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As the major excitatory neurotransmitter in the brain, glutamate plays an undisputable inte-
gral role in opiate addiction. This relates, in part, to the fact that addiction is a disorder of
learning and memory, and glutamate is required for most types of memory formation. As
opiate addiction develops, the addict becomes conditioned to engage in addictive behav-
iors, and these behaviors can be triggered by opiate-associated cues during abstinence,
resulting in relapse. Some medications for opiate addiction exert their therapeutic effects
at glutamate receptors, especially the NMDA receptor. Understanding the neural circuits
controlling opiate addiction, and the locus of glutamate’s actions within these circuits, will
help guide the development of targeted pharmacotherapeutics for relapse.

Addiction to opiate drugs, like heroin and
morphine, is a complex disease that begins

with opiate exposure and ends in chronic re-
lapse. This persistent drug seeking despite ad-
verse consequences and the will to stop using
results, at least in part, from the conditioning
that occurs during drug exposure. Environmen-
tal cues become associated with various aspects
of the drug experience—such as the reward, the
withdrawal, and the behavioral responses that
are required to obtain the drug. Glutamate re-
ceptors are critically involved in each of these
processes along the road to opiate addiction,
despite the fact that opiate drugs exert their
primary effects on the m opioid receptor. These
indirect effects on glutamate systems involve the
prefrontal cortex, amygdala, and hippocampus,

all of which converge onto a nucleus accum-
bens output station that ultimately determines
whether drug seeking occurs. Understanding
the role of glutamate within the neural circuitry
of opiate addiction is a critical first step toward
novel therapeutics for relapse.

THE MEMORY MOSAIC OF
OPIATE ADDICTION

Opiate addiction is a conglomerate of memories
about the opiate experience, and when memory
retrieval is triggered by the appropriate cues,
relapse may occur. Different aspects of the
drug experience, such as opiate reward and
withdrawal, as well as the behavioral responses
that led to the attainment of opiates, over time
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become associated with various environmental
cues that are repeatedly paired with them through
a process termed “conditioning.” During at-
tempts to abstain from the drug, the addict
may be confronted with a reminder cue that
triggers retrieval of one or more of these condi-
tioned memories. In the absence of appropriate
inhibitory control, such events may drive re-
lapse. Below we review what is known about
the neurobiological underpinnings of these dis-
tinct conditioned memories, primarily drawing
from rodent models of addiction.

CONDITIONED REWARD AND AVERSION

The rewarding effects of drugs of abuse can be
studied using the conditioned place preference
model (CPP). In this model, the animal learns to
associate an environmental context with opiate
reward. Treatments that affect the acquisition of
CPP are likely involved in primary reward,
whereas those that affect only the expression of
CPP may be selectively involved in conditioned
reward. Ventral tegmental area (VTA) m opioid
receptors mediate the primary rewarding effects
of opiates (Wise 1989), and glutamatergic tone
is required for the activating effects of opiates on
dopamine neurons (Jalabert et al. 2011) (see
Mazei-Robison and Nestler 2012; Ting-A-Kee
and van der Kooy 2012). However, more and
more evidence indicates that glutamate recep-
tors are also critical for opiate reward. Below
we review what is known about the types of glu-
tamate receptors involved in opiate reward,
based on evidence from CPP models.

The NMDA receptor (NMDA-R) stands out
as the glutamate receptor subtype most com-
monly implicated in the rewarding effects of
opiates. NMDA-R antagonists block both the
acquisition and expression of morphine CPP
(Tzschentke and Schmidt 1995; Tzschentke
and Schmidt 1997; Popik et al. 1998, 2003a,b;
Suzuki et al. 2000; Papp et al. 2002; Ribeiro Do
Couto et al. 2004; Yonghui et al. 2006; Rezayof
et al. 2007; Zarrindast et al. 2007; Heinmiller
et al. 2009; Kao et al. 2011; Ma et al. 2011b).
These effects are at least partly mediated by
NR2B-containing NMDA-Rs, as NR2B-selec-
tive antagonists, such as ifenprodil, are capable

of producing comparable effects (Suzuki et al.
1999; Narita et al. 2000; Ma et al. 2006, 2011b).
Furthermore, an effective dose of ifenprodil
does not alter spatial learning and memory in
a nonopiate paradigm (Ma et al. 2011b), sug-
gesting that these effects may be independent of
context memory encoding. Collectively, these
results suggest that NMDA, specifically NR2B-
containing, receptor antagonists may devalue
the primary reward of opiates.

