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Abstract
The intraclass correlation coefficient (ICC) is a fundamental parameter of interest in cluster
randomized trials as it can greatly affect statistical power. We compare common methods of
estimating the ICC in cluster randomized trials with binary outcomes, with a specific focus on
their application to community-based cancer prevention trials with primary outcome of self-
reported cancer screening. Using three real data sets from cancer screening intervention trials with
different numbers and types of clusters and cluster sizes, we obtained point estimates and 95%
confidence intervals for the ICC using five methods: the analysis of variance estimator, the Fleiss-
Cuzick estimator, the Pearson estimator, an estimator based on generalized estimating equations
and an estimator from a random intercept logistic regression model. We compared estimates of the
ICC for the overall sample and by study condition. Our results show that ICC estimates from
different methods can be quite different, although confidence intervals generally overlap. The ICC
varied substantially by study condition in two studies, suggesting that the common practice of
assuming a common ICC across all clusters in the trial is questionable. A simulation study
confirmed pitfalls of erroneously assuming a common ICC. Investigators should consider using
sample size and analysis methods that allow the ICC to vary by study condition.
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Introduction
In cluster or group randomized trials, clusters of individuals such as primary care practices,
geographic regions, families or community organizations are randomized to study
conditions. Methodological research on such trials has increased dramatically in recent years
as challenging issues are increasingly recognized for such trials [1, 2].

A key feature of cluster randomized trials is that outcomes of individuals within a cluster are
correlated rather than independent. The intraclass correlation coefficient (ICC), usually
denoted ρ, provides a quantitative measure of within-cluster correlation. The ICC is
variously defined as the Pearson correlation between two members of the same cluster or the
proportion of the total variance in the outcome attributable to the variance between clusters.
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The ICC is a fundamental parameter of interest in cluster randomized trials. A cluster
randomized trial typically has lower power than an individually randomized trial with the
same number of subjects; the decrease in power depends on ρ through the variance inflation
factor 1+(m − 1)ρ, where m is average cluster size [2]. Estimates of the ICC are needed at
the design stage for sample size and power calculations, which are greatly affected by the
value of ICC. The method of analysis must also account for correlation of responses. In
some situations, the ICC itself may be an object of inference. For these reasons, it is
important to have reliable estimation procedures for the ICC.

Studies that randomize geographical communities or primary care practices have become
common and have been relatively well studied; study of the ICC and its estimation in trials
that randomize other types of clusters have received less attention. Examples include the
Korean Healthy Life Study [3], in which Korean churches in Los Angeles County,
California were randomly assigned to intervention or control conditions, and the outcome,
self-reported receipt of hepatitis B testing, was assessed among church members. Another
example is the hepatitis B control trial among Cambodian Americans conducted by Taylor el
at. [4], which randomly sampled households from an electronic database of telephone
listings and attempted to recruit one man and one woman from each household, with the
primary outcome being self-reported receipt of hepatitis B testing. Further examples of
diverse cluster types are in [5]. The nature of the clusters and outcome measures may affect
the ICC. The ICC may be expected to be higher in families or small community-based
organizations than in large geographical regions where members of the cluster may have
little direct interaction with one another. The ICC may also be related to the outcome
variable; e.g., self-reported outcomes and objectively measured outcomes may have
different ICCs.

In this paper, we compare methods of estimating the ICC for binary data, with a focus on
application of these methods to community-based cluster randomized trials of cancer
prevention interventions with self-reported screening outcomes. There is a profusion of
point and interval estimators of the ICC for binary data in the literature; examples include
Pendergast et al [6], Ridout el at.[7], Zou and Donner [8], Turner et al. [9] and Chakraborty
et al.[10]. A number of authors have compared the performance of various estimators. They
include Ridout el at.[7], Evans et al. [11] and Turner et al. [12]. We compare five methods
of estimating the ICC for binary data. Three have closed-form asymptotic variance formulae
[8] and two are based on regression models. Three of these methods have been previously
compared [7, 8] and our work here to further compare them with estimates from the
generalized estimating equation (GEE) model and the random effects logistic model is new.
Our work to compare arm-specific ICC estimates to overall ICC estimates by these methods
also adds to the literature. We apply the methods to three real data sets from cluster
randomized trials to promote cancer screening and compare their point and confidence
interval estimates for the ICC. We use simulation studies to compare performance of the
methods and discuss the practical implications of our findings for the design and analysis of
cluster randomized trials.

