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Abstract

We discuss here the principles of a novel optical method in which the scanning of a laser spot
around a fluorescent object is used to determine its shape, orientation and fluorophore distribution.
The scanning pattern is adapted to the shape of the object according to a feedback principle based
on intensity modulation measurements. The modulation of the intensity with respect to the angular
coordinate is used to keep the orbit centered on the object. The modulation induced by rapid
oscillations of the orbit radius is used to measure the local distance from the surface with
nanometer precision. We provide a model to describe the fundamental relationship between
modulation and distance and discuss the range of validity of several approximate expressions.
According to this model the distance can be measured with a precision dependent on the steepness
of the Point Spread Function and the total number of detected photons. To test our findings we
performed experiments with one or two channels on fluorescent spheres of known size and
characterized the modulation function of our microscope setup. We conclude that the method can
be used to measure distances in the range 10-200nm between two surfaces labeled with two
different probes.
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Introduction

We have recently introduced a laser scanning imaging method in which the scanning pattern
is adapted to the shape of the object (Lanzano et al., 2011a). This method, called nSPIRO
(nanoScale Precise Imaging by Rapid beam Oscillation), uses a feedback principle to
produce 3D images of sparse and small features in live cells. Examples of these features
include apical membrane microvilli or cellular protrusions extending out of the main cell
body. The efficient imaging of these subcellular structures can be challenging due to the fact
that they move and/or extend sparsely in 3D. To overcome these issues the laser spot is
moved around the object to be imaged forming a light envelope around it. The scanning
pattern is continuously adapted in order to track changes in shape or in position of these
structures using a feedback algorithm. The feedback is based on the determination of the
center of mass of the fluorescent object and the determination of the distance between the
laser spot and the object surface.

"Correspondence to: Enrico Gratton, Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of
California, Irvine, CA 92697. egratton@uci.edu. Phone: 949-824-2674. Fax: 949-824-1727.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lanzano and Gratton

Page 2

The determination of the center of mass is performed by sending the laser beam in an orbit
around the object and using an algorithm previously developed for tracking point-like
particles in 3D in live cells with nanometer precision (Kis-Petikova and Gratton, 2004; Levi
et al., 2005a). This algorithm allows the real-time repositioning of the scanner in such a way
as to follow the particle movement in different types of environments (Hellriegel and
Gratton, 2009; Katayama et al., 2009; Levi et al., 2005a; Levi et al., 2005b; Levi et al.,
2006). The use of a simple circular orbit provides the fastest way (down to about 1 ms) to
obtain information about the coordinates of the center of mass in a plane with a mechanical
scanning system since the galvo-mirrors can be driven at resonant frequency. We extended
this method to track the motion of entire subcellular structures like microvilli or nuclear pore
complexes in live cells (Cardarelli et al., 2011; Lanzano et al., 2011a; Lanzano et al.,
2011b). We also showed that this form of line scanning is compatible with fluctuation
analysis techniques like Fluorescence Correlation Spectroscopy (FCS) (Elson, 2011) and
Raster Image Correlation Spectroscopy (RICS) (Digman et al., 2005) to detect the local
diffusion of molecules.

The size and shape of the object can be determined by measuring the distance between the
laser spot and the object surface. As the object is kept at the center of the scanned orbit we
measure at each angle of the orbit the distance from the surface along the radial direction.
The distance is not given by the fluorescence intensity along the circular orbit because the
intensity at each point is a function not only of the distance from the surface but also of the
local concentration of fluorophores. To overcome this indetermination, while performing the
orbit, we locally oscillate the laser spot also in the radial direction and measure the
modulation of the fluorescence due to this rapid oscillatory motion. The modulation is a
quantity dependent almost exclusively on the distance from the surface. Using the
modulation value we are able to track the local distance of the surface at each position along
the orbit while we “sit’ in the coordinate system of the center of mass of the fluorescence
distribution. The nSPIRO nanoimaging method generalizes the principles of the orbital
tracking method, previously developed for point-like particles, to track the surface (shape)
of finite size objects.

A basic principle in this nanoimaging method is the distance measurement used as a
feedback to track the shape of the object. The fundamental relationship between modulation
and distance is represented by the modulation function which depends on the Point Spread
Function (PSF) of the microscope. The modulation function relative to a given fluorescent
object can be always calculated using simulations of the surface distribution of fluorophores
if we know the PSF of the microscope. For some simple cases the modulation function can
also be calculated analytically.

Here we show in mathematical detail how the distance can be measured from the
modulation and under which conditions the modulation depends only on the distance of the
laser spot from the surface. We find an analytical expression for the modulation in the
simple case of a uniform cylindrical surface which still represents a good model for a variety
of cell membrane protrusions. We show measurements performed on fluorescent spheres of
known size to test the validity of our method and to calibrate the modulation function of our
microscope setup.