The AMPA receptor (AMPA-R) and the me-
tabotropic glutamate receptor 5 (mGluR5) have
similarly been implicated in opiate conditioned
reward. AMPA-R (Layer et al. 1993; Tzschentke
and Schmidt 1997; Harris et al. 2004; Shabat-
Simon et al. 2008) and mGluR5 (Popik and
Wrobel 2002; Aoki et al. 2004; Herzig and
Schmidt 2004; Veeneman et al. 2011) antago-
nists block both the acquisition and expression
of morphine CPP, and at least for the mGluR5
antagonist MPEP, effective doses do not alter
spatial learning and memory in other tasks (Po-
pik and Wrobel 2002). This pattern of results is
strikinglysimilar tothoseobservedwithNMDA-
R antagonists. However, unlike NMDA-R antag-
onists (Tzschentke and Schmidt 1997; Papp et al.
2002), the effects of mGluR5 antagonists on ac-
quisition can be explained by state dependence
(Herzig and Schmidt 2004). Others have even
observed a potentiation in morphine CPP with
mGluR5 antagonists (van der Kam et al. 2009a,b;
Rutten et al. 2011), suggesting that mGluR5 an-
tagonists may partly substitute for opiate reward
(Rutten et al. 2011).

Acute withdrawal from opiate drugs can
produce an aversive state that is capable of in-
ducing conditioned place aversion (CPA) in a
manner comparable to the CPP that is induced
by opiate reward. Experimentally, this acute
withdrawal state is often elicited by injection
of naloxone, a m opioid receptor antagonist,
in morphine-dependent animals. Interestingly,
NMDA-R antagonists are capable of blocking
both the acquisition and expression of nalox-
one-induced conditioned aversion (Blokhina
et al. 2000; Maldonado et al. 2003; Kawasaki et
al 2011). At least one study has documented
similar effects on the acquisition of this CPA
withanAMPA-Rantagonistandbroad-spectrum
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mGluR antagonists (Kawasaki et al. 2005). Fur-
thermore, these effects were localized to the nu-
cleus accumbens (Fig. 1a,b) (Kawasaki et al.
2011). These studies suggest that similar gluta-
matergic mechanisms underlie both morphine
CPP and naloxone CPA.

Glutamate transporters also play an impor-
tant role in opiate conditioned memories, by
altering the level of glutamate available for bind-
ing its receptors. For example, inhibition of
glutamate uptake with transporter blockers en-
hances acquisition of morphine CPP and nalox-
one CPA (Sekiya et al. 2004), whereas promot-
ing glutamate uptake blocks the acquisition of
morphine CPP (Fujio et al. 2005; Nakagawa
et al. 2005a). These studies suggest that even
indirect glutamate receptor agonists may en-
hance, whereas antagonists may prevent, opiate
conditioned memories.

CONDITIONED REINFORCEMENT

By comparison to what is known about the role
of glutamate in opiate conditioned reward, far
less is known about its role in conditioned re-
inforcement. Conditioned reinforcement refers
to the progressive ability of various opiate con-
ditioned stimuli to drive behavioral respond-
ing for opiates. This is typically assessed using
a self-administration paradigm, which, unlike
the CPP paradigm, permits animals to control
their own intake of the opiate drug by perform-
ing an operant response (such as nose poking or
lever pressing). Indeed, contingent versus non-
contingent forms of opiate administration have
been shown to elicit different patterns of gene
expression changes (Jacobs et al. 2005). The self-
administration paradigm is thus considered the
gold standard for assessing addiction behavior
because it takes into account several cognitive
aspects, such as expectation, decision-making,
and reward valuation, in the neurobiological
response to opiates.

