (321 out of 391 genes)

are in the opposite direction of those incurred by obesity

(R2 = 20.71, Figure 3B), suggesting that a brief dietary restriction

has the ability to improve a broad section of molecular defects

associated with obesity. In particular, we found that SIRT3, which

is down-regulated in the obese liver, was partially restored by

fasting (Table S3). It has been previously shown that calorie

Figure 1. ER–associated polysome profiling of lean and obese liver tissues. (A) ER-associated polysome profile of lean and obese mouse
liver tissues without overnight fasting. Membrane bound polysomes were released from ER and centrifuged through sucrose gradients to separate
ribosomes according to their density with light ribosomes (ribosome subunits and single ribosomes) at the top and heavy ones (polysomes) at the
bottom of the separation columns. The sucrose gradients were then fractionated from top to bottom and the concentration of ribosomes in each
fraction was continuously monitored by UV absorbance (A260 for ribosomal RNA). The left to right of the X-axis correlates the top (light ribosome
subunits and single ribosome) to the bottom (heavy, multiple ribosomes assembled on a single transcript) of the sucrose gradient respectively. The Y-
axis A260 measures the total amount of ribosomal RNA present in each fraction. Ribosomes from equivalent amounts of ER were fractionated. (B–C)
ER associated polysome profile of lean and obese mouse liver tissues at 3 and 6 months of age without overnight fasting. (D) Area under the curve
measurements of the polysome fraction of lean and obese mouse livers at 3 months of age (n = 3, p,0.05, Student’s t-test). (E) Quantification of de
novo protein synthesis in lean and obese primary hepatocytes as measured by 35S-Methionine pulse-tracing (t = 30 minutes, n = 4, p,0.01, Student’s
t-test). (F) ER associated polysome profile of lean and obese mouse liver tissues at 3 months of age after overnight fasting. Equal amount of ER
isolated from lean and obese mouse livers were loaded onto the sucrose gradient for polysome fractionation.
doi:10.1371/journal.pgen.1002902.g001

Dynamics of ER Translatome in Obesity and Fasting
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restriction activates SIRT3 and reduces oxidative stress [35]. The

observed upregulation of SIRT3 by overnight fasting in the obese

liver suggests that regulatory mechanisms governing SIRT3

regulation are still intact, and the restoration of SIRT3 expression

by overnight fasting may improve mitochondria function in the

obese liver. Surprisingly, translatomic changes induced by

overnight fasting of lean mice bore little or no resemblance to

those that occurred in the obese mice, but mimicked many of the

changes present in the obese, nonfasted liver (Figure 3C–3D).

There is a large overlap between the gene sets regulated by fasting

in the lean liver and those different between the lean and obese

mice under nonfasted conditions: nearly a third (213 out of 678

genes) of the translatome down-regulated by fasting in the lean

mouse liver overlaps with the non-fasted obese translatome as

compared to the lean, and the direction and amplitude of

regulation are extremely well correlated (R2 = 0.8, Figure 3D). As

lean, overnight fasted mice bear little resemblance to obese fed

mice regarding their nutritional status, the gene sets commonly

regulated by obesity and fasting in the lean are likely downstream

of some shared hormonal environments such as a lack of insulin

signaling, enhanced glucagon action, and others that are yet to be

defined.

