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Bacteria consume dissolved organic matter (DOM) through hydrolysis, transport and intracellular metabolism, and these activi-
ties occur in distinct subcellular localizations. Bacterial protein subcellular localizations for several major marine bacterial
groups were predicted using genomic, metagenomic and metatranscriptomic data sets following modification of MetaP software
for use with partial gene sequences. The most distinct pattern of subcellular localization was found for Bacteroidetes, whose ge-
nomes were substantially enriched with outer membrane and extracellular proteins but depleted of inner membrane proteins
compared with five other taxa (SAR11, Roseobacter, Synechococcus, Prochlorococcus, oligotrophic marine Gammaproteobacte-
ria). When subcellular localization patterns were compared between genes and transcripts, three taxa had expression biased to-
ward proteins localized to cell locations outside of the cytosol (SAR11, Roseobacter, and Synechococcus), as expected based on
the importance of carbon and nutrient acquisition in an oligotrophic ocean, but two taxa did not (oligotrophic marine Gamma-
proteobacteria and Bacteroidetes). Diel variations in the fraction and putative gene functions of transcripts encoding inner mem-
brane and periplasmic proteins compared to cytoplasmic proteins suggest a close coupling of photosynthetic extracellular re-
lease and bacterial consumption, providing insights into interactions between phytoplankton, bacteria, and DOM.

Heterotrophic bacteria are major consumers of marine dis-
solved organic matter (DOM) (6). It has been estimated that

as much as 50% of the photosynthetically fixed organic matter
eventually passes through the DOM pool (5, 20, 50), formed via
exudation or excretion from phytoplankton and the trophody-
namic processes of sloppy feeding and viral lysis (17). It is known
that 9 out of 10 marine bacterial cells are Gram negative (54), and
their outer membrane is permeable to small DOM molecules of
�600 Da (58). This indicates that the utilization of low molecular
weight (LMW) DOM may not require the participation of extra-
cellular and outer membrane-associated proteins.

A substantial amount of DOM in seawater has a molecular
mass of �1,000 Da, however (e.g., 23 to 33% of DOM in surface
oceans) (4, 10, 11, 46). The importance of this high molecular
weight (HMW) DOM to bacterial growth has been demonstrated
in a number of studies, including studies conducted in the north-
ern Gulf of Mexico (4) and surface water of the North Pacific
Subtropical Gyre (45). A data assimilative modeling approach
used in a previous study (42) led to the estimation that HMW
DOM can support up to 40% of heterotrophic bacterial carbon
demand. To make use of these large organic compounds, marine
bacterioplankton must mobilize extracellular and outer mem-
brane-bound hydrolytic enzymes that break them down into
smaller compounds capable of being transported across bacterial
membranes.

The relevance of the size of DOM to bacterial utilization and
DOM cycles was best illustrated by the size-reactivity continuum
model (3), in which the bulk HMW DOM is more reactive than
the bulk LMW DOM. Although LMW DOM supports higher bac-
terial growth efficiencies than HMW DOM, the latter fuels higher
rates of bacterial growth and respiration (3, 4). Since utilization of
different size classes of DOM requires proteins localized in differ-
ent subcellular compartments, studying protein subcellular local-
ization may be a valuable approach to understanding how bacteria
interact with the chemical matrix of seawater.

In a Gram-negative bacterium, there are five possible subcel-

lular compartments where proteins can be localized: cytoplasm,
inner membrane, periplasm, outer membrane, and extracellular
space. The subcellular localization of marine bacterial proteins
can be explored with molecular sequence data from marine bac-
terial genomes (65), metagenomes (66), and metatranscriptomes
(26, 51, 52, 57). Since different algorithms frequently make differ-
ent predictions, we developed the meta-algorithm MetaP (41).
Unlike an early meta-algorithm in which different subcellular lo-
calizations were treated as independent classes (39), in MetaP the
neighborhood relations of different subcellular localizations are
considered and predictions are made by summarizing weighted
optimal and suboptimal prediction scores on neighboring com-
partments (41). In the present study using modified MetaP soft-
ware with an improved performance for short read prediction,
differences in protein subcellular localization were found for ex-
pressed genes compared with their genomes for several major ma-
rine bacterial lineages. Diel differences in protein subcellular lo-
calization and gene functions that provided insights into day/
night shifts in bacterial activities were also observed.