In general, however, effects on conditioned
reinforcement in the self-administration para-
digm support the observations on conditioned
reward. For example, NMDA-R and AMPA-R
antagonists increase rates of heroin self-admin-
istration and produce behavioral effects con-

sistent with a decrease in opiate reward (Seme-
nova et al. 1999; Xi and Stein 2002). Similar to
its substitution-like effects in the CPP model,
MPEP pretreatment reduces rates of heroin self-
administration (van der Kam et al. 2007), and
rats will self-administer this mGluR5 antagonist
intravenously (van der Kam et al. 2009b). Col-
lectively, these observations suggest that effects
on the acquisition of CPP or the self-adminis-
tration of opiates, or in general, experimental
phases in which the opiate drug is “on board,”
can be most parsimoniously explained by effects
on primary reward. As such, effects on condi-
tioned responses might best be studied under
extinction conditions (see below).

EXTINCTION AND REINSTATEMENT

Extinction is a multifaceted term that is used to
describe what is typically the second phase of the
addiction model, in which opiate availability is
removed, and the animal learns to stop respond-
ing for the drug and/or to stop expressing CPP.
The term “extinction” is also used to refer to the
inhibitory memory that is formed during this
phase of the model. Certain cues associated with
opiate reward can be extinguished, and the al-
ternative, nonextinguished cues can be used to
trigger reinstatement, or relapse. Often, the re-
instatement test is also conducted under extinc-
tion conditions (e.g., opiate is unavailable). In
addition to nonextinguished cues, reinstate-
ment can be triggered by stress or noncontin-
gent priming injections of the opiate drug.
Stress circuits and primary reward mechanisms,
respectively, contribute to these latter, very dif-
ferent forms of relapse (Bossert et al. 2005b).

Because NMDA-R and AMPA-R antago-
nists also block the expression of CPP (Layer
et al. 1993; Tzschentke and Schmidt 1997; Popik
et al. 1998; Papp et al. 2002; Popik et al. 2003a;
Harris et al. 2004; Yonghui et al. 2006), their
role clearly extends beyond primary reward.
NR2B-containing NMDA-R antagonists are ca-
pable of reducing the expression of morphine
CPP when they are administered during opiate
abstinence (without explicit extinction train-
ing) (Ma et al. 2011b). They are also capable
of preventing reinstatement of morphine CPP
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Individual elements referenced in the main text

BLA
GluR2

NMDA-R
AMPA-R

mGluR2/3

GLT-1

xCT

Glutamate CeA
Direct or indirect
via BNST or PAG

Glutamate inputs
from PPT, etc.

glia

GluR1

VTA

Opiate
seeking

Nucleus
accumbens

NR2B

mPFC
GluR2 P GluR1

Hipp

NR2B

a.  AMPA-Rs in NAc on reward (Layer et al. 1993; Li et al. 2011b for GluR2-containing AMPA-Rs), on seeking (LaLumiere and Kalivas
     2008), on aversion (Kawasaki et al. 2011)
b.  NMDA-Rs in NAc on reward (Popik and Kolasiewicz 1999; Ma et al. 2007; Kao et al. 2011 for NR2B-containing NMDA-Rs),
     on aversion (Kawasaki et al. 2011), on NR2B-containing NMDA-Rs on seeking (Shen et al. 2011)
c.  mGluR2/3 in NAc on seeking (Bossert et al. 2006)
d.  xCT in NAc on seeking (Zhou and Kalivas 2008)
e.  GluR2-containing AMPA-Rs in mPFC on seeking (Van den Oever et al. 2008)
f.   GLT-1 in NAc on reward (Fujio et al. 2005)
g.  NMDA-R in mPFC on reward (Bishop et al. 2011)
h.  NMDA-R in CeA on reward (Rezayof et al. 2007; Li et al. 2008; Li et al. 2011a), on aversion (Watanabe et al. 2002; Glass et al. 2008)
i.   AMPA-R in CeA on aversion (Watanabe et al. 2002)
j.   NMDA-R in Hipp on reward (Zarrindast et al. 2007; Ma et al. 2007 for NR2B-containing NMDA-Rs), on aversion (Hou et al. 2009)
k.  AMPA-R in Hipp on aversion (Hou et al. 2009), on extinction (Billa et al. 2009 for phospho-GluR1)
l.   NMDA-R in VTA on reward (Popik and Kolasiewicz 1999; Harris et al. 2004), on reinforcement (Xi and Stein 2002)
m. AMPA-R in VTA on reward (Harris et al. 2004; Shabat-Simon et al. 2008; Carlezon et al. 1997 for GluR1-containing NMDA-Rs), on
     reinforcement (Xi and Stein 2002)
n.  mGluR2/3 in VTA on seeking (Bossert et al. 2004)