Regulation of systemic glucose homeostasis by bile acid
metabolism in the liver

It came to our attention that the genes most down regulated by

obesity and fasting, as compared to the lean-non-fasted state, are

involved in bile acid metabolism. The most prominent examples

included Cyp7b1, which catalyzes the synthesis of bile acid from

cholesterol through the acidic pathway and was downregulated by

32-fold, and Slco1a1, a transporter involved in the reuptake of bile

acids into the liver and that was suppressed by 100-fold (Figure 4A,

Figure 2. Genome-wide translational changes in the obese mouse liver. (A) Scatterplot of logP-values versus log2FC (fold of change, obese/
lean). Green denotes genes up-regulated in the obese liver ER translatome while red denotes downregulation. (B) Differential regulation of transcripts
as measured by microarray (Y-axis) and quantitative RT-PCR (X-axis) for 22 genes that were calculated as differentially regulated (student t-test,
P,0.05) by either one or both methods. (C) Gene Ontology analysis of differentially regulated genes in the ER translatome of nonfasted lean and
obese liver. X-axis denotes the number of genes categorized into each differentially-regulated function on the Y-axis. Color scale corresponds to logP-
values converted to positive values for functional categories comprised of upregulated (obese/lean) genes. (D) Measurement of RNA synthesis in lean
and obese primary hepatocytes based on 32P-UTP incorporation (t = 2 hours, n = 4, p,0.01, Student’s t-test). (E) Immunoblot measurement of
mitochondria protein expressions in the lean and obse mouse liver samples. (F) Immunoblot measurement of overall mitochondrial protein
acetylation (IB: a-Ac, top panel) and the acetylation of the succinate dehydrogenase (IP: a-Ac; IB: a-SDHA, middle panel). Acetylation of the pyruvate
dehydrogenase enzyme 1 (PDH-E1a) is shown (bottom panel) as a positive control for a-Ac immunoprecipitation as it is fully charged with acetyl-CoA
under both lean and obese conditions. (G) Measurement of mitochondria oxygen consumption rate (OCR) for lean and obese primary hepatocytes
(n = 7, p = 0.01, Student’s t-test).
doi:10.1371/journal.pgen.1002902.g002
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Tables S1 and S2) [36,37,38]. This pattern of regulation is

consistent with our previous ER proteomic studies [28] and

validated by transcript as well as immunoblot analysis performed

in independent liver samples (Figure 4B–4C). The dramatic

induction of these two genes in lean-fed mice, combined with their

defective expression in obese animals suggests a postprandial

mechanism involving bile acid metabolism that is defective in the

obese, insulin-resistant state. To test this hypothesis, adenovirus

mediated overexpression experiments were carried out to uncover

the biological relevance of the detected alterations in insulin-

mediated regulation of bile acid metabolism and how its defects

may contribute to metabolic abnormalities in obesity (Figure 5 and

data not shown). Transient overexpression of Cyp7b1 and Slco1a1

reduced weight gain in obese mice and normalized plasma glucose

levels (Figure 5A–5C). This improvement in systemic glucose

homeostasis, also evident in glucose tolerance tests (Figure 5D) was

also reflected in the glucose excursion profile in insulin tolerance

tests, although here the blood glucose levels at the onset were

already markedly reduced thus the excursion curves were less

dynamic (Figure 5E). There was little further reduction in blood

glucose from this low baseline value upon insulin administration,

suggesting these mice may not exhibit a significant alteration in

insulin sensitivity per se. Insulin receptor and Akt phosphorylation

per protein in the liver tissue were similar between groups

(Figure 5F). Taken together, these results suggest that the decrease

in plasma glucose levels upon exogenous expression of Cyp7b1 in

obese mice may be primarily driven by regulation of glucose

output, correlated with the downregulation of the gluconeogenic

gene expression (Figure 5G).

Regulation of hepatic steatosis and cholestasis by
Cyp7b1 overexpression

We carried out additional histological and biochemical charac-

terization of the Cyp7b1-overexpressing ob/ob mice to decipher

the mechanism underlying the improved basal glucose levels but

not insulin sensitivity. Cyp7b1-overexpressing mice exhibited

improved hepatic steatosis as measured by total triglyceride levels

and haemotoxylin Eosin (H&E) staining (Figure 6A–6C). On the

other hand, both hepatic cholesterol and bile acid levels were

increased in these mice (Figure 6D and 6E). The development of

hepatic cholestasis was accompanied by liver injury as evident

from the elevation of plasma bile acid levels, aspartate amino-

transferase (AST) and alanine aminotransferase (ALT) levels, as

well as the upregulation of inflammatory and fibrosis genes (iNOS,

Tgfb1, Timp1, Col1a1) in the Cyp7b1-overexpressing liver

(Figure 6F–6H). The development of cholestasis in the Cyp7b1-

overexpressing ob/ob liver was not caused by increased cholesterol

biosynthesis and bile formation. In fact, bile formation was greatly

reduced in the Cyp7b1-overexpressing mice, as measured by

gallbladder bile volumes (Figure 6I). Consistent with the reduction

in bile formation, the expressions of rate limiting enzymes involved

in cholesterol and bile acid biosynthesis (Hmgcs1 and Cyp7a1,

Figure 6J) were both downregulated. The development of

cholestasis is also not caused by dysregulation in bile acid export

or enterohepatic reuptake. As shown in Figure 6K, the expression

of bile salt export pump (BSEP/Abca1) was upregulated in the

Cyp7b1 overexpressing liver, while Na+-taurocholate cotransport-

ing protein (NTCP/Slc10a1), the main transporter required for

bile acid reuptake into the liver, was significantly downregulated.