MATERIALS AND METHODS
Marine bacterial genomic, metagenomic and metatranscriptomic data
sets. Four criteria were used to select marine bacterial lineages for subcel-
lular localization prediction. First, all selected lineages had to be a domi-
nant group in the ocean; they were members of the five most abundant
lineages in surface oceans as identified by the Global Ocean Survey (GOS)
(54). Second, multiple sequenced genomes (n � 5) within the lineage had
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to be available. Third, the lineages had to represent a wide phylogenetic
diversity, including members from different phyla. Lastly, the lineages had
to represent different life strategies, including heterotrophy versus auto-
trophy, and r versus K strategies. According to these considerations, six
lineages were selected (see Table S1 in the supplemental material): Roseo-
bacter, SAR11, Prochlorococcus, Synechococcus, oligotrophic marine gam-
maproteobacteria (OMG), and Bacteroidetes. These marine bacterial lin-
eages span a wide range of genome sizes (see Table S1), including the
highly reduced SAR11 and Prochlorococcus genomes (1 million to 2 mil-
lion bp), the intermediate Synechococcus and OMG genomes (2 million to
4 million bp), the large Roseobacter genomes (3.5 million to 5 million bp),
and the highly variable Bacteroidetes genomes (1.5 million to 9.7 mil-
lion bp).

The marine metagenomic data set used in this study was a subset of
GOS samples from open ocean and coastal waters combined according to
geographical information (see Table S2 in the supplemental material).
The marine metatranscriptomic data sets were from previously published
studies of four marine surface waters: the Hawaiian Ocean Time-Series
(HOT) station (51), the southeastern U.S. coast (26), the Bermuda Atlan-
tic Time-Series Study (BATS) enriched with dimethylsulfoniopropionate
(DMSP) (57), and southeastern U.S. coastal water enriched with com-
pounds derived from phytoplankton or vascular plants (52). The GOS
peptide database and the metatranscriptomic DNA short read data sets
were downloaded from the CAMERA metagenome collections (http:
//camera.calit2.net/). Since the genes relevant to phototrophy were highly
expressed in the transcriptomes (e.g., cyanobacterial photosystem genes,
bacteriochlorophyll-related genes, proteorhodopsin; see Data Set S1 in
the supplemental material), were expressed mainly during the day and
rarely during the night, and most were found to be associated with cell
membranes, inclusion of these gene transcripts might have biased the true
signal of predicted patterns of subcellular localization, e.g., in comparison
between day and night metatranscriptomic data sets at the HOT station.
Therefore, data sets were analyzed before and after removal of these se-
quences for all metatranscriptomic data sets. Since the conclusions
reached were identical, only the data after removal of phototrophy-related
sequences were shown.

To determine the amino acid sequences of the metatranscriptomic
data sets, cDNA sequences were translated in silico using six frames. Pep-
tide fragments with at least 50 amino acids were analyzed by BLAST
against the NCBI microbial RefSeq (reference sequence) database (53),
and the fragments with significant hits (bit score of �40 and E value of
�10�6) were retained and used for further analyses. The metagenomic
and metatranscriptomic sequences were binned to the closest bacterial
genome by identifying the top hit in BLAST searches against a custom
bacterial genome database with a cutoff E value of 0.1. The custom data-
base consists of all prokaryotic genomes downloaded from NCBI in 2010,
and marine prokaryotic genomes that were not found in NCBI but were
found in the Gordon and Betty Moore Foundation Marine Microbial
Genome Sequencing Project (http://moore.jcvi.org/moore/). The latter
includes several members in the Roseobacter clade, the SAR11 clade, the
OMG group, the marine Bacteroidetes, and the genera Prochlorococcus and
Synechococcus. Some metagenomic and metatranscriptomic data sets were
obtained from coastal regions where Prochlorococcus cells are rarely found,
and it was not possible to analyze protein subcellular localization for this
lineage in those data sets.