Note: Although mGluR5s have been shown to produce effects on opiate reward and reinforcement when administered systemically,
their loci of action in the brain have not been identified, and are therefore not depicted here.

Figure 1. Glutamate systems controlling opiate addiction. Three major glutamatergic inputs to the nucleus
accumbens (NAc) arise from the medial prefrontal cortex (mPFC), hippocampus (Hipp), and basolateral
amygdala (BLA) and regulate opiate reward and relapse. The BLA also projects to the mPFC and central nucleus
of the amygdala (CeA) (see text for details). The CeA can access the ventral tegmental area (VTA) directly or
through a relay in the bed nucleus of the stria terminalis (BNST) or periaqueductal gray (PAG). The VTA projects
to all components of the circuit and modulates their activity. Output from NAc neurons drives relapse to opiate
seeking.
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when administered in the days before the re-
lapse test, under either extinction or abstinence
conditions (Popik et al. 2006; Ma et al. 2011b).
These results are consistent with the notion that
NMDA-Rs are important for the persistent rep-
resentation of opiate reward memory. When
administered just before the reinstatement test,
ifenprodil is effective at preventing morphine-
primed, but not stress-induced, reinstatement of
CPP (Ma et al. 2007), suggesting that NR2B-
containing NMDA-Rs may not be necessary
for all forms of reinstatement. AMPA-R antag-
onists applied locally to the nucleus accumbens
are also capable of preventing reinstatement
elicited by both discrete cues and heroin prim-
ing in a self-administration model (Fig. 1a) (La-
Lumiere and Kalivas 2008).

D-cycloserine, a partial NMDA-R agonist
acting at the glycine-binding site, has been
used to facilitate extinction memory formation
(Davis et al. 2006). Although this drug is effective
at facilitating extinction of morphine CPA (My-
ers and Carlezon 2010), there is some evidence
that it may not be effective at facilitating extinc-
tion of morphine CPP (Lu et al. 2011). Neither
are NMDA-R antagonists effective at preventing
extinction of morphine CPP (Popik et al. 1998)
because, as mentioned above, they are involved
in the persistent representation of opiate reward.
Interestingly, in humans, the NMDA-R antago-
nist memantine effectively reduces heroin re-
ward, but unfortunately, does not alter its rein-
forcement (Comer and Sullivan 2007). This is
shown by the observation that subjective reports
of liking and craving can be reduced, but when
given the opportunity to self-administer heroin
or receive money, addicts will still choose to self-
administer the drug (Comer and Sullivan 2007).
This finding highlights the importance of distin-
guishing between reward and reinforcement,
and the mechanisms regulating drug taking ver-
sus drug seeking, as treatments that prevent re-
lapse should logically target the latter.