Methods
Methods of Estimating the ICC

Suppose there are k clusters and the ith cluster has ni individuals. The response of the jth

individual in the ith cluster is a binary variable Yij with Yij = 1 for success and Yij = 0 for
failure. For example, in the context of the Korean Healthy Life Study, we have Yij =1 if the
subject is screened for hepatitis B by six months after baseline interview and Yij = 0 if the
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subject is not. Let  be the total number of successes from the ith cluster and let N =
Σni be the total number of observations in the data set.

The five estimators of the ICC that we consider are: (1) the analysis of variance (ANOVA)
estimator, (2) the Fleiss-Cuzick estimator, (3) the Pearson estimator, (4) the GEE estimator,
and (5) an estimator from the random intercept logistic model. The first three estimators are
based on the common correlation model [7, 8, 13], which assumes that the probability of
success is the same for all individuals, Pr(Yij = 1) = π for all i and j, and that the responses
of subjects from different clusters are independent but responses of any two subjects in the
same cluster have a common correlation, Corr(Yij, Yil) = ρ for j ≠ l, where the value of ρ is
the same for all clusters. The formulae for these three estimators are reported in Ridout et al.
[7].

(1) The ANOVA estimator—The ANOVA estimator was originally proposed for
continuous data but is also used for binary data. The ANOVA point estimator for the ICC is
given by

(1)

where

 and 

Here, MSB and MSW are between-group and within-group mean squares from a one-way
analysis of variance of the binary data. The variance of the estimated ICC is given by

(2)

where λ = (N − k)[N − 1 − nA (k − 1)]ρ + N(k − 1)(nA − 1).

(2) The Fleiss-Cuzick estimator—The Fleiss-Cuzick estimator is a kappa-type
estimator. Suppose that two individuals from the same cluster have probability α of having
the same response and two individuals from different clusters have probability β of having
the same response. It can be shown that the ICC is
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The estimated value of β is β̂ = 1 − 2π̂ (1 − π̂ ) where  and an unbiased estimator of

α using data from the ith group is . A weighted average of these estimates
with weights proportional to (ni − 1) is used to estimate α. The Fleiss-Cuzick estimator for
the ICC is

(3)

and its variance is given by

(4)

(3) The Pearson estimator—The Pearson estimator is based on direct calculation of the
correlation between observations within each cluster. For binary data, this estimator is given
by

where  and the weight wi is user-selected and satisfies Σni (ni − 1)wi =
1. If we give equal weight to each pair of observations, this estimator becomes

(5)

where  and its variance is given by

(6)

Confidence intervals for the above three estimators can be directly computed using their

asymptotic standard errors as . However, previous studies have shown that
linear confidence intervals do not perform well with extreme values of π and ρ or when
cluster size is small [8, 14]. An alternative is to use a modified Wald test based on the
equality
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(7)

where Vãr(ρ̂) is the variance expression with π̂ instead of π [8, 15, 16]. This equation
provides two roots which are the lower and upper bounds of the confidence interval. We
calculate confidence intervals using both the linear method and the modified Wald test
method for the ANOVA, Fleiss-Cuzick and Pearson estimators.

Multiple regression is sometimes used in cluster randomized trials in order to obtain an
estimate of the treatment effect controlling for other covariates and thus it is desirable to
have an estimate of the ICC from a regression model. Let Yij be the binary response and let
Xij be a vector of covariates from the jth individual in the ith cluster. We consider two
popular regression modeling approaches, generalized estimating equations and random
effects logistic regression.