MetaP consensus algorithm for subcellular localization prediction
of fragmentary sequences. The MetaP program for predicting protein
subcellular localization for metagenomic sequences (41) is a consensus
algorithm, and its accuracy is dependent on that of the multiple predictors
incorporated into the final algorithm. In its original version (41), all of the
three base predictors (CELLO, SUBLOC, LOCTREE) in MetaP used
amino acid compositional bias or a variant of this property to construct a
support vector machine (SVM) for predicting localization (30, 48, 67).
The LOCTREE software (48), however, additionally employs the Signal-P
program, which makes predictions based on the presence of signal pep-

tides (21). Since signal peptides are usually located at the N-terminal
parts, which are likely to be missed in metagenomic and metatranscrip-
tomic sequences, this property made LOCTREE less reliable for metag-
enomic and metatranscriptomic sequences and subsequently reduced the
accuracy of MetaP.

In the present new version of MetaP (v 2.0), LOCTREE was replaced
with PSLDOC. PSLDOC software is an application of SVM utilizing
gapped dipeptide compositional bias (16), making it potentially useful in
predicting fragmentary peptides. Using training data sets (see Data Set S2
in the supplemental material), which consisted of protein sequences
whose subcellular localization had been experimentally verified (41), the
new version of MetaP was found to have better performance (see Tables
S3 and S4 in the supplemental material) and therefore was used in the
present study.

Among the three base predictors, CELLO and PSLDOC are able to predict
membrane proteins, whereas SUBLOC can predict only nonmembrane pro-
teins. These results indicate that the current version of MetaP is suitable for
predicting nonmembrane proteins, and the membrane proteins must be
identified by CELLO or PSLDOC and left out before MetaP is employed.
Since PSLDOC (see Table S5 in the supplemental material) was found to
perform better than CELLO (see Table S6 in the supplemental material) in
membrane protein prediction, the former was therefore used to identify
membrane proteins as a first step, and the remaining sequences were then
predicted by all three base predictors (CELLO, PSLDOC, SUBLOC) and
MetaP. This procedure was used to process all possible protein sequences in
the selected marine bacterial genomes, metagenomes, and metatranscrip-
tomes (see Tables S7, S8, and S9 at http://www.marsci.uga.edu/facultypages
/moran/publications/supplements.html).

Statistical analysis. To visualize whether the subcellular localization is
taxon-specific and whether genes and gene transcripts differ with regard
to subcellular localization in major marine bacterial lineages, the dimen-
sionality of the subcellular localization was reduced and plotted using
High-Throughput Multi-Dimensional Scaling (HiT-MDS) software (22,
55). Pearson’s correlation coefficients were derived between coordinates
of each of the two dimensions and data on the subcellular localization (see
Table S10 in the supplemental material).

Differences in the subcellular localization patterns between gene tran-
scripts (from metatranscriptomes) and genes (from genomes and metag-
enomes) were analyzed by the method of Baggerly et al. (7), a statistical
method for count data which considers both within-library (library size
effect) and between-library (biological replicate effect) variations. The
within-library variation captures the sampling variability, and the be-
tween-library variation accounts for variations between individuals
within the sample group (7). The same approach was used to test for
subcellular localization differences in gene expression between day and
night genes in surface ocean microbial assemblages at the HOT station.

To see what functions drive the differences between day and night
gene expression, the determined peptide sequences were searched against
the Clusters of Orthologous Groups (COG) (56) located in the NCBI
Conserved Domain Database (44) using the RPSBLAST program (2) with
a cutoff E value of 0.1 (see Table S11 in the supplemental material).

RESULTS
Lineage-specific subcellular localization. In most cases, the sub-
cellular distribution of proteins was observed to be more similar
among genomes within a lineage than across different lineages,
suggesting lineage-specific localization patterns. There was a clear
separation of Bacteroidetes from the other lineages attributable to
a greater fraction of outer membrane and extracellular proteins
and a lower fraction of inner membrane proteins (P � 0.001 in all
cases) (Fig. 1). The remaining five lineages were separated to a
lesser extent. Roseobacter and SAR11 genomes had distinct pat-
terns, with the former having a larger fraction of inner membrane
proteins and a lower fraction of outer membrane and extracellular
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proteins (P � 0.001 in all cases) (Fig. 1). Prochlorococcus was also
distinguishable from Synechococcus with the exception of a few
strains, based on a greater proportion of cytoplasmic proteins and
a lower proportion of periplasmic proteins in the former (P �
0.001 in both cases) (Fig. 1).