Disrupted glutamate homeostasis, particu-
larly within the nucleus accumbens, has been
proposed to underlie cocaine addiction (Kalivas
2009). For this psychostimulant, ambient levels
of accumbens glutamate are dramatically re-
duced during withdrawal owing to decreased

levels of the cysteine–glutamate exchanger (xCT)
on glia (Baker et al. 2003). This is thought to
result in reduced tone on presynaptic group II
glutamate receptors (metabotropic glutamate
receptor 2/3 [mGluR2/3]) that regulate gluta-
mate release (Moran et al. 2005). The possibility
remains that mGluR2/3 receptors located pre-
dominantly on glia may participate in these ef-
fects as well. Regardless, restoring tone on these
receptors with the mGluR2/3 agonist prevents
relapse for both cocaine and heroin (Bossert
et al. 2004, 2005a; Peters and Kalivas 2006),
presumably by protecting against excessive re-
lease of glutamate from afferents to the accum-
bens (Fig. 1c) (Bossert et al. 2006; Peters and
Kalivas 2006). In line with this, a recent study
showed the ability of the cognitive enhancing
drug, modafinil, to prevent heroin-primed re-
instatement of heroin CPP, and this effect was
mediated by mGluR2/3 receptors (Tahsili-Fa-
hadan et al. 2010).

The aforementioned effects of mGluR2/3
agents in heroin reinstatement suggest that a
similar pathology in accumbens glutamate may
underlie both cocaine and heroin addiction.
Consistent with this, N-acetylcysteine, an over-
the-counter drug that enhances cysteine–gluta-
mate exchange through xCT, has been shown to
reduce heroin seeking in a self-administration
model during both extinction and reinstate-
ment (Fig. 1d) (Zhou and Kalivas 2008). Strik-
ingly, this glutamate prodrug was capable of
preventing multiple forms of reinstatement
(e.g., both discrete cue- and heroin-induced)
for up to 40 days after discontinuing treatment
(Zhou and Kalivas 2008). In human cocaine
addicts, N-acetylcysteine has been shown to ef-
fectively diminish the impact of cocaine-associ-
ated cues on cocaine craving (LaRowe et al.
2007), suggesting that the therapeutic potential
of this drug may translate to human addicts.

A SYSTEMS PERSPECTIVE ON
OPIATE ADDICTION

Thus far we have highlighted studies that exam-
ined the glutamatergic mechanisms of opiate
addiction with systemic pharmacological ma-
nipulations. But where are these agents exerting
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their effects in the brain? We have already men-
tioned the nucleus accumbens, which is a crit-
ical output controlling opiate seeking. We dis-
cuss here the three major glutamatergic inputs
to the accumbens that comprise the neural cir-
cuitry of opiate addiction. These include the
medial prefrontal cortex (mPFC), the basolat-
eral amygdala (BLA), and the hippocampus
(Fig. 1). The VTA is also discussed, owing to
its importance in modulating activity in these
glutamatergic afferents to the accumbens. All of
these brain regions, except the hippocampus,
have been shown to be necessary for the rein-
statement of heroin seeking in self-administra-
tion models of addiction (Bossert et al. 2004,
2006, 2011; Rogers et al. 2008). The hippocam-
pus, however, is critical for opiate reward (Cor-
rigall and Linseman 1988; Luo et al. 2004) and
provides an important modulatory input to ac-
cumbens neurons (O’Donnell et al. 1999). We
highlight below how interactions between these
regions govern opiate addictive behaviors.

PREFRONTAL-ACCUMBENS PATHWAYS

The glutamatergic mPFC projection to the nu-
cleus accumbens can be subdivided into a dor-
sal pathway from the prelimbic cortex (PL) sub-
region to the core, and a ventral pathway from
the infralimbic cortex (IL) subregion to the shell
(Sesack et al. 1989). Relapse for heroin relies on
the dorsal projection from PL to core, as shown
by an elegant study combining local inactiva-
tion of PL with microdialysis for glutamate in
the accumbens core during a reinstatement ses-
sion (LaLumiere and Kalivas 2008). These in-
vestigators observed a peak in glutamate within
the core during reinstatement, but when PL was
pharmacologically inactivated just before the
reinstatement test, reinstatement was blocked,
along with the corresponding rise in accumbens
glutamate. NMDA-R and AMPA-R antagonists
applied locally to the core were also sufficient to
block reinstatement of heroin seeking (LaLu-
miere and Kalivas 2008; Shen et al. 2011). In
fact, heroin relapse relies on LTP-like changes
within the PL to core pathway mediated by an
increase in cell membrane expression of NR2B-
containing NMDA-Rs (Fig. 1b) (Shen et al.