(4) ICC Estimation from the GEE Method—The GEE method is an extension of the
generalized linear model. The model has three parts: (1) μij = E(Yij | Xij), the conditional
expectation of the response given the covariates; (2) a link function linking the conditional

expectation to the covariates, ; and (3) the conditional variance of Yij, given
by Var(Yij| Xij) = φv(μij), where φ is a scalar parameter. In the general case, the conditional
within-cluster association is assumed to be a function of a set of association parameters α. It
can be shown that {k1/2 (β̑ − β)T}, k1/2 (α̑ − α)T} has an asymptotic normal distribution [17]
and the estimates of α and β can be iteratively solved using a modified scoring algorithm.
Details can be found in [17–19].

For binary outcomes, a logistic link function is typically used, such that we have

where pij = E(Yij | Xij) = Pr (Yij = 1 | Xij) and Var(Yij |Xij) = pij (1 − pij) and the scalar
parameter is set to one, i.e., φ = 1. In cluster randomized trials, it is typically assumed that
subjects from different clusters are independent and the correlation between pairs of subjects
in the same cluster is identical, which implies an exchangeable correlation structure for
responses within cluster. Hence we have a simple with-cluster association structure
conditional on cluster, Corr(Yij, Yik) = αi for cluster i. We obtain estimates assuming that
either overall or within each study arm, αi = α. The estimated ICC is obtained as the
estimated Pearson correlation among the residuals of the cluster members:

(8)

where . We note that the ICC estimates given by GEE can be negative;
this is also true of the ANOVA, Fleiss-Cuzick and the Pearson estimates for the ICC. We
also note that these methods do not make an assumption regarding the distribution of the
cluster-level proportions.

(5) ICC Estimation from the Random Intercept Logistic Model—The random
intercept logistic model is given by
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where it is typically assumed that the random effect bi is normally distributed with mean 0

and unknown variance . The random intercept logistic model can be viewed as a latent-
response model,

where Yij = 1 if  and 0 otherwise, and εij is assumed to have a logistic distribution with
mean 0 and variance π2/3. ICC is defined as the ratio of between-cluster variance to total
variance, with the estimated ICC given by

(9)

where  is the estimated variance of the random intercept bi. From equation (9), we can see
that unlike the other ICC estimators we discuss, the estimated ICC from the random
intercept logistic model cannot be negative. In addition, whereas the other estimators are on
the proportion scale, this ICC is on the logistic scale. On this scale, cluster and individual
effects are assumed additive and the within-cluster variance π2/3 does not depend on within-
cluster prevalence.

The random intercept logistic model is a type of generalized linear mixed model (GLMM),
for which there are several methods of estimation, including penalized quasi-likelihood,
Laplace approximation, Gauss-Hermite quadrature and Markov chain Monte Carlo [20].

These methods yield a point estimate for , from which a point estimate of the ICC can be
obtained using equation (9). Methods for obtaining a standard error or confidence interval

for  or the ICC, however, are less well-developed. The sampling distribution of variance
estimates in GLMMs is in general strongly asymmetric [20, 21]; even if a standard error is
produced by an estimation method, it may be a poor characterization of uncertainty and
linear confidence intervals are likely to have poor coverage properties. Given this difficulty
and the fact that this ICC is on a different scale than the others, in this paper we confine our
attention to estimating and reporting point estimates of the ICC from the random intercept
logistic model for comparison to the point estimates of the ICC obtained from the other
methods.

Data Sets
We apply these five estimation methods to three data sets collected from cancer screening
intervention trials conducted through the Jonsson Comprehensive Cancer Center at the
University of California, Los Angeles.

