
An Intramolecular [2 + 2] Cycloaddition of Ketenimines via
Palladium-Catalyzed Rearrangements of N-Allyl-Ynamides

Kyle A. DeKorver, Richard P. Hsung, Wang-Ze Song, Xiao-Na Wang, and Mary C. Walton
Division of Pharmaceutical Sciences and Department of Chemistry, University of Wisconsin,
Madison, WI 53705
Richard P. Hsung: rhsung@wisc.edu

Abstract

A cascade of Pd-catalyzed N-to-C allyl transfer–intramolecular ketenimine–[2 + 2] cycloadditions
of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2]
cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions,
leading to bridged and fused bicycloimines.

Throughout our studies on palladium catalyzed N-to-C allyl transfers1 of N-allyl
ynamides2–4 to ketenimines,5 we have anticipated the possibility of effecting an
intramolecular ketenimine-[2 + 2] cycloaddition with tethered alkenes [Scheme 1]. Seminal
work on cycloadditions involving ketenes6 and keteniminium ions have been studied
extensively by Marko,7 Snider,8 Brady,9 and recently by Minehan,10 giving rise to
cyclobutanones through fused–11 and/or crossed–[2 + 2]12 pathways. For our own designs,
we imagined that ketenimino-Pd-π-allyl complexes prepared by N-to-C allyl transfers of N-
allyl ynamides 1 could also participate in fused, or more rarely, crossed [2 + 2]
cycloadditions to afford highly substituted bicycloimines 2 or 3 via intermediates 5 or 6.

During our pursuit of this endeavor, Tu13 demonstrated beautifully the feasibility of carrying
out intramolecular crossed–[2 + 2] cycloadditions using ketenimines generated in situ by
extrusion of N2 from N-tosyl azides in a retro [3 + 2] manner.2a,14 In their work, the
resulting bicycloimines were immediately hydrolyzed to ketones, and the crossed
cycloaddition was the exclusive pathway. Our findings deviate significantly from theirs, and
we report herein our successful development of highly diastereoselective crossed and fused
ketenimine–[2 + 2] cycloadditions from N-allyl ynamides.

We quickly discovered that, in fact, γ-branched N-allyl ynamide 7 featuring an oxygen
tethered styryl moiety cleanly underwent the desired Pd-catalyzed rearrangement–
intramolecular [2 + 2] cycloaddition sequence to give bridged bicycloimine 8 in 80% yield
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as a single diastereomer [Scheme 2].15 It is noteworthy that cycloadduct 9 from a fused–
cycloaddition pathway was not observed.

Unlike in Tu’s system,13 the directly resulting imine was isolable by silica gel column
chromatography and also crystalline, allowing for unambiguous determination of its
structure by single crystal X-ray analysis [Figure 1]. By orienting the alkene to engage the
orthogonal imine π-system and the bulky c-hexyl group into a pseudo-equatorial position,
diastereomeric transition states 10 and 10’ can be envisioned. The A1,3 strain between the c-
hex group and imine disfavored 10’, leading to 8 as the exclusive product with the imine anti
to the c-hexyl.

The substrate scope proved to be exceptional, tolerating an array of propargylic substitutents
and tethered olefins [Table 1]. Styryl-tethered ynamide 11 led to bicycle 14 in near
quantitative yield [entry 1]. By utilizing crotyl-tethered ynamides 12a–c, cycloadducts 15a–
c were isolated in good yields, though a competing carbocyclization1a,16 involving the Pd-π-
allyl moiety was also observed in 10–20% yield [entries 2–4, see Scheme 4].

Gratifyingly, styryl-tethered ynamide 13 featuring an N-Ts linkage could also be used to
afford 16 in quantitative yield as a 9:1 mixture of diastereomers [entry 9]. Interestingly, nOe
of 1615 implied a switch of stereoselectivity. Subsequently, X-ray analysis showed that the
once propargylic phenyl was indeed syn to the imine in 16 [Figure 2], opposite to the
observed stereochemistry in the oxygen-tethered system employing a similarly sized
propargylic c-hex moiety [see Figure 1].

It is noteworthy that such a selectivity switch was not observed in Tu’s study.13 The switch
in diastereoselectivity for the crossed cycloaddition with N-Ts tethered ynamides is likely a
result of a gauche interaction between the phenyl and the N-sulfonyl moiety as shown in 17’
[Figure 2]. Instead, the cycloaddition favored chair-flipped 17 with the phenyl pseudo-axial,
explaining the formation of 16 with the imine and phenyl syn as the major diastereomer.