Materials and Methods

Microscope setup

nSPIRO measurements were performed using a home-built microscope capable of Single
Particle Tracking (SPT), whose technical details have been already described (Hellriegel and
Gratton, 2009; Levi et al., 2005a). This microscope is built around an Olympus X71 body.
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Multi-photon excitation was provided by a tunable Chameleon Ultra 1l Ti:Sapphire laser
(Coherent, Santa Clara, CA) tuned at A=930nm. Fluorescence emission was collected by an
Olympus 0.9-NA 60x air objective. Two GaAs detectors H7422-40 (Hamamatsu,
Bridgewater, NJ) were used to acquire the fluorescence in the 500-550nm and 575-645nm
spectral range for the two channels, respectively. The galvano xy-scanner (Cambridge
Technology, Lexington, MA) as well as the piezo z-scanner (Phisik Instrumente, Auburn,
MA\) were driven by the 1SS-3axis card (ISS, Champaign, IL).

During orbital tracking, the two scanning mirrors are moved independently by z/2-phase
shifted sine wave voltages generated in the card so that the laser beam moves in a circular
path around the particle. The position of the scanning center is determined by the offset
values of the sine waves (Kis-Petikova and Gratton, 2004). For the modulated pattern the
coordinates of the scanner were modified as follows:

x=xg+[ R+ARsin(nwt)]cos(wt)

y=yo+[ R+ARsin(nwt)]sin(w?) @

The fluorescence intensity at 128 points along the orbit was collected at a sampling rate of
15625Hz so that the period of one orbit was T=8.192ms. The modulation of the radius was
set at a period of 1.024ms, so that we had =8 radial oscillations for each orbit. The orbital
pattern was stored in the memory of the 1SS-3axis card and the center offset in the xy plane
position was updated according to the tracking mechanism every 8 orbits (t=8T=65.5ms)
using the Fast Fourier Transform (FFT)-based algorithm described previously(Kis-Petikova
and Gratton, 2004). This algorithm updates the values of the coordinates (xg, ) in such a
way as to minimize the modulation of the first harmonic in the Fourier spectrum of the
intensity trace along the orbit. The modulation induced by the oscillation of the orbit radius
is extracted from the modulation of the /1 harmonic component of the intensity (/7=8).

Fluorescent spheres

nSPIRO measurements were performed on yellow-green fluorescent microspheres
(excitation/emission = 505/515 nm, Invitrogen, Carlsbad, CA) of known diameter
(9=0.11£0.01pum). The spheres were diluted, sonicated and then fixed on a microscope slide.

Simulations, data acquisition and data processing

Results

Simulations were performed using Global for Images (SImFCS), a software developed at the
Laboratory for Fluorescence Dynamics (http://www.Ifd.uci.edu/globals/). The same software
was used for data acquisition and for data processing.

Orbital modulation and radial modulation

In the orbital tracking method, the position of the center of mass is determined by scanning
an orbit around the object and measuring the asymmetry of the intensity profile along the
orbit. As described in detail in previous publications (Hellriegel and Gratton, 2009; Kis-
Petikova and Gratton, 2004; Levi et al., 2005a), from the Fast Fourier Transform (FFT) of
the intensity trace along the orbit, we get the average intensity or DC as the 0t order term of
the Fourier series and the AC as the coefficient of the 15t harmonic term. The angular
coordinate of the particle is provided by the phase of the AC term, and its distance from the
center can be calculated from the modulation of the signal, defined as the ratio AC/DC. We
will call this ratio orbital modulation, to avoid confusion with the concept of radial
modulation which is one of the novelties introduced recently by our group (Lanzano et al.,
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2011a) and the main focus of this paper. We show here that we can use the orbital
modulation to track particles of finite size.

The orbital modulation is related to the asymmetry of the intensity trace along the orbit and
can be defined as the relative variation of the intensity along the angular coordinate:

Al 1
m0d¢= ‘7 27 |fg—;d¢‘ (2)

The tracking algorithm updates the position of the center of the scanning orbit in such a way
as to minimize the asymmetry of the intensity profile. The orbital modulation is minimized
when the center of mass of the fluorescent intensity distribution is located at the center of
the orbit. Indeed, if a point-particle is off center of a given amount & in the direction ¢y (Fig.
1A) the intensity will have a maximum at this angle instead of being uniform along the orbit
(Fig 1B). This is because the distance £, between the spot and the particle is a function of
the angle ¢

R=R*+6"~2R5cos(¢—po) ?)
and the intensity is a function of the angle ¢ through the square distance sz:

ol oI OR, oI

%zaﬁ%:@mm@—mm @)

The orbital modulation of the intensity can be evaluated integrating between ¢g-r and ¢y:

%o - $o - $o "
5[ Gpdo | gETde | fEl2Rsing—po)lds
mod, _‘AI v S S ®)
o=|—| ~ = =
I T T T
3 [1dep L [1de 1 [1d¢

2
Considering a Gaussian shape of the PSF, 12106—?—2” and ignoring for simplicity the variation

ol 2
of @__ﬁ with respect to the sinusoidal term, then the modulation of the signal is
dependent on the shift §in a simple linear form:

4R
mody ~ ﬁézké (6)

which can be used as a feedback function to keep the particle at the position § ~ 0.