Taken together, these results suggest the downregulation of

Cyp7b1 in the ob/ob liver has an unexpected role in maintaining

bile formation. Forced overexpression of Cyp7b1 improved

hepatic steatosis but eventually suppressed bile acid excretion

and caused cholestasis.

Discussion

By combining polysome profiling with microarray analyses, we

for the first time established a mammalian translatome in vivo. The

Figure 3. Dynamic regulation of the hepatic ER translatome by
fasting. (A) Illustration of the overlap between translatomic changes
induced by the development of obesity (obese nonfasted, ONF versus
lean nonfasted, LNF) and fasting in lean mice (lean fasted, LF versus lean
nonfasted, LNF). (B) Correlation scatterplot of fold changes (logarith-
mically transformed) for commonly regulated genes induced by obesity
(Y-axis) and fasting in the lean (X-axis). Each dot represents a gene that
is differentially regulated in the translatome in both comparisons (ONF
versus LNF and LF versus LNF). (C) Diagram illustrates the reversal of
obesity-induced translatomic changes (ONF versus LNF) by overnight
fasting in the obese mice (OF versus ONF). (D) Scatterplot of
logarithmically transformed fold changes induced by obesity (Y-axis)
and its reversal by overnight fasting (X-axis). Each dot represents a gene
that is differentially regulated in both comparisons (ONF versus LNF and
OF versus ONF). ‘‘R’’ denotes Pearson coefficiency. (E) Distribution of
commonly regulated genes between ONF versus LNF and LF versus LNF
or OF versus ONF. X-axis: P-values of LF versus LNF; Y-axis: P-values of OF
versus ONF; Z-axis: number of genes differentially regulated in the ONF
versus LNF comparison. Negative values correspond to downregulated
genes. I, genes upregulated in both ONF versus LNF comparison and LF
versus LNF comparison; II, genes commonly downregulated between
these comparisons; III, genes upregulated in ONF versus LNF
comparison but downregulated in OF versus ONF comparison; IV,
genes downregulated in the ONF versus LNF comparison but
upregulated in the OF versus ONF comparison.
doi:10.1371/journal.pgen.1002902.g003
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translatome analysis established herein is distinct from recently

published works based on deep sequencing of ribosome footprints

on mRNA [39,40]. As microarray platforms have been broadly

established, we believe our method offers a cost-effective

alternative to the aforementioned technology. Integration of

translatomic analyses with transcriptomic and proteomic analyses

in the future will greatly improve our understanding of the

molecular mechanisms governing cell biology and disease pathol-

ogy by distinguishing transcriptional, translational and post-

translational events.

Our analysis revealed several important insights that should

serve as the basis for future experimentation and other mechanistic

studies, as well as potential novel therapeutic strategies. One such

concept emerging from this work is that in obesity, liver

experiences a molecular fasting profile despite the presence of

abundant nutrients, suggesting the presence of peripheral systems

that govern hunger response. As obesity may represent a similar

hormonal environment to the lean fasted state (e.g. insulin resistant

versus insulin absent), we suggest that the gene set that is commonly

regulated by lean fasting and obesity harbors novel mechanisms

linking insulin resistance to the pathogenesis of metabolic disorders

including diabetes and cardiovascular disease. On the other hand,

the gene set reversed by overnight fasting in the obese translatome

may represent cellular networks that are mainly responsive to

nutritional signals, as overnight fasting is unlikely to significantly

alter the status of insulin signaling (and probably other major

hormones too) in the obese liver. Future work will need to decipher

whether and how these genes may contribute to the development

of overnutrition-induced obesity and insulin resistance or other

metabolic responses.