Differences in subcellular localization between genes and ex-
pressed genes. For each major marine bacterial lineage, a multi-
dimensional scaling (MDS) figure was plotted that incorporated
subcellular localization assignments for genomes in the lineage
together with metagenomic and metatranscriptomic reads attrib-
uted to the lineage. The transcription pattern was distinguishable
from the genomic potential pattern in all lineages, suggesting that
genes which encode proteins localized to certain subcellular com-
partments were preferentially expressed. In all lineages, genes en-
coding outer membrane proteins represented a lower fraction of
the metatranscriptomes than of the genomes and metagenomes
(P � 0.001 in all cases) (Fig. 2). In addition, the Roseobacter,
Bacteroidetes, and OMG clades had a greater fraction of genes
encoding periplasmic proteins and a lower fraction of genes en-
coding inner membrane proteins in their metatranscriptomes
than in their genomes and metagenomes (P � 0.001 in all cases)
(Fig. 2A, 2B, 2C). In contrast, Synechococcus had the reverse trend,
with genes encoding inner membrane proteins preferentially ex-
pressed (P � 0.001) and genes encoding periplasmic proteins less
expressed (P � 0.01) (Fig. 2D). The SAR11 clade also had a greater
fraction of genes encoding inner membrane proteins in the meta-

transcriptomes than in the genomes and metagenomes (P �
0.001) (Fig. 2E). Genes encoding extracellular proteins showed no
differences between metagenomes and metatranscriptomes in the
Roseobacter, OMG, and Synechococcus groups. In SAR11, genes
encoding extracellular proteins represented a greater fraction in
the metatranscriptomes than in the genomes and metagenomes
(Fig. 2E), whereas in Bacteroidetes (Fig. 2B) these genes had lower
expression (P � 0.001 in both cases). Lastly, genes encoding cyto-
plasmic proteins had a lower representation in transcriptomes in
Roseobacter, Synechococcus and SAR11 (P � 0.001 in all cases)
(Fig. 2A, 2D, 2E), while a reverse pattern was observed in the OMG
clade (P � 0.001) (Fig. 2C).

Day versus night gene expression patterns for subcellular lo-
calization. Day and night gene expression patterns for protein
subcellular localization were compared for the bacterioplankton
assemblage sampled from surface water at the HOT station
ALOHA, defined by the 6-nautical-mile radius circle centered at
22°45=N, 158°W (51). The night sample was collected at 0300 on
11 November 2005 and the daytime sample was collected at 1300
on 13 November 2005 (51). Genes encoding the periplasmic (P �
0.001) and inner membrane (P � 0.05) proteins were enriched in
the day versus the night. In contrast, genes encoding the cytoplas-
mic (P � 0.001) and extracellular (P � 0.001) proteins were en-
riched in the night versus the day. There was no statistically sig-
nificant diel difference in expression for genes encoding outer
membrane proteins (Fig. 3).

FIG 1 High-throughput multidimensional scaling (HiT-MDS) plot of MetaP using whole-genome-sequence-predicted protein subcellular localization among
major marine bacterial lineages.
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DISCUSSION

Members of Bacteroidetes are recognized for the ability to degrade
biopolymers (34), a process considered the rate-limiting step in
HMW DOM mineralization (29, 33). Bacteroidetes have been
shown to comprise the largest fraction of bacteria consuming chi-

tin, polysaccharides, and proteins, but the smallest fraction con-
suming amino acids (18), and they participate less in the uptake of
dissolved free amino acids than do Alphaproteobacteria and Gam-
maproteobacteria (1). These observed ecological roles are backed
up by comparative genomic analyses. Bacteroidetes members Gra-
mella forsetii KT0803 and Polaribacter sp. MED152 have a greater
representation of outer membrane receptors for polymeric com-
pounds and a smaller fraction of inner membrane transporters
and periplasmic substrate-binding proteins for monomeric com-
pounds than Pelagibacter ubique (SAR11), Ruegeria pomeroyi (the
Roseobacter clade), or marine Gammaproteobacteria (8, 27).
Thus, this finding that the genomes and metagenomes of Bacte-
roidetes are the most distinctive with regard to outer/inner mem-
brane protein ratios corroborates the significance of biopolymer
degradation in driving the ecological differentiation of this lineage
(Fig. 1).