If instead of a single particle we have N particles each one shifted in the direction ¢; of an
amount &; respectively, we can still show that the modulation is related to the shift of the
center of mass of the distribution.

Orbital Modulation for a small cluster of particles

Let’s consider first a small group of A particles (Fig. 2A), each one shifted in the direction
¢; of an amount &; respectively, for which we can define the position of the center of mass
as:
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In this case the derivative of the total intensity as a function of the angle along the orbit is
given by:

0 0 5R ol OR? . ol
(Zl) =2 81%21 ZaRi/. 6;)":261%; [2Rsin (¢-9,) Zl sin (¢-@)
pi pj

If the center of mass is shifted at a distance 8¢y in the direction ¢y with respect to the center
of the orbit, we can quantify the modulation of the signal as:

f a(Zl) _fﬂ q}) zlj[sin(¢—¢j)5f]d¢
_ o bon

modg= ‘ — 9)
1[(21>d¢ S NOWOLL
Ignoring again the variation of /;with respect to the sinusoidal term we get:
2R [ 4R
mody ~ 2 f sin(¢— ¢0)6CMd¢—— =ké ., (10)
" go-n

Orbital Modulation for a large cluster of particles

If we have a large distribution of particles (Fig. 2B), we can approximate the intensity at
each angle ¢ with the intensity generated by only the particles located at the angle ¢

7R2<¢>
I$)= ) 1($) ~ Io(p)e” (1)
Then we can write:
@) ) 20 2 _WOOIR(Y) dlyp) 20 2 ORLP) o | 1 alfg) 2 IR
0~ o8 e v —W210(¢)e w2 96 op e w —w21(¢) 9 =lp(p)e @ 882 w2 o8
For a constant orbit radius /R we have:
R=[R-6($)I*=R*+6(¢*)—2R5(¢)) (13)
and
21 R-5(N 2P 66(‘” (14)

¢
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Where &(¢) is the distance of the particle from the center of the orbit. Considering for
simplicity fluorophores distributed uniformly on a circle of radius & (Fig. 2C) then we have
the following relationships:

5(p)?= 902“%4 —2ad ., cos(¢p—ao)

95(¢) _ @ 0y SIN(P— o) _ 2a0 1, sin(¢p—¢o) ~ g (15)
¢ o(¢) Th 2462, 240 13y c05(d—0) OcuSin(d—do)
Under these conditions:
I(¢) _me [ 2 IR 41<¢> 45(9) 41<¢>>
—— = lp(p)e * _m o = g ~ cnr SIN(O—(06)
For the modulation we have:
% s, ol %
y ] 22D g ) f 2 —;%d) J [R-S@U@)sin(@=¢o)sc, do
. f (XI)d¢ L [ 1g)de z | I@®)d¢
- $o—m do—7

Ignoring the variation of &(¢) ~ aand /(¢), the modulation can be finally expressed
approximately as:

4(R—a)

m0d¢ ~ T

8. =k, (18)

According to the formula (18) the sensitivity for the feedback increases with increasing
distance (R - 4) from the object surface, and the formula (6) valid in the case of a point-like
particle is recovered as a limit when a~ 0. If we also take into account the measurement
noise we find that for larger distance the sensitivity is limited by the level of the signal. As
discussed thoroughly in Ref. (Kis-Petikova and Gratton, 2004), the optimal orbit radius for
tracking a point-like particle is obtained when the particle is in correspondence of the
steepest region of the PSF. For a large particle we can restate the same principle saying that
the surface of the particle must correspond to the region of maximum slope of the PSF.

Radial Modulation

The minimization of the orbital modulation keeps the system around the position -y = 0,
so that the orbit is centered on the center of mass of the distribution of fluorophores. From
the measurement of the orbital modulation, which is related to variations of the intensity in
the angular coordinate, we don’t have access to information on the size of the object being
tracked. In order to get this information we need to measure variations of the intensity in the
radial direction. For this purpose we compute the derivative of the intensity with respect to
the radial coordinate to measure the distance of the laser spot from the surface of the object.

The distance between the laser spot and the object surface at a given angle ¢ is determined
by oscillating the scanner position in the radial direction of a given amount Ar (Fig. 3) and
measuring the relative variation of the intensity, or radial modulation, defined as:
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o, =[] 212
=TI e T (19)

If we know the modulation function
mod,=f(d) (20)

which describes how the radial modulation is related to the distance d between the laser spot
and the surface, we can recover the local radius p(g) of an object by the simple relationship:

o(¢)=R-d(¢) (21)

Alternatively, the modulation function can also be used as a feedback to maintain constant
the value of the modulation and make the spot ‘surf’ at constant distance d(g)=D from a
surface in a way similar to the tip of an AFM microscope. Then the local radius of the object
is recovered using the following relationship:

p(@)=r(¢)-D (22)

In both cases we need to make use of the modulation function to assign unequivocally a
value of distance to any measured value of the modulation.