Another important and related finding here is the discovery of

novel regulatory patterns governing bile acid metabolism. Bile

acids have long been recognized as an important player in

facilitating the absorption of lipids in the small intestine, and

catabolism of cholesterol to bile acid accounts for ,50% of daily

cholesterol turnover [41]. More recently, evidence has emerged

suggesting that bile acids also function as hormones that regulate

systemic glucose and energy homeostasis [42–45]. However, the

role of bile acid metabolism in the pathogenesis of metabolic

syndrome is not well studied. Our results in this study suggest

that the Cyp7b1-catalyzed, alternative bile acid synthesis

pathway is a negative regulator of gluconeogenesis and hepatic

triglyceride accumulation, and this pathway is defective under

fasting or insulin resistant conditions. Thus, defective Cyp7b1

expression may be a component of obesity-related metabolic

pathologies including hyperglycemia and hepatic steatosis.

However, caution has to be exercised concerning the role of

Cyp7b1 in metabolic regulation, because constitutive overex-

pression of Cyp7b1 also led to the development of cholestasis.

The overall changes in the gene expression patterns of Cyp7b1-

overexpressing liver related to gluconeogenesis, lipogenesis,

cholesterol and bile acid synthesis and transport are consistent

with bile acid-mediated activation of FXR and SHP [42,46,47],

and CDCA, the main product of the Cyp7b1 pathway, is the

most potent agonist of FXR [46]. However, the accumulation of

cholesterol and bile acid in the Cyp7b1 overexpressing liver is

not due to increased synthesis, as Cyp7b1 contributes to only

,5% of total bile production in normal physiology [48,49], and

the main bile acid synthesis pathway is suppressed 50%

(Figure 6J). We suggest that extended overexpression of Cyp7b1

in the obese mouse liver has metabolic benefits but also carries

risks by altering hepatic bile acid and lipid excretion. However

further studies are warranted to explore the details of the

mechanism and reconsider the potential of bile acid-based

approaches for the treatment of diabetes and other metabolic

diseases associated with obesity [50,51].

Taken together, our experiments demonstrated tissue poly-

some profiling as a powerful approach to explore novel

Figure 4. Dysregulation of bile acid metabolism in the obese ER translatome. (A) Heatmap of 50 most differentially regulated genes in the
obese ER-associated translatome (25 up, 25 down) that are also suppressed in the lean fasted liver. ONF: obese non-fasted, LNF: lean non-fasted, OF:
obese overnight-fasted, LF: lean fasted. Fold changes are calculated based on the mean of all ten samples. (B) Validation of feeding-induced
upregulation of Cyp7b1 and Slco1a1, but not CD36 and Igfbp2, in the translatome of lean mouse liver. (C) Western blot of Cyp7b1 from the liver of
lean and obese mice with or without overnight fasting.
doi:10.1371/journal.pgen.1002902.g004

Dynamics of ER Translatome in Obesity and Fasting
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mechanisms underlying homeostatic responses that are dynam-

ically regulated in response to nutrient intake and disease

pathology, which would not otherwise be apparent. Application

of this platform to other metabolically critical organs may

provide additional insights into disease mechanisms. In partic-

ular, muscle exhibits strong defects in protein metabolism and

mitochondrial dysfunction [21,52–56]. It will be extremely

interesting to study how the translatome profile of obese muscle

tissue is different from its lean counterparts and how these

differences may contribute to muscular dystrophy and glucose

intolerance in diabetic patients.

Materials and Methods

Ethics statement
Animal use and care in this study strictly follows the Guidelines

For The Use Of Non-Human Vertebrate Animals In Research

And Teaching, as established by Harvard University’s Institutional

Animal Care and Use Committee (IACUC).

Animals
Homozygous male leptin deficient (ob/ob) and wild type

littermates in the C57BL/6J background were either bred in

house or purchased from Jackson Laboratories (000632). All mice

were maintained on a 12-hour-light/12-hour-dark cycle in a

pathogen-free barrier facility with free access to water and regular

chow diet (Rodent Diet 5058). Mice were sacrificed at three

months of age for polysome fractionation unless otherwise noted.

All animal experimental procedures were approved by the

Harvard University IACUC.