2011). The importance of this PL projection
to accumbens core has been shown not just
for reinstatement of heroin seeking (LaLumiere
and Kalivas 2008; Rogers et al. 2008), but also
for cocaine seeking (McFarland et al. 2003,
2004), and for multiple types of reinstatement
including cue-induced (LaLumiere and Kalivas
2008; Rogers et al. 2008), priming-induced
(McFarland et al. 2003; LaLumiere and Kalivas
2008; Rogers et al. 2008), and stress-induced re-
instatement (McFarland et al. 2004). As such,
this projection has been proposed to be a “final
common pathway” to relapse.

In addition to this dorsal projection from
PL to core, reinstatement for heroin may also
rely on the ventral system, as inactivation of IL
(Rogers et al. 2008) or selective disruption of IL
neuronal ensembles (Bossert et al. 2011) pre-
vents reinstatement of heroin seeking induced
by both discrete and contextual cues (Rogers
et al. 2008; Bossert et al. 2011), as well as priming
doses of heroin (Rogers et al. 2008). Preliminary
evidence suggests that at least for context-in-
duced reinstatement, the IL projection to the
accumbens shell mediates this effect (Bossert
et al. 2012). This might also be the case for her-
oin-induced reinstatement, as shell inactivation
also prevents this form of relapse (Rogers et al.
2008). In contrast, for cocaine, the IL projection
to the accumbens shell mediates the inhibition
of drug seeking after extinction (Peters et al.
2008). This apparent divergence between the
mPFC subregions controlling heroin versus co-
caine addiction is particularly interesting in
light of the observation that lesions of IL but
not PL prevent the conditioned rewarding ef-
fects of morphine, whereas lesions of PL but
not IL prevent those of cocaine (Tzschentke
and Schmidt 1999).

A few studies have suggested that IL may
also serve an inhibitory function in heroin sub-
jects. For example, the inhibition of PKMz lo-
cally within IL prevents extinction memory re-
trieval for both morphine CPP and naloxone
CPA (He et al. 2011), suggesting that the extinc-
tion memory may be stored in IL. In a self-
administration model, inhibiting the endocyto-
sis of GluR2-containing AMPA-Rs locally with-
in IL, but not PL, effectively prevented cue-
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induced reinstatement of heroin seeking and
rescued IL neurons from a state of acute synap-
tic depression (Fig. 1e) (Van den Oever et al.
2008). Although the output of IL neurons was
not directly assessed in this study, the pattern of
results suggests an inhibitory function for IL on
heroin seeking. Further research is necessary to
resolve under which conditions IL facilitates
versus inhibits heroin seeking.

AMYGDALA OUTPUTS

Although the BLA projection to the nucleus
accumbens core is a likely candidate for control-
ling opiate-seeking behavior (LaLumiere and
Kalivas 2008; Rogers et al. 2008), as it does for
cocaine (Di Ciano and Everitt 2004), this has yet
to be directly shown. However, inhibition of
PKMz locally within the BLA or the core pre-
vents retrieval of the conditioned reward mem-
ory (He et al. 2011; Li et al. 2011b), and at least
for the core, this effect requires endocytosis of
GluR2-containing AMPA-Rs (Fig. 1a). The
BLA-shell projection has also been implicated
in morphine reward (Lintas et al. 2011). In this
study, dopamine receptor antagonists in the
BLAwere capable of altering neurophysiological
responses of shell neurons to morphine (Lintas
et al. 2011). The BLA potentiates shell neuronal
activity in part via stimulation of NMDA-Rs
(Floresco et al. 1998; Floresco et al. 2001).
NMDA-R antagonists applied to the nucleus
accumbens disrupt the acquisition, expression,
and reinstatement of morphine CPP (Popik and
Kolasiewicz 1999; Ma et al. 2007; Kao et al.
2011), at least in part through NR2B-containing
NMDA-Rs (Fig. 1b) (Ma et al. 2007; Kao et al.
2011). Gene transfer of the glutamate transport-
er (glutamate transporter 1 [EAAT2] [GLT-1])
to the shell also blocks the acquisition of CPP
(Fig. 1f ) (Fujio et al. 2005). Thus the BLA-shell
projection may be important for opiate condi-
tioned reward. Notably, NMDA-R antagonists
have no effect on conditioned heroin reinforce-
ment when applied preferentially to the accum-
bens core (Pulvirenti et al. 1992).