Radial modulation for a generic fluorescent surface

For a confocal or 2-photon microscope the intensity detected from a fluorescent particle is a
function of its distance from the center of the focal spot. This spatial dependence is
expressed through a function called the Point Spread Function (PSF) of the microscope. The
detected fluorescence intensity depends also on other factors, namely the excitation
intensity, the excitation probability, the quantum yield, the instrument efficiency. The
intensity generated by a spatial distribution of fluorescent particles C(/',¢’,2") can be
expressed in general as:

1(r,¢,2)=Io [dVC(r ,¢,2 )PSF(r-7 ,¢—¢ ,2—2) 23)

Consider the particles distributed randomly over a surface. Our aim is to reconstruct the
shape of this surface through the detection of a fluorescent signal. In the nSPIRO method we
orbit around a section of the surface, and reconstruct the shape of this section. The section of
the surface is tracked (as described in the previous section) so that the center of the orbit
coincides with the center of mass of the distribution. Then we want to measure also the local
radius of the object o(¢) at any given angle ¢.

First we will solve the problem in 2 dimensions and consider later the axial coordinate Z.
The detected signal at each position (r,¢) of the orbit will be, approximately, a function of
the distance from the surface and of the local concentration of molecules according to the
following relationship:

I(r,$)=Io [dVC(r , )PSF(r—r ,¢—¢) = Io(#)PSF (r—p($)) (24)
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With this approximation we are only considering the contribution of the fluorescent surface
to the measured intensity for a small area around the coordinate (o(¢),#). This
approximation is not valid if the surface is too small with respect to the PSF or if the spatial
variations in concentration along the surface are larger than the variation of the PSF between
opposite sides of the surface. We will analyze the validity of this approximation later in the
derivation of an exact expression for the modulation of a uniform fluorescent empty
cylinder.

Clearly the evaluation of the intensity alone is not enough to measure the distance of the
focal spot from the fluorescent surface. To obtain a measurable quantity which depends
solely on the distance between the spot and the fluorescent surface we need to build a
function independent from the local amount of fluorophores. In order to do this we evaluate
the radial modulation of the intensity upon a variation Ar of the radial coordinate:

OL1o(@)PSF(r—p(4))] OPSF(r—p(¢))]
O Ar| | ar Ar|_| 7 A 25)

Al
1| 1or 1|7 I@)PSF(r—p(¢))  PSF(r—p(¢))

K

mod,=

As the non-spatial terms cancel out from the equation, the final expression shows that the
modulation is a function only of the relative distance between the focal spot and the surface.

The first of the two approximations which have been used in the above formula is rigorously
valid only for values of the variation Arsmall enough with respect to the characteristic size
of the PSF. The validity of the second approximation will be analyzed in more detail later.

For instance for a Gaussian shape of the PSF characterized by a waist w.

_ 2—p(@))?

PSF=¢ w2 (26)

the modulation will be given by:

mod, = 4(}’——p20¢))Ar: (4Ar
w

2
w*

) d(¢) 27

i.e. the modulation varies linearly with the radial distance from the surface:

d(p)=r—p(p) (28)

The modulation is also proportional to the variation of the orbit radius Ar. For large values
of Arwe expect deviations from this linear behavior. In fact, when Ar>d'the maximum of
the PSF penetrates the surface and we do not expect any additional gain in the modulation of
the signal. The formula shows also that the sensitivity of the modulation function is
inversely proportional to the square of the PSF waist 2. It is easy to show that the formula
(27) holds rigorously for an infinitely small cylinder as well as for a flat surface. The
behavior for cylinders of finite size is analyzed in the next section.

Modulation function for a uniform cylinder and a Gaussian PSF

Consider now a cylindrical surface of radius o(¢")=a and uniform density of fluorophores &
as shown in Fig. 3. Given a point Palong the orbit of constant radius /<, and a point 7’ on

the cylinder section, their distance is given by: PP" =4?+R*~2aRcos¢ . Since every surface
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element S’ =adZ’ d¢’ hosts an amount of fluorophores d\=c0dS, the total fluorescence
intensity collected in Pwill be proportional to the integral:

72

ro ’ o o, _xm_ 7 L (4R~ 2aRcos — 2 (24+R? 4aR
[PSF(R-a8 2 )rdS = [ di'e T [age N (G ((25;2_]
s oo r w2
Thus we can write the intensity as:
- % (a?+R? 4aR
"o

where /y(x) is the modified Bessel function of 0™ order and A is a constant. Similarly we
find for the derivative:

oI -5 (@+R?) | 4R 4aR) 4a  (4aR
a—R=F0€ iC —— b —=|+3h|—F (31)
"o Wo ) Mo "o
where /;(X) is the modified Bessel function of the 15t order.
The modulation can then be calculated as:
2 2 2
— (@R | e 4aR\ |, 4a 7 (4aR 4aR
srar] Foe 0| a0 (M) e ()R | g g0 (%)
mod = = = |-— = /ABR)
1 -2 (a?+R?) w2 w2 (4ar
Fpe "0 10(4“5) 0 0lo M_,(z)
11'6

We can rewrite the modulation as a function of the distance g=/~-a between the orbit and the
surface:

4|AR
BB deal 1-1,0) /160 )
w

0

mod=

with y=4(d+a)a/w}.

The modulation obtained from equation (33) is plotted in Fig. 5 as a function of the distance,
for different cylinder sizes, for np=300nm and Ar=0.5u1g. We analyze now the asymptotic
behavior of the modulation for small and large values of the parameter y respectively.

Point-like particle approximation

5Li(y)
For ¥ — 0, the Bessel functions ratio o) — 0 and the modulation can be approximated
AR |d+al
w(2) “ This approximation holds when (d+a)a < w3/4, i.e. for

~

by the formula: me
the two cases:

i. d~—a(for an infinitely small orbit radius, the modulation is zero because the PSF
is at the center of the cylinder)

i, 48RI
a~ 0 (infinitely small cylinder radius) for which we can also write W[Z) .

Microsc Res Tech. Author manuscript; available in PMC 2013 September 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lanzano and Gratton

Page 10

In both conditions we are not able to measure the size of the cylinder, which will appear as a
point-like structure.

Nearest-surface approximation

L)
On the other hand, when » >> 0 the Bessel function ratio 7, ) = 1 and the modulation can

be expressed in the linear form:

4|AR|
~ ——ldl (34)
"o

mod

It follows that within the range of validity of this approximation, namely when:
(d+a)a > wj/4, (35)

the modulation can be considered a linear function only of the distance d from the surface.
Under this condition the size of the cylinder can be recovered using the relation (34). We
can distinguish two cases:

i. Inthe limit of a quasi-flat surface (Fig. 4B), i.e. for large cylinder radii a > wp/2,
this condition is fulfilled for every positive distance & (and also for negative
distances d for which is |df < &) (Fig. 5).

ii. Forageneric cylinder of radius athe condition above is still valid for sufficiently
large positive distances d'such that: (d+a) > w§/4a, or, equivalently: > dwith
(E+a):w3/4a (Fig. 4C and 5)

The figure 4C shows a geometrical construction for dwhen we have a cylinder diameter
smaller than the PSF waist. This condition expresses the fact that we have to orbit at large
enough distance in order to resolve the two opposite sides of a small cylinder. This condition

is equivalent to ignoring the intensity contribution of a fluorescent point at a distance d*2a
with respect to one at a distance &

_2d+2a)® B N )
2 2 4
[(d+2a) ¢ " _2(4%4) 2 _2(4(“1;4“ ) _2u(él+u)
= =e "0 Yo —e "0 =e ot~ 0 (36)
1(d) 2d)? ’
-2
e WO

Though in principle we could use an arbitrary large orbit radius to resolve the opposite sides
of an arbitrary small cylinder, in a real case we are limited by other factors, the most
important of which is the decrease of the signal to noise ratio as we move far away from the
surface.

We note that at large enough distances the modulation is largely independent on the size of
the cylinder (Fig 5 and inset). For instance, at a distance a=wy, the calculated modulation for
cylinders of 500nm and 1000nm size respectively differs by only 2%. This translates into a
systematic error of about 6nm in the measured distance from the surface which is generally
comparable or lower than the uncertainty due to S/N. This systematic error can be corrected
if one uses equation (33) as the modulation function at any given orbit radius, instead of the
simple equation (34).
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Modulation for a cylinder at an angle

We consider now the modulation of a cylinder which is not exactly perpendicular to the
plane of the orbit but oriented at an angle ® with respect to the z-axis, along a direction ®
with respect to the x-axis (Fig. 6). As we orbit at constant radius around the cylinder, the
distance d from its elliptical section will be a function of the phase ¢—®, a=a( g—P). In order
to reconstruct the section we have to determine the relationship between the measured
modulation and the distance d at each angle ¢.

For simplicity we will assume that the nearest-surface approximation is valid within a region
along the z-axis of the order of w,, the size of the Gaussian PSF along this axis. If this is the
case, in order to calculate the modulation at a given angle ¢ along the orbit, it is equivalent
to consider the plane tangent to the cylinder at that angular position. This plane is found at
radial distance d and is oriented at an angle &(¢) with respect to the zaxis. The angle s
given by the relationship:

tanf=tan®@cos(¢p—D). (37)

The absolute value of the angle 8is maximum (|g=0) for ¢ =®, &+ and has a minimum (|
8=0) for ¢ = O+ /2.