In Table 1, we revealed that a competing carbocyclization was operational to give
cyclopentenimines in 10–20% yield with several of the γ-branched ynamides. Upon
attempting to carry out cycloadditions with tethered cis alkenes, this reaction dichotomy was
exemplified [Scheme 3]. As anticipated, ynamide 18 bearing a tethered trans-olefin afforded
the desired crossed cycloadduct 20 in ≥95% yield. However, the cis-olefin tethered analogue
21 [10:1 cis:trans] gave cyclopentenimine 24 in 55% yield with only a trace amount of
cycloadduct 20 observed, which likely arose from the trans impurity in the starting ynamide
and not from reaction of the cis alkene. Clearly, the cis olefin geometry would have
disfavored the cycloaddition transition state 22, and instead the carbocyclization through 23
ensued.

Furthermore, when t-Bu-substituted ynamide 24 was subjected to the reaction conditions,
the desired cycloadduct 25 was isolated in only 22% yield, however cyclopentenimine 26
was obtained in 57% yield [Scheme 4]. This further illustrates the necessity for the
cycloaddition to occur through the highly-organized transition state 28, as disfavorable steric
interactions clearly favor carbocyclization through 29.

Next, we wished to assess how an unsubstituted allyl group serving as the cycloaddition
partner would behave under the reaction conditions, as Pd-catalyzed deallylation was also
possible [Scheme 5]. Additionally and notably, Tu found unsubstituted alkenes to be
unreactive in their system.13 Interestingly, when ynamide 30 was heated to 70 °C with 5 mol
% Pd(PPh3)4, a 1:1 mixture of cycloadduct 31 and cyclopentenimine 32 was isolated in 61%
yield, arising from competing fused–[2 + 2] cycloaddition and carbocyclization. Fortunately,
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fused cycloadduct 31 crystallized cleanly from the mixture, allowing us to confirm its
structure by X-ray analysis. The cycloaddition was highly diastereoselective, giving 31 with
the imine syn to the c-hexyl as a single diastereomer through 33 to minimize A1,2 strain
suffered in 33’.

Similar to what has been well documented for ketene–[2 + 2] cycloadditions,6 we found that
tethered internally substituted alkenes also favored formation of fused cycloadducts in our
system [Table 2]. Ynamides 34a–d featuring a variety of propargylic substituents gave fused
cycloadducts 36a–d in good yields with excellent diastereoselectivity. Further supporting
the switch to a fused cycloaddition pathway, the imine carbon NMR signal for the fused
cycloadducts was consistently 3–5 ppm upfield from the imine signal in the related bridged
systems [194–195 ppm vs. 198–199 ppm]. The relative stereochemistry of 36a and 37,
derived from the phosphoryl-substituted ynamide 35,17 were assigned by nOe analysis.15

We have showcased here a highly diastereoselective cascade of Pd-catalyzed N-to-C allyl
transfer–intramolecular–[2 + 2] cycloadditions to afford highly substituted bicycloimines
from N-allyl ynamides. The alkene substitution pattern played an imminent role in favoring
either the fused or crossed cycloaddition pathway, leading to fused or bridged cycloadducts.
Also uncovered is a competing carbocyclization pathway when hindered alkenes or
sterically-demanding propargylic substitutents were employed, giving rise to α,β-
unsaturated cyclopentenimines. Applications and a further mechanistic understanding these
unique cycloaddition manifolds are currently underway.
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Figure 1.
X-ray of 8 and Diastereoselectivity Rationale
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Figure 2.
Switch in Diastereoselectivity with N-Ts Tether
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Scheme 1.
Intramolecular Ketenimine–[2 + 2] Cycloadditions
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Scheme 2.
Discovery of a Crossed Ketenimine–[2 + 2]
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Scheme 3.
A Dichotomy Based on Olefin Geometry
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Scheme 4.
Crossed–[2 + 2] versus Carbocyclization
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Scheme 5.
Discovery of a Fused–[2 + 2] Cycloaddition
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Table 1

Crossed Ketenimine–[2 + 2] Cycloadditionsa

entry ynamide crossed–[2+2] cycloadduct yield [%]b,c

1 ≥95

2 72d

3 74d

4 67d

5 95e

a
Reaction conditions: 5 mol % Pd(PPh3)4, Tol [conc = 0.1 M], 70 °C, 2 h.

b
Isolated yields.

c
≥20:1 dr by 1H NMR unless otherwise noted.

d
10–20% cyclopentenimine.

e
9:1 dr as measured by 1H NMR.
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Table 2

Fused Ketenimine–[2 + 2] Cycloadditions

entry ynamide fused–[2+2] cycloadduct yield [%]b,c

1 86

2 71d

3 85

4 72

5 85e

a
Reaction conditions: 5 mol % Pd(PPh3)4, Tol [conc = 0.1 M], 70 °C, 2 h.

b
Isolated yields.

c
≥20:1 dr by 1H NMR unless otherwise noted.

d
10–20% cyclopentenimine.

e
9:1 dr as measured by 1H NMR.
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