Skip to main content
. Author manuscript; available in PMC: 2013 Sep 1.
Published in final edited form as: Contemp Clin Trials. 2012 May 22;33(5):869–880. doi: 10.1016/j.cct.2012.05.004

Table 4.

Results of different ICC estimation methods: Filipino data set

Study arm Estimation method ρ̂ SE(ρ̂ ) Wald 95% CI Linear 95% CI
Overall ANOVA 0.113 0.067 (0.021, 0.278) (−0.018,0.244)
Fleiss-Cuzick 0.110 0.060 (0.024, 0.252) (−0.008,0.228)
Pearson 0.127 0.072 (0.033, 0.303) (−0.014,0.268)
GEE model 0.033 0.045 -- (−0.055,0.121)
Random intercept logistic model 0.070 0.061 -- --
Intervention1 ANOVA 0.072 0.100 (−0.030, 0.351) (−0.124,0.268)
Fleiss-Cuzick 0.064 0.088 (−0.030, 0.305) (−0.108,0.236
Pearson 0.072 0.102 (−0.014, 0.381) (−0.128,0.272)
GEE model 0.077 0.103 -- (−0.125,0.279)
Random intercept logistic model 0.102 0.105 -- --
Intervention2 ANOVA 0.073 0.083 (−0.030, 0.288) (−0.090,0.236)
Fleiss-Cuzick 0.065 0.078 (−0.031, 0.270) (−0.088,0.218)
Pearson 0.066 0.083 (−0.019, 0.312) (−0.097,0.229)
GEE model 0.072 0.069 -- (−0.063,0.207)
Random intercept logistic model 0.095 0.095 -- --
Control ANOVA −0.070 * * *
Fleiss-Cuzick −0.076 * * *
Pearson −0.070 * * *
GEE model −0.067 0.037 -- (−0.141, 0.006)
Random intercept logistic model 0.000 -- --
*

Valid variance estimate could not be obtained; standard error and confidence interval are not available.

Point estimate is truncated to be 0; corresponding standard error and confidence interval are not available.