Calculation of the modulation

mod =

As we oscillate the spot along the radial direction, we can separate this motion in a parallel
and a perpendicular component with respect to the axis of the cylinder (Fig. 6). Only the
perpendicular component yields a variation of the fluorescence intensity with an effective
oscillation of the radius along this direction given by A7’ = Arcosé. The effective distance is
given by o =atos@. The effective waist w’, due to the asymmetry of the PSF, is given by:

1 cos?0 sin%@
= + 38
w2 wE w2 (38)

We can approximate the modulation as:

2
H'O 2
4d, -|A ’ 20 i 29 4d - |A wz ad - |A 1+M7tan 0
—’|2 i |=4d-|Ar|(:0329-(COS2 +s1n2 ]: |2 rlcos49- 1+—gtan20 = |2 i {39) .
w wg w3 wg wy wg [ 1 +tan26]

From which we see that the condition w,>wg causes an additional reduction in the measured
modulation with respect to the case of a perfectly spherical PSF (w,=wyp):

4d-|Ar 1

W(z) 1+tan26

mod(w,=wg)= (40)

due to the increase in the effective waist for any angle 6>0.

The modulation depends on the phase ¢ through tan&as defined above. Moreover the
distance d'depends also on the phase ¢ according to the shape of the section, namely an
ellipse of minor and major axis /=R and a=R/cos® respectively:
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ab R?/cos® 1
d(¢):r0rbil_rcylinder (¢):rorbit_ =Torbit— =Forbit -R

\/ (bcosg)? +(asing)? \/ (Rcos¢)2+(R :(';g )2 \/ coszéggsz¢+sin2¢

where we have assumed ®=0 for simplicity.

Putting the equations together we obtain:

_ 4d(¢) - 1Ar] 1+%tan2®cosz¢

2

42)
wd  [1+tan2@cos’¢]*

mod

This formula links the modulation to the distance a(¢) along the radial direction. If we
explicit the dependence of o g) on the phase ¢ we obtain:

4 - |Ar| 1 1+ %’tan2®cos2¢
SR 2 2412 (43)
"o \/0052®C082¢+Sin2¢ [ 1+tan?Ocos?¢]

Calculation of the intensity

The orientation of the cylinder away from the perpendicular to the orbit will cause a
modulation of the intensity along the orbit even though the concentration of fluorophores is
uniform. It follows that the intensity has to be corrected for this geometrical factor. To
calculate an approximate expression of the intensity at a given point we can use the ‘nearest
surface’ approximation, i.e. calculate the intensity at the point of the cylinder which gives
the maximum contribution to the total intensity. This is the point T (Fig. 6) where the
cylinder is tangent to the elliptical isosurface defined by the PSF shape, which, in the plane
formed by the radial and z direction, we can write as:

_2(i+i) "
e T 2k (44)
or equivalently:

P2

RERN R (45)

MO Z

or
Using a_zztang we obtain the angle 8" formed between the direction r and the line
connecting the center of the spot O to the point T:
2
’ w
tand = H =—Xtand (46)
r

2
"o

The distance @” (¢)=0T can then be calculated using the formula:
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n. - d(p)cost

d (p)= s —0) (47)

The intensity will depend on the distance @’ (¢) and the effective waist /" at the angle &'

1 cos?d sin%g

—3=—3 48
w2 w? W2 (48)
So that finally the intensity will be given by:
2 ey c0s20 | cos?d | sin26’
[:F()e W2 :Foe 2@ cos2(@’ 7")[ "'(2) " w ] (49)

It is worth noting that the modulation of the intensity due to the cylinder orientation will be
more evident at increasing distances from the surface. For small values of the distance a(¢),
the variation of the intensity along the orbit can be approximated as:

[ ~ Fo—2Fd* ()

cos20 [00520' sin29']
(50)

. +
cos?(6'=6) | w3 w?

To check the validity of these formulas we performed simulations of uniform empty
cylinders oriented at different angles, for a PSF with an axial waist w>wg. In Fig. 7 we
report the simulated variation of the modulation (Fig. 7A) and of the intensity (Fig. 7B)
along the orbit for a cylinder of radius &=750nm and length L=2pm when we scanned the
PSF (1p=300nm, w,=900nm) in an orbit of radius #=1250nm. The formulas approximate
quite well the simulated data, at least for angles of orientation up to about 20°. Provided that
the PSF parameters ny and w;, are known from calibration and the angle &is known from
the 3D trajectory (Lanzano et al., 2011a), the formulas can be used to correct the values of
measured modulation and intensity from the effects due to orientation and obtain the proper
shape and fluorophore concentration along the surface.

We note that in the experimental setup we can vary the orbital plane as to be perpendicular
to the axis of the cylinder. Therefore this complication can be avoided by proper feedback of
the plane of the orbit.