ER–associated polysome profiles
The protocol for separating cytosol and ER-bound polysomes in

liver tissue was adapted from Ramsey and Steele [57]. Briefly,

Figure 5. Cyp7b1 and Slco1a1 overexpression regulates glucose homeostasis. (A) Examination of Cyp7b1 expression in the liver of ob/ob
mice transduced with control and Cyp7b1 over-expressing adenoviruses by quantitative RT-PCR and immunoblot analysis. (B) Changes of body
weight in control and Cyp7b1 and Slco1a1 overexpressing mice in a 14 day period post-virus injection. (C) Glucose levels of control and experimental
mice 5 days post-virus injection. (D–E) Insulin and glucose tolerance test of control and experimental mice with bolus injections of insulin (1.0 IU/kg)
or glucose (0.75 g/kg) and measurement of plasma glucose levels at indicated times (n = 9). (F) Immunoblot analysis of insulin signaling stimulated by
portal vein injection as indicated by insulin receptor (IR) and AKT phosphorylation. The graph on the right side shows the quantitation of the data
after correction for total protein amount. (G) Expression of gluconeogenic genes in the liver of control and experimental mice as measured by with
real time, quantitative RT-PCR (n = 4). ‘‘*’’ denotes p,0.05 comparing control versus Cyp7b1-overexpressing mice, and ‘‘#’’ denotes p,0.05
comparing control versus Slco1a1 overexpression, Student’s t-test. PEPCK: phosphoenolpyruvate carboxykinase; G6Pc: Glucose-6-phosphatase
catalytic subunit.
doi:10.1371/journal.pgen.1002902.g005
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mice with or without overnight fasting were anesthetized by

tribromoethanol and perfused with 20 ml of 0.25M sucrose and

1 mM MgCl2 solution. Livers were excised, homogenized in 6

times the volume of 0.25M sucrose/HKMG buffer (50 mM

HEPES pH 7.2, 75 mM KCl, 5 mM MgCl2, 3 mM Glutathione),

and centrifuged to obtain an ER pellet. The ER pellet was then

resuspended in 33% ribosome free cell sap. The membrane bound

polysomes were released into the supernatant by stepwise addition

of Triton X-100 and sodium deoxycholate to 1% followed by

centrifugation at 13,000 rpm for 10 min to pellet all membrane

material. Equal amount of microsomes in a total volume of 200 ml

were separated onto 11 ml of 10–50% sucrose gradient by

centrifugation at 35,000 rpm for 3 hours using SW41 rotor. The

sucrose gradient was then fractionated and UV absorption at

260 nm was recorded.

Isolation of polysome-associated RNA and quantitative
real-time RT–PCR

Sucrose fractions containing .3 polysomes were pooled and

total RNA was extracted with 3 volumes of Trizol LS

(Invitrogen,CA) and precipitated with isopropanol and high salt

solution (0.8M Sodium Acetate+1.2 M NaCl) according to the

manufacturer’s recommendations. A total of 2 mg of RNA was

used for cDNA synthesis using High Capacity cDNA archiving kit

(Applied Biosystems). The SYBR real-time PCR system was used

to quantify transcript abundance for genes of interest (Table S4).

Either 18S or 28S rRNA was used for internal control.

RNA preparation for Affymetrix microarray analysis
For each experimental sample, RNA quality was assessed by

Agilent Bioanalyzer 2100 RNA Nano LabChip analysis system.

Under standard conditions processing of RNAs for GeneChip

Analysis was in accordance with methods described in the Affymetrix

GeneChip Expression Analysis Technical Manual (rev. 1.3), as

subsequently detailed. Synthesis of cDNA first and second strand is

performed using the GeneChip Expression 39-Amplification Re-

agents One-Cycle cDNA Synthesis system (P/N 900431). Cleanup

of the double stranded product is carried out according to standard

Affymetrix protocols using the Affymetrix GeneChip Cleanup

Module (Affymetrix Catalog # 900371). In vitro transcription

(IVT) is performed using the GeneChip Expression Amplification

Reagents system- 30 reactions (P/N 900449) and is carried out

according to the standard Affymetrix protocols. Quantification of the

IVT samples is carried out on a Bio-Tek UV Plate Reader.

Microarray hybridization, scanning, normalization, and
annotation

Hybridization is carried out according the Affymetrix Gene-

Chip Manual (rev. 1.3). Twenty micrograms of IVT material is the

nominal amount used on the GeneChip arrays. Affymetrix

hybridization ovens are used to incubate the arrays at a constant

temperature of 45uC overnight. Preparation of microarrays for

scanning is carried out with appropriate Affymetrix wash protocols

matched to the specific chip type on a Model 450 Fluidics station.