Considering the importance of nutrient acquisition for bacte-
ria to survive in the oligotrophic ocean environment, genes en-
coding proteins localized in the cytoplasm were expected to com-
prise a smaller fraction of the metatranscriptomes than the
genomes and metagenomes. Among the five taxonomic groups
studied, Roseobacter, SAR11 and Synechococcus were consistent
with this expectation, while OMG showed the reverse trend and

FIG 2 High-throughput multidimensional scaling (HiT-MDS) plot of MetaP using genome, metagenome, and metatranscriptome sequence-predicted protein
subcellular localization of marine bacteria. (A) Roseobacter, (B) Bacteroidetes, (C) oligotrophic marine Gammaproteobacteria (OMG), (D) Synechococcus, and (E)
SAR11.

FIG 3 Differential gene expression in protein subcellular localizations be-
tween day and night in surface waters of the North Pacific Subtropical Gyre.
The letter above the bars indicates the significance level: a, P � 0.001; b, P �
0.05.
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Bacteroidetes did not exhibit a differential pattern. One possible
interpretation is that the first three bacterial groups allocate more
resources to acquire substrates from the environment. Similarly,
subcellular localization patterns between the single marine au-
totroph analyzed here and the heterotrophic taxa showed that
Synechococcus expressed fewer periplasmic proteins and more in-
ner membrane proteins relative to their abundance in genomes
and metagenomes, while Roseobacter, Bacteroidetes, and OMG
expressed more periplasmic and fewer inner membrane proteins
than expected from their genomes. Since the periplasm is enriched
with hydrolytic enzymes and nutrient-binding proteins (49, 61),
and the inner membrane is known to harbor various nutrient
transporters (19), this finding is consistent with different cell-nu-
trient interactions in which the heterotrophs play a larger role in
organic matter degradation while Synechococcus transports a
higher proportion of nutrients that do not need hydrolysis prior to
transport, such as inorganic nutrients and small DOM com-
pounds. In fact, a proteomics study of a freshwater cyanobacte-
rium showed that identified transporter proteins were mainly for
inorganic nutrient acquisition (31). It is interesting that SAR11
had a ratio of inner/outer membrane protein transcripts consis-
tent with Synechococcus but differing from the other heterotrophic
bacteria. A recent study showed that SAR11 is specialized for up-
take of small organic molecules while Synechococcus has a high
capacity for phosphate uptake (68). Thus, the coincident pattern
of SAR11 and Synechococcus in expression of inner membrane
proteins is likely driven by different ecological functions. The
above discussion is based on an assumption that protein abun-
dance and mRNA levels are positively correlated, which has been
shown to be the case for populations of some model organisms
under steady-state conditions (40). Currently, however, very little
is known about coordination of mRNA and protein pools in ma-
rine bacteria under dynamic environmental conditions.

The elevated daytime expression of proteins in the periplasm
and inner membrane in the North Pacific Subtropical Gyre meta-
transcriptome suggests a greater flux of organic matter and inor-
ganic nutrients into the bacterioplankton assemblage during the
day than during the night. This is consistent with previous studies
showing that the turnover rate of dissolved free amino acid can be
much greater in the day (15, 23). Several phototrophy-relevant
genes (e.g., proteorhodopsin, pufM, pufL, cyanobacterial photo-
systems) were highly expressed during the day, and these are lo-
calized in either the cytoplasmic membrane or the thylakoid
membrane. However, the finding of differential diel localization
patterns for expressed genes remained the same whether or not
these gene transcripts directly linked to solar energy capture were
included.