Error in the measurement of modulation

From the definition of the modulation:

ALl I(r+Ar)=I(r)|
mod=—=——-——

7 7 (51)

We can estimate the uncertainty on the modulation using the error propagation formula:

2 2 2

O(AI)
Al

ol
+_
1

’6(mod) 52)

mod
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2

2 2

O(AI)
I

o1 2
I

ol
+_
1

mod’=

SIP |8UT+A
Rl +‘(+ r)

d)]? :‘
[6(mod) ; -

mod? ~ % [2+(mod)2] (53)

where N is the total number of photon collected at a given distance d from the surface. The
relative error can be expressed as:

(54)

‘(5(mod) .2 :
mod VN

mod?

Equation (54) shows that the precision in the measurement of modulation is dependent on
the number NV of collected photons as 1/VA, so that, for instance, to reduce the error by a
factor of 10 one needs to increase the intensity by a factor of 100.

2 mode2d-1Ar
Substituting y—n,e +3and w2 , we obtain:
5 s
lé(m()d) N PP (55)
mod | VNo[  84*(Ar)?

4
0)

2 —_—
Expression (55) shows that for small distances & < 8(Ar)>? the error is dominated by the
second term in parenthesis (related to the uncertainty on A/) and is larger than the photon-
limited noise:
&2
’6(mod) % wy

mod |~ Np| 8d2(Ar)>

1
2> 1
VN’

(56)

On the other hand, for large enough distance the uncertainty depends only on the number of
photons collected at distance d:

’6(mod) 1
o (57)

mod VN

since the uncertainty arises mainly from the evaluation of the intensity value /.

In order to show how the uncertainty varies with the distance we plotted the expression (55)
in Fig. 8 for the value N;=1000. According to the graph there seems to be an optimal
distance d)y;, for which the relative error reaches a minimum. The value of the optimal
distance d);;, decreases down to the value ~ 0.5ug for increasing amount of modulation A,r
(Fig. 8, inset). For values of Arlarger than ~0.514, we are limited by the condition a>Ar,
meaning that we have to orbit far enough for the PSF not to penetrate into the surface and, as
we orbit at a larger distance, the uncertainty tends to increase due to the v/A/component.
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Variations along the optical axis

So far we have ignored the effect of being off-focus along the optical axis or z-axis. If a
particle is smaller than the PSF dimension along z and is located at a given zdistance from
the focal point, it will probe the PSF shape at this coordinate. For a Gaussian profile:

_(z_ _2)
PSF(r,z)=e \"* = (58)
the modulation is independent of z This is not true for a general shape of the PSF. For
instance, under the 2-photon excitation, the intensity profile is well approximated by a
squared Gaussian-Lorentzian function (Berland et al., 1996; Chen et al., 1999):

PSF( 0 (%5) )
T mPwt(2)
with
2
w2(2)=w? (”(i) ) o

In this case, being the waist of the radial PSF a function of the zaxis distance, the
modulation is expected to decrease with Zz.

If we have a cylinder of length greater than the PSF then its surface will probe an average of
the function (59) along the Zz. As a result the modulation will be smaller for a Gaussian-
Lorentzian PSF compared to a Gaussian PSF having a radial waist u, equal to the effective

waist weg=w(0)/ V2 of the Gaussian-Lorentzian measured at the focal plane. Numerical
simulations indicate that the modulation for a Gaussian-Lorentzian PSF is reduced roughly
by a factor of 2.

Experiments with fluorescent spheres

In order to confirm the predictions based on calculations and simulations we performed
experiments on fluorescent beads of known size. In Fig. 9 we show the variation of
modulation measured for a 110nm fluorescent bead fixed on a slide. The bead is tracked
using different scanning orbit radius and different amount of modulation. Within the
reported range the modulation varies linearly with the orbit radius and hence with the
distance (Fig. 9A). The value of the modulation increases also as a function of the radial
oscillation amplitude AR but tends to saturate for values of AR larger than about 50% of the
PSF width (Fig. 9B).

The experimental points in Fig. 9A can be interpolated by a linear fit which represents the
modulation function at a given percentage of oscillation of the orbit radius. The slope of the
modulation function ultimately determines the sensitivity of the setup to measure differences
in distance. The radial size of the particle can be extrapolated from the point where the linear
fit of the modulation takes the value 0. The histograms of the slope and particle radius
values recovered from the measurement on A=11 spheres are reported on Fig. 10. The slope
has an average value of 0.00081+0.00004nm™1 (meanzs.d.). For the particle radius, if we
consider a bimodal distribution, we obtain the two center values Ry;=59+4nm and
Rp2=73+1nm. The smaller value is in agreement with the size of single beads (¢/2=55+5nm)
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while the larger value could be associated to the apparent size of clusters of two particles
(V2-¢/2=78+7nm) that did not dissociate during sonication.