Affymetrix GeneChip Operating Software (GCOS) operating

system controls the Fluidics station process. Scanning is carried out

on an Affymetrix Model 3000 scanner with autoloader. The

Affymetrix GCOS operating system controls the scanner and data

acquisition functions. GCOS maintains the mediated first level

data analysis and desktop data management for the entire

GeneChip System. Chip library files specific to each array and

necessary for scan interpretation are stored on the computer

workstation controlling the scanner and are updated regularly as

necessary when updates are made available from Affymetrix.

Subsequent data analysis was carried out using the analysis tools

contained in GenePattern. Microarray data were deposited in the

public Gene Expression Omnibus (GSE39375).

Figure 6. Cyp7b1 overexpression causes cholestasis. (A–C)
Changes of hepatic steatosis in the liver of control and experimental
mice as measured by liver triglyceride levels and H&E staining. White
vesicles indicate fat infiltration. (D–E) Measurement of hepatic
cholesterol and bile acid levels in the control and experimental mice.
(F–G) Measurement of plasma ALT/AST levels and bile acid levels from
the control and experimental mice. (H) Transcript levels of genes
involved in inflammation and fibrosis in the liver of control and
experimental mice as measured by qPCR. (I) Measurement of total bile
collected from the gallbladder of control and experimental mice after
6 hours of food withdrawal. (J–K) Measurement of transcript levels of
genes involved in cholesterol and bile synthesis and transport in the
liver tissues of control and experimental mice with real time,
quantitative RT-PCR. ‘‘*’’ denotes p,0.05 (Student’s t-test, n = 6 except
for qPCR, in which n = 4/group).
doi:10.1371/journal.pgen.1002902.g006
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Statistical and bioinformatic analysis
A variety of software packages were applied to identify

differentially regulated genes from the microarray including

SAM, LIMMA, DEDS as well as Student’s t-test. The result of

Student’s t-test was presented herein as it is most consistent with

quantitative RT-PCR validations. Gene Ontology analysis for

differentially regulated genes was carried out with the database for

annotation, visualization and integrated discovery (DAVID, v6.7,

[31]). Heatmap was generated in MeV [58]. Graph and charts of

statistical analyses were plotted in R.

Primary hepatocyte isolation
For the isolation of primary hepatocytes, lean and obese mice

were anesthetized by ketamine/xylazine, perfused with HBSS

buffer (Invitrogen,CA) supplemented by 1 mM EGTA and 5 mM

of glucose and then digested with Collagenase X(WAKO, Japan)

at 0.5 mg/mL dissolved in HBSS buffer supplemented with

1.2 mM CaCl2 and 5 mM glucose. Primary hepatocytes released

by collagenase digestion were sedimented at 50 g for 1 minute and

washed for three times with medium 199 (Invitrogen, CA). The

viability of cells was checked by tryptophan blue (Invitrogen, CA).

Measurement of protein and RNA synthesis in primary
hepatocytes

For the measurement of protein and RNA synthesis in the lean

and obese primary hepatocytes, equal numbers (26105/well) of

cells were plated on 12-well BioCoat plates (BD Bioscience, MA)

for overnight. Cells were then washed in PBS for three times, re-

cultured in DMEM minus methionine supplemented with 10%

dialyzed FBS for half an hour to depleted internal stores of

methionine, and then pulse chased with either 35S-Methionine or
32P-UTP in the same medium for another 30 minutes. Cells were

washed three times with PBS, re-cultured in regular DMEM+10%

dialyzed FBS for either 30 minutes (for measuring protein

synthesis) or 2 hours (for measuring RNA synthesis). Upon

termination of the experiment, cells were lysed, protein and

RNA content were extracted and precipitated with either acetone

(protein) or ethanol (RNA), resuspended in water and their

radioactivities were measured. Protein and RNA synthesis rates

were normalized to total cellular proteins prepared from parallel

experiments without radioactive labeling.