(1) The Breast Cancer Education Program for Samoan Women (“Samoan”
study)—This study was a cluster-randomized trial designed to increase rates of
mammogram usage in women of Samoan ancestry [22]. In the trial, Samoan churches in
southern California were randomized to intervention and control arms. Women at
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intervention churches participated in a culturally appropriate breast cancer education
program that included specially developed English and Samoan language breast cancer
educational booklets and skill building and behavioral exercises delivered through four
interactive group sessions. The control condition was usual care. The outcome was self-
reported receipt of a mammogram at follow-up.

(2) The High Risk Colon Study (“Colon” study)—This study was a cluster-
randomized trial designed to increase colorectal cancer (CRC) screening among high-risk
individuals [23, 24]. In this study, CRC cases were identified through the California Cancer
Registry and asked to provide contact information for their first-degree relatives aged 40 to
80 years; relatives who were not adherent to CRC screening guidelines were then recruited
into the study. Relatives within the same family composed clusters, which were randomized
to intervention or control arms. Subjects assigned to the intervention condition received a
tailored print intervention and, if not screened within 6 months, brief telephone counseling.
The control group received a generic CRC screening pamphlet. The outcome was self-
reported receipt of CRC screening at follow-up.

(3) The Filipino American Health Study (“Filipino” study)—This trial was designed
to increase CRC screening among Filipino Americans [25–27]. Subjects recruited from
community organizations were organized into smaller groups and these groups were
randomized to either of two intervention arms or a control arm. Technically, this study
design may be classified as an individually randomized group treatment trial [28] rather than
a cluster randomized trial; however, the importance and estimation of the ICC in such trials
are similar. The intervention consisted of a small-group educational session to encourage
CRC screening along with take-home print materials, a reminder letter and a letter to
participants’ providers (Intervention1). One intervention arm (Intervention2) additionally
received a free fecal occult blood test kit. The control arm received small-group education
about the health benefits of physical activity. Here, we model clustering by group. The
outcome was self-reported receipt of CRC screening.

Computation
R software [29] was used for computations. For the ANOVA, Fleiss-Cuzick and Pearson
estimators, we wrote R functions to calculate point estimates and confidence intervals, using
formulae provided by [8]; both Wald and linear confidence intervals were constructed. For
the GEE model, we used the geese command in the R package geepack [30] to obtain point
estimates and standard errors for the ICC, which were used to construct linear confidence
intervals. For the random intercept logistic model, the R package lme4 [21] was used to
obtain the variance of the random intercept term, from which a point estimate of the ICC
was obtained using equation (9).

For each study, we obtained an estimate of the ICC for the overall data set and estimated the
ICC for each study arm separately; for the latter, we applied the method to subsets of the
data corresponding to the study arm. When obtaining estimates of the ICC for the overall
data set using GEE or the logistic model, covariates indicating treatment arm were included
in the linear predictor.

Results
Characteristics of the three data sets are provided in Table 1. The numbers of clusters and
cluster sizes varied among the studies. The Samoan study had a moderate number of clusters
of moderate size, the Colon study had a large number of small clusters, and the Filipino
study had a moderate number of small to moderate sized clusters. In the Samoan and Colon
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studies, the estimated success probability (proportion screened) in the control group was
similar to that in the intervention group. In the Filipino data set, the estimated success
probability was higher in the two intervention groups than the control group.

As displayed in Figure 1, the distributions of the cluster-level proportions varied among the
data sets. The cluster-level proportions were well-dispersed over the possible range in the
Samoan study, bimodal in the Colon study with frequent occurrences of 0’s and 1’s, and
skewed in the Filipino study. A distribution with peaks at 0 and/or 1 may be expected when
many clusters are of size 1. This suggests violation of the assumption of normality of the
random effect in the logistic model.

The estimated ICCs for the three data sets and their standard errors and 95% confidence
intervals obtained using the five methods are provided in Tables 2–4. For all three data sets,
there was little difference in point estimates for the overall ICC from the ANOVA, Fleiss-
Cuzick and Pearson estimators (Tables 2–4, Overall ICC rows). More divergence between
these three estimators was observed when calculating arm-specific ICCs. In particular, the
arm-specific ICCs from the Pearson estimator were different from those given by the other
two methods for the Samoan and Colon data sets. The Pearson estimate was sometimes
higher and sometimes lower.