The sources of the bioreactive DOM being processed by bacte-
rioplankton include phytoplankton exudation, zooplankton graz-
ing (through “sloppy feeding” mechanisms), and viral lysis (14),
as well as potentially through photodegradation of refractory
DOM (47). Zooplankton grazing has not been found to have a diel
pattern (36, 60), or if so, the rates are higher at night (59). Evi-
dence of diel patterns of viral lysis is controversial (32, 62, 63), but
biopolymer-enriched viral lysis products would likely require mo-
bilization of hydrolytic enzymes, which was not evident in the
subcellular localization data. Finally, solar radiation has been
shown to both increase bioreactivity of refractory DOM and de-
crease bioreactivity of labile DOM (9). Thus, the subcellular local-
ization signal indicative of higher diurnal bacterial DOM flux is

hypothesized to represent a response to increases in exudates from
actively photosynthesizing phytoplankton (43, 64).

Tight coupling of autotrophic production and heterotrophic
consumption of organic matter has been observed previously.
Fuhrman et al. (24) found significant diel covariations of chloro-
phyll, bicarbonate incorporation, bacterial abundance and thymi-
dine incorporation, while Gasol et al. (25) showed diel changes in
both DNA and protein synthesis by bacteria, and Kuipers et al.
(35) observed a diel rhythm in frequency of dividing cells, cell
volume, and bacterial abundance. These studies provide physio-
logical evidence of daily rhythms of bacterial activities consistent
with the subcellular localization predictions of gene expression
observed here.

The finding of elevated daytime expression of genes encoding
proteins localized in the inner membrane and periplasm but not
in the outer membrane and extracellular space provides clues as to
the chemical composition of bioreactive DOM. Since small com-
pounds freely diffuse across the bacterial outer membrane with-
out the involvement of extracellular hydrolytic enzymes and
transporters located there, the subcellular localization pattern
points to a predominant daytime flux of low molecular weight
(LMW) DOM. This is consistent with previous studies showing
phytoplankton exudates consisting mainly of compounds 300 to
600 Da in size (38) representing a wide range of LMW DOM
which is rapidly consumed by bacteria (12, 13), though exudates
from natural diatom populations in the North Sea dominated by
macromolecules have also been reported (37).

The finding of elevated nighttime expression of genes encoding
extracellular proteins suggests the transport of higher molecular
weight DOM at night. Microbial cell ruptures due to zooplankton
grazing and viral lysis are likely to release HMW compounds in the
form of membrane and other biopolymeric materials, and HMW
DOM accounts for a greater fraction of phytoplankton release in
the dark than in the light (28). Bacteria may therefore bias gene
expression patterns toward the extracellularly localized proteins
necessary to utilize a HMW-enriched bioreactive nighttime DOM
pool.

The differential day versus night gene expression pattern in
regard to protein subcellular localization was backed up by obser-
vations of relative abundance of gene transcripts with different
functional categories. Some examples were summarized in Table 1
(see also Table S12 in the supplemental material). Cytoplasmic
protein families showing preferential transcription during the
night included those involved in cellular synthesis and mainte-
nance (e.g., DNA polymerase, helicases, topoisomerases, replica-
tion-related ATPases, DNA repair proteins). In contrast, families
driving the differential pattern of periplasmic and inner mem-
brane proteins included genes involved in nutrient hydrolysis and
transport (e.g., various permeases and hydrolases). Families in-
volved in energy production and detoxification of reactive oxygen
species were preferentially transcribed during the daytime, and
they were found in multiple subcellular compartments (Table 1;
see also Table S12 in the supplemental material). These gene fam-
ilies appear to be contributing to the differential patterns of day
and night expression in different subcellular compartments.

This predictive framework for subcellular localization of pro-
teins in ocean bacteria therefore contributes to a model of diel
cellular activities in which photosynthetic exudates dominated by
labile LMW DOM diffuse freely across bacterial outer membrane
and are hydrolyzed in the periplasm and/or transported through

Luo

6554 aem.asm.org Applied and Environmental Microbiology

http://aem.asm.org


inner membrane permeases and transporters during the day.
These acquired nutrients provide the raw materials for greater
cytoplasm-dominated synthesis activities during the night, along
with a relatively greater investment in proteins mediating HMW
DOM uptake.
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