Mitochondria oxygen consumption in primary
hepatocytes

Mitochondrial oxygen consumption rate (OCR) was measured

in real time in whole hepatoytes using the XF24 extracellular flux

analyzer from Seahorse Bioscience [59]. Hepatocytes were seeded

on collagen-coated XF24 V7 plates (Seahorse Bioscience, MA) at

46104 cells/well, allowed to attach for at least 2 hours, rinsed

once and kept in 600 ml of sodium bicarbonate-free DMEM

medium (Sigma, MO) supplemented with 10 mM glucose and

1 mM sodium pyruvate. After baseline measurements, the

complex I inhibitor rotenone (Sigma, MO) was injected at 1 mM

final concentration to determine the total mitochondrial oxygen

consumption. Parallel samples were run in the absence of any

treatment to ensure stable baselines as a quality control parameter

for the bioenergetic health of the cells. The respiratory rate was

measured at 37uC in 8 replicates (independent wells) for each of

the seven pairs of lean and obese mice. Rates were calculated and

analyzed using the Seahorse XF24 v1.7.0.74 software.

Adenovirus-mediated gain-of-function experiments
The open reading frames (ORF) of mouse Cyp7b1 and Slco1a1

were amplified, cloned into the pENTR/D-TOPO vector, and

then recombined into the pAD/CMV/V5-DEST vector. Adeno-

viruses for constructs of interest were produced and amplified in

293A cells, purified using CsCl column, desalted, and 0.15 OD of

virus particles were used for each mouse. Blood glucose levels were

measured after 6 hours of food withdrawal (9am–3pm) at 5 days

post-virus injection and at the time of harvest (9–12 days). Insulin

and glucose tolerance test were performed with a bolus,

intraperitoneal injection of insulin (1 IU/kg) or glucose (0.75 g/

kg) and plasma glucose levels were measured every 15 or

30 minutes. The measurement of hepatic triglyceride (Sigma,

MO), cholesterol (WAKO, VA) and bile acids (Cayman Chem-

icals, MI) as well as plasma bile acid content and serum alanine

aminotransferase (ALT) and aspartate aminotransferase (AST)

levels were made according to manufactures’ recommendations

(Cayman Chemicals, MI and BioVision, CA). For histological

analysis, liver tissues were fixed in 10% formalin solution, and

sectioned for Hematoxylin and Eosin (H&E) staining.

Protein lysate preparation and Western blot analyses
Protein lysate preparation and immunoblot analyses were

carried out essentially as described by Furuhashi et al [60].

Briefly, following 6 hours of food-withdrawal, ob/ob mice were

euthanized in CO2 chambers and tissues of interest were collected

and snap frozen in liquid nitrogen. Protein lysates were prepared

in a cold lysis buffer containing 50 mM Tris-HCl (pH 7.0), 2 mM

EGTA, 5 mM EDTA, 30 mM NaF, 10 mM Na3VO4, 10 mM

Na4P2O7, 40 mM b-glycerophosphate, 0.5% NP-40 and 1%

protease inhibitor cocktail, homogenized with polytron homoge-

nizer, and followed by two steps of centrifugation (3000 rpm,

10 minutes and 13,000 rpm, 10 minutes). Total protein contents

were measured by Bradford method (Bio-Rad, CA), and equal

amounts of protein were subjected to SDS–polyacrylamide gel

electrophoresis, transferred to 0.2 m PVDF membranes (What-

man) and blocked with either 5% BSA or non-fat milk in TBS

buffer containing 0.1% Tween 20. Antibodies used in this study

include: AKT1/2/3, p-AKT1/2/3, ATP5J, IRb, NDUFV2,

PDH-E1a, SDHA, TK2 (Santa Cruz), CYP7B1 (ABNOVA),

Acetylated proteins, SIRT3 (Cell Signaling), p-IRb (Calbiochem)

and Actin (Amersham Biosciences). Immunodetection analyses

were accomplished using the enhanced chemiluminescence system

(Roche Diagnostics). For immunodetection of acetylated SDHA

and PDH-E1a proteins, a total of 5 mg proteins were incubated

with 10 mg of anti-Acetyl-Lysine antibodies (Cell Signaling) and

pulled down with 40 ml of Dynabeads (Invitrogen). Five percent of

the elution is loaded onto SDS-PAGE for the detection of target

proteins.

Supporting Information

Table S1 List of all 2261 genes/probes differentially regulated in

the lean and obese ER translatome.

(XLS)

Table S2 List of 296 genes/probes commonly regulated under

lean-fasting condition and obesity.

(XLS)

Table S3 List of 321 genes/probes that are differentially

regulated by obesity but corrected by overnight fasting.

(XLS)

Table S4 List of oligos/probes used in this study.

(XLS)
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