We then performed acquisition in two channels to show that the modulation is not dependent
on the intensity level of the signal. We report in Fig. 11 the tracking of a fluorescent bead
for which the intensity of the signal in the green channel is significantly higher than the
intensity in the red channel (Igreen~6-Ireq). FOr an increasing orbit radius the intensity
decreases in both channels due to the increasing distance from the particle and following the
PSF profile (Fig 11A). In contrast the modulation of the intensity increases with the distance
from the particle and has the same value for both channels (Fig 11B). On the other hand the
precision in the measure of modulation is different for the two channels, as is dependent on
the intensity level of the signal (Fig 10C). In fact, as expected from equation (54) the
modulation error in the red channel is increased of a factor given by the ratio of the inverse
square root of the intensities in the two channels (Vlgreen/Vlreq ~2.4).

The two channels acquisition setup opens up the possibility to perform differential measures
of distance between two surfaces labeled with two different probes. In this case the distance
between the two surfaces can be determined measuring the difference of modulation in the
two channels, and the sensitivity of this distance measurement depends on the steepness of
the modulation function. For instance, if the slope of the modulation function is of the order
of 0.001nm~1 and we measure the modulation at a distance from the surface of about
200nm, then a measured difference of 10% between the modulation values in the two
channels translates into a measured distance of about 20nm. This super-resolution range is
especially interesting since it represents a range not accessible by other techniques, as for
instance FRET (Forster Resonance Energy Transfer), which probes distances between
molecules which are in the order of only a few nanometers.

Discussion

In this paper we have introduced a mathematical model to describe the concept of intensity
modulation which is at the base of the nSPIRO method. In this method, the simultaneous
tracking and imaging of an object are possible through the real-time measurement of the
modulation of the fluorescence intensity. We have shown here that, while the minimization
of the orbital modulation keeps an object at the center of the orbit, the radial modulation
induced by the rapid oscillation of the beam in the radial direction provides a direct measure
of the distance between the laser spot and the object.

The mathematical model shows under which conditions the modulation can be considered a
quantity dependent on the distance from the object, but largely independent from the shape
of the surface and the concentration of fluorophores. The model takes in to account how the
sensitivity of the modulation function is related to the parameters describing the PSF and
which are the experimental factors affecting the precision with which the modulation itself
can be measured.

The main findings of the model have been confirmed by the experiments performed on
fluorescent spheres of known size. The results of these experiments show that is possible to
measure the size of the particles and to determine how sensitive the microscope setup is to
the measurement of distances. In particular the possibility of performing simultaneous
acquisition in two channels looks very promising as a method to measure the distance
between surfaces in the range 10-200nm which is complementary to the typical range
observable by FRET.

Microsc Res Tech. Author manuscript; available in PMC 2013 September 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lanzano and Gratton Page 17

In our opinion the results presented in this work help understanding the principles of the
nSPIRO method and the advantages and limitations of this technique in view of its current
and future applications to the imaging of biological structures.
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0 o, T 2n

Fig. 1.

Concept of orbital modulation for a point-like particle. A particle is shifted with respect to
the center of a scanned orbit (A). As a result the intensity shows a modulation along the
angular coordinate (B).
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Fig. 2.
Orbital Modulation for a small cluster of particle (A), a large distribution of particle (B) and
a fluorescent circle (C).

Microsc Res Tech. Author manuscript; available in PMC 2013 September 01.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Lanzano and Gratton

Page 20

Fig. 3.

Radial modulation in the nSPIRO method. The radius of the scanned orbit is oscillated
rapidly instead of being constant (A). The intensity shows a modulation pattern which is
related to the local distance from the surface (B).
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Fig. 4.
Derivation of the formula of the radial modulation for a uniform cylinder (A). Special cases
of a large cylinder (B) and a small cylinder (C).
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Calculated modulation as a function of the distance for cylinders of different sizes. The
insert shows the modulation at a given distance (as indicated) as a function of the size of the
cylinder. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Fig. 6.
Cylinder at an angle with respect to the plane of the orbit.
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Fig. 7.

Simulated (symbols) versus calculated (lines) modulation (A) and intensity (B) for a
cylinder at an angle. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Fig. 8.

Calculated uncertainty in the measure of the modulation as a function of the distance. The
value of d;, is plotted in the inset for different amount of input modulation. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Calibration of the modulation function of the microscope setup: (A) Experimental
modulation functions for a 110nm-diameter fluorescent sphere as a function of the orbit
radius. (B) Modulation at £=275nm for different values of radius oscillation Ar.
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Fig. 10.
Histogram of the recovered values of the slope (A) and particle radius (B) for several
(MV=11) 110nm-size fluorescent spheres.
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Fig. 11.

Two-channels experiment with 110nm fluorescent spheres, showing how the intensity (A),
the modulation (B) and the uncertainty in the modulation (C) vary with the distance in the
two channels. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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