The point estimates of the overall ICC from the GEE model were lower than the ANOVA,
Fleiss-Cuzick and Pearson estimates in all three data sets. This was most striking for the
Filipino data set, which had an overall ICC of 0.033 by the GEE estimator but 0.113, 0.110
and 0.127 by the ANOVA, Fleiss-Cuzick and Pearson estimators, respectively. For the arm-
specific ICCs, the GEE model gave point estimates similar to the Pearson estimator, which
is expected based on their similar method of calculation. In most cases, the random intercept
logistic model ICC was larger than the proportion-scale ICCs, with a few exceptions.

Patterns of variation in the ICC by study arm differed among the studies. In the Samoan
study (Table 2), for all methods, the estimated ICCs for the overall sample, intervention arm
and control arm were very different, with the intervention arm showing the highest ICCs
(range of 0.303 to 0.372), the control arm showing much lower ICCs (0.052–0.103) and the
overall ICCs being intermediate between the two (0.192–0.255). In the Colon data set (Table
3), the overall and arm-specific ICCs were similar. In the Filipino data set (Table 4), the
overall ICCs given by the ANOVA, Fleiss-Cuzick and Pearson estimators were
unexpectedly higher than the arm-specific ICCs from these estimators. In addition, in the
Filipino study, the control group was distinctive in having negative ICCs by the ANOVA,
Fleiss-Cuzick, Pearson and GEE estimators. Only the GEE method could provide a valid
standard error and confidence interval in the case of negative ICC. The ICC from the
random intercept logistic model was set to 0 because the ICC from such models cannot be
negative.

The standard errors and confidence intervals were roughly similar for the ANOVA, Fleiss-
Cuzick and Pearson estimators. Throughout, the GEE model gave the smallest standard
errors and narrowest confidence intervals with a single exception, for the first intervention
arm of the Filipino data set (Table 4). In general, confidence intervals by the various
methods were wide and overlapped. The linear confidence intervals tended to have lower
limits that ranged more deeply into negative values.

Simulation Studies
We investigated the performance of the ICC estimation methods using two simulation
studies. The aim of Study 1 was to assess the performance of the methods in terms of bias of
point estimates and coverage probability of confidence intervals when π and ρ are
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homogeneous across clusters, which is the assumed underlying model for the ANOVA,
Fleiss-Cuzick and Pearson methods, and for the GEE method when conditioning on
covariates. The scenario of homogeneous π and ρ could be encountered when estimating the
ICC for a single study arm, or for the overall data when the ICC and success probability are
the same in the study arms. The aim of Study 2 was to investigate the ICC estimates yielded
by the methods in the context of a two-arm trial in which π, ρ or both vary between
treatment arms but the method is asked to estimate a single ICC value over the entire data
set, as is common in practice.

We simulated correlated binary data using the method of Emrich and Piedmonte [31], which
is an indirect method of generating correlated binary data from a multivariate normal
distribution. Suppose we want to simulate a J -dimensional vector Y with binary elements
Y1, …., YJ with E(Yj) = πj and Corr(Yj, Yk) = ρjk, j ≠ k. The first step of the method is to
solve the equation

where Θ denotes the cumulative distribution function for a standard bivariate normal random
variable with correlation coefficient δ jk and w(π) denotes the π th quantile of the standard
normal distribution, for δjk. The second step is to simulate a J -dimensional multivariate
normal random variable W = (W1, …, WJ)T with mean 0 and correlation matrix Σ = (δjk).
The third step is to generate the vector Y with components Yj = I (Wj ≤ w(πj )) for j = 1, …,
J. It can be shown that under this set-up, E(Yj) = πj and Corr(Y j, Yk) = ρjk. To generate data
following the common correlation model, we set πj = π and ρjk = ρ.

In Study 1, each simulation scenario had 10 clusters each of size 5, 10 and 15, for a total of
30 clusters. The true ICC values were ρ = 0.02,0.05,0.10,0.25; for each value of ρ, we
considered π = 0.1,0.2,0.3,0.4 and 0.5; higher values of π are not presented due to
symmetry about 0.5. We generated 2000 simulated data sets for each combination of π and
ρ and estimated the ICCs using the various methods. We estimate bias as the mean of ρ̂ − ρ
over 2000 replications and relative bias as the mean of (ρ̂ − ρ)/ρ. The empirical coverage
probability (ECP) for 95% confidence intervals for ρ was calculated as the percentage of
replications in which the confidence interval contained the true value. For the ANOVA,
Fleiss-Cuzick and Pearson methods, we obtained both Wald and linear confidence intervals.
For GEE, only linear confidence intervals were available. Since the ICC from the random
effects logistic model is on the logistic scale but data were simulated on the proportion scale,
we did not assess bias of the random intercept logistic model ICC in the simulation study.
However, we obtained and report the mean ρ̂ for the random intercept logistic model for
each setting for comparison with the other estimates.

In Study 2, each simulation scenario had two arms, with each arm having 10 clusters each of
size 5, 10 and 15, for a total of 30 clusters in each arm and 60 total. The specified
parameters were (π1, π2, ρ1, ρ2) where there were three groups of settings: same π different
ρ (π1 = π2, ρ1 ≠ ρ2); different π same ρ (π1≠ π2, ρ1 = ρ2); and different π different ρ (π1 ≠
π2, ρ1, ≠ ρ2). We used success probabilities of 0.1, 0.2 and 0.5 and ICCs of 0.02, 0.05, 0.10
and 0.25, and generated 2000 simulated data sets for each scenario.

Table 5 provides results for Study 1. Almost all methods exhibited a small negative bias,
tending to underestimate the ICC. The ANOVA method had the least bias; the GEE method
had the most, underestimating the ICC by 20–25% when the ICC was 0.02. Bias decreased
as π approached 0.5. The Fleiss-Cuzick, Pearson and GEE methods showed more relative
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bias for lower values of ICC than for higher values; for the ANOVA method, relative bias
varied little with the value of ρ. The ICCs from the random intercept logistic model were
strikingly higher than the ICCs from the other methods; they decreased as π approached 0.5.
The 95% confidence intervals constructed using the Wald method tended to have higher
than the nominal coverage probability; coverage was closest to the nominal rate for π = 0.5.
The ANOVA, Fleiss and Pearson methods had similar patterns of coverage of linear
intervals: for ρ = 0.02 or 0.05, coverage of the linear confidence intervals was lower than the
nominal rate, and for ρ = 0.25, coverage was higher than the nominal rate. For the GEE
method, the coverage of linear confidence intervals was lower than the nominal rate for all
combinations of ρ and π.

For Study 2, in the scenarios in which the two arms had the same π but different ρ (Figure
2), the ANOVA, Fleiss-Cuzick, Pearson and GEE methods all gave estimates of the overall
combined ICC that were intermediate between the two values of ρ, and the estimates had
little dependence on the value of π. The ICCs from the random effects logistic model were
higher than the proportion scale ICCs, and were highest when π was 0.1 and lowest when π
was 0.5.

In scenarios in which the two arms had the same ρ but different π (Figure 3), the ANOVA,
Fleiss-Cuzick and Pearson methods were striking in their overestimation of the ICC. The
overestimation was highest when the success probabilities in the two arms were the most
divergent. In contrast, the GEE method gave estimates of the ICC close to the true value.
The random effects logistic model ICCs were also highest when the success probabilities
were the most divergent.

Scenarios in which the two arms had both different ρ and different π (Figure 4) showed an
similar pattern of overestimation of the ICC for the ANOVA, Fleiss-Cuzick and Pearson
methods when the success probabilities in the two arms were divergent, consistently
yielding estimates of the overall ICC than exceeded either of the two values when (π1, π2) =
(0.1,0.5) or (0.2,0.5). The overestimation was somewhat less when the higher ICC was
associated with the lower success probability. In contrast, the GEE method gave estimates of
the overall ICC that were close to the average of the values in the two arms. For the random
intercept logistic model, the ICCs for the combined data were higher when the arm with the
higher success probability had the higher ICC.

Discussion
Our results from estimating the ICC using five different methods for the overall sample and
specific study conditions have several practical implications.

Our results show that ICC estimates obtained using different methods can be quite different,
although confidence intervals were wide and overlapped. Thus the four different proportions
scale methods could lead to different conclusions if the uncertainty is not recognized. This
illustrates the difficulties of relying on a single point estimate in sample size calculations.
Uncertainty in estimating the ICC and overlapping intervals by different methods have been
recognized by several authors [9, 11, 12, 32].

Several patterns could be discerned in the real data sets. For the Samoan and Colon studies,
the four proportion-scale estimators gave similar results for the overall ICC; however, for
the Filipino study, the GEE estimate of the overall ICC was quite different from the other
three estimates. This may be due to the fact that the ANOVA, Fleiss-Cuzick and Pearson
estimators assume the success probability is the same for all individuals, whereas the GEE
estimator was able to incorporate the effect of treatment arm on success probability. In the
Samoan and Colon studies, success probabilities were similar across arms; in the Filipino
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study, the probabilities were quite different across arms. In the latter case, the assumption of
the same success probability may not hold and therefore estimates from the ANOVA, Fleiss-
Cuzick and Pearson estimators may be misleading. The assumptions of these estimators may
be more valid in the case of arm-specific ICCs, for which it may be reasonable to assume
equal success probability across clusters, and therefore we would expect the four estimators
to agree more on arm-specific ICCs. This was indeed observed for the Filipino study.
Overall, this indicates that in a cluster-randomized trial, if the outcome probabilities are very
different between study conditions, the GEE estimator may be preferred over the ANOVA,
Fleiss-Cuzick or Pearson estimators when estimating the overall ICC for the study. In
addition, the ANOVA method can be extended to an analysis of covariance (ANCOVA) to
adjust for covariates, as was recently done in [33].

A common practice is to assume a constant ICC across study conditions in both sample size
calculations and analyses. However, we found clear evidence that the ICC varied
substantially by study condition in two of our real studies. Since the ICC is a function of the
outcome prevalence, it follows that ICC values will generally differ between study arms
with different outcome prevalences [34]. In such situations, the assumption of a common
ICC for the whole sample is questionable, and investigators should consider sample size
calculation and analytic methods that allow the ICC to vary by study condition. Thomson et
al [35] and Roberts and Roberts [36] have also noted problems with assuming constant ICC
across intervention groups. Sample size calculation formulae that allow the ICC to vary by
condition are provided in [1, 34]. For analysis, the GEE method implemented in the R
package geepack can be used; see, for example, Crespi et al [37]. Other alternatives are
alternating logistic regression [38], a special type of GEE for binary outcomes in which the
within-cluster association is modeled using odds ratios, and mixed logistic models with two
between-cluster variance components, as in [39]. In choosing an estimator, it is important to
be aware that the sandwich estimator of the standard error for the GEE model is biased in
small samples [40]. While the sample sizes in our simulation study were not small by the
definition of [40], their relatively greater negative bias in our simulation studies suggests
that some bias may have been occurring.

An important finding was that the ICC estimate for the combined data could be higher than
the arm-specific ICCs when using the ANOVA, Fleiss-Cuzick or Pearson estimators. We
observed this in the Colon and Filipino studies, and confirmed this in the simulation study.
The estimates were especially high when the difference in outcome proportions across
conditions was large. Again, this phenomenon is probably attributable to the erroneous
assumption of these models of a common success probability across all clusters.

There were several additional cautionary tales from our simulation studies. We observed
negative bias in many settings, suggesting that investigators should be concerned about ICC
underestimation. In addition, confidence intervals generally did not have the nominal
coverage probability for any of the methods.

The distribution of the cluster-level proportions, which was quite different among our three
studies, may also affect the performance of the estimation methods. The random intercept
logistic model in particular typically assumes that the cluster-level random effect is normally
distributed, which may not be true in practice. This may especially be the case for clusters of
small size such as we observed in the Colon study, which had a bimodal distribution with
frequent occurrence of 0’s and 1’s. Future studies should examine the sensitivity of ICC
estimates to violations of the normality assumption of the random effects.

When comparing ICC estimates obtained using different methods, it is important to note that
the ICC from a random/mixed effects logistic regression is on a logistic scale and is
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therefore a different entity than the other ICCs, which are on a proportion scale [13]. There
is no simple formula for converting a random effect logistic ICC to the common correlation
model ICC. Table 1 of Eldridge et al [13] provides values of the ICC on the logistic scale for
specific proportion-scale ICC and outcome prevalence values.

One of our datasets yielded estimates of the ICC that were negative for the control
condition. Other examples of negative ICC are in Cochran ([41], pp.124–127) and Hanley
[42]. Truly negative ICCs are thought to be rare in cluster randomized trials [2]. The
practical implication is that if the true ICC is negative, analysis using GEE may be preferred.
We agree with the general recommendation that negative ICCs should not be used in sample
size and power calculations [43]. In this situation, standard practice is to use 0 or a small
positive value. Interestingly, our negative ICC estimates occurred in the control arm of an
individually randomized group treatment trial, in which the clusters were not naturally
constituted. Investigators designing individually randomized group treatment trials should
consider how expectations of correlation may differ for such trials as compared to cluster
randomized trials; Pals et al. [28] provide some guidance.

Our findings imply that investigators should be aware of the different assumptions and
limitations of ICC estimators and use caution in selecting an estimator appropriate for their
data, as has been noted by other authors [9, 11, 12, 32]. In particular, the common practice
of assuming a common ICC for the whole sample may be questionable, in sample size
calculations and in analyses. Investigators should consider using methods that allow the ICC
to vary by study condition.
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Figure 1.
Distribution of cluster-level proportions in the three data sets
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Figure 2.
Results of Simulation Study 2 to compare point estimates of overall ICC from five ICC
estimation methods (ano, ANOVA; fc, Fleiss-Cusick; pe, Pearson; gee, generalized
estimating equations; re, random intercept logistic regression) when data arise from a two-
arm trial with same π but different ρ in each arm using 2000 simulated data sets for each
scenario
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Figure 3.
Results of Simulation Study 2 to compare point estimates of overall ICC from five ICC
estimation methods (ano, ANOVA; fc, Fleiss-Cusick; pe, Pearson; gee, generalized
estimating equations; re, random intercept logistic regression) when data arise from a two-
arm trial with same ρ but different π in each arm using 2000 simulated data sets for each
scenario
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Figure 4.
Results of Simulation Study 2 to compare point estimates of overall ICC from five ICC
estimation methods (ano, ANOVA; fc, Fleiss-Cusick; pe, Pearson; gee, generalized
estimating equations; re, random intercept logistic regression) when data arise from a two-
arm trial with different ρ and different π in each arm using 2000 simulated data sets for each
scenario
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Table 1

Characteristics of the three example data sets

Study arm Number of subjects Number of clusters Mean cluster size Success probability (proportion screened)

Samoan study

Combined 769 55 14.0 0.430

Intervention 389 30 13.0 0.473

Control 380 25 15.2 0.387

Colon study

Combined 1304 834 1.6 0.350

Intervention 674 440 1.5 0.395

Control 630 394 1.6 0.302

Filipino study

Combined 431 103 4.2 0.278

Intervention1 146 36 4.1 0.308

Intervention2 155 37 4.2 0.394

Control 130 30 4.3 0.108
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