The BLA projection to the mPFC may also
be important for opiate conditioned reward
(Fig. 1). NMDA-R antagonists applied locally

within PL enhance CPP to subthreshhold doses
of morphine (Fig. 1g), and this effect depends
on activity within the BLA (Bishop et al. 2011).
PL neurons increase their firing rate during ex-
pression of morphine CPP, consistent with the
notion that activation of PL is a component of
opiate conditioned reward (Sun et al. 2011).
The BLA-mPFC projection also provides an in-
direct means by which the BLA can activate the
nucleus accumbens. As the PL-core pathway has
been proposed to be a “final common pathway”
for reinstatement, activation of this pathway by
BLA inputs is one putative route to relapse.

The central nucleus of the amygdala (CeA)
also plays an important role in opiate addiction,
and the BLA projects both directly and indirectly
to this nucleus (Fig. 1) (Royer et al. 1999).
NMDA-R and AMPA-R antagonists produce
their effects on the acquisition of both CPP and
CPA within the central nucleus of the amygdala
(CeA) (Fig. 1h,i) (Watanabe et al. 2002; Rezayof
et al. 2007; Glass et al. 2008). NMDA-Rs within
the CeA are also capable of controlling the ex-
pression of CPP, and the downstream activation
of ERK is required for this effect (Rezayof et al.
2007; Li et al. 2008, 2011a). The CeA is an output
station to midbrain targets implicated in the
aversive state that accompanies opiatewithdraw-
al, including the VTA (Zahm et al. 2011) and
periaqueductal gray (PAG) (Rizvi et al. 1991)
(Fig. 1). The PAG has been noted for its role in
pain associated with acute opiate withdrawal
(Emmers 1985; Jacquet 1988).

The bed nucleus of the stria terminalis
(BNST) is one possible intermediary between
the CeA and its midbrain targets (Fig. 1)
(Zahm et al. 2011). Evidence suggests that activ-
ity within the CeA and BNST during protracted
withdrawal may produce a “stress-like” state that
can precipitate relapse (Nakagawa et al. 2005b;
Harris and Aston-Jones 2007). Indeed, for co-
caine, these regions are only critical for reinstate-
ment triggered by stress (McFarland et al. 2004).
However, for heroin, they appear to be critical
for both heroin-primed and discrete cue-in-
duced reinstatement (Rogers et al. 2008), in ad-
dition to stress-induced reinstatement of opiate
seeking (Shalev et al. 2001; Ma et al. 2008). Fur-
ther, increases in fos expression in the BNST
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correlate with the degree of morphine CPP ex-
pression (Harris and Aston-Jones 2003), and le-
sions of the CeA disrupt naloxone-induced fos
expression in the BNST (Nakagawa et al. 2005b).
Collectively, these data suggest that activation of
a CeA-BNST pathway may be a critical compo-
nent of opiate seeking, and that a withdrawal-
induced stress-like state may underlie this effect.

THE HIPPOCAMPUS

The hippocampus has extensive projections
throughout the neural circuitry discussed thus
far (van Strien et al. 2009), and is important for
regulating the up and down states of nucleus
accumbens neurons (O’Donnell et al. 1999),
thereby gating the responsiveness to other in-
puts, such as those from the mPFC and the
BLA. NMDA-R antagonists applied locally to
the hippocampus are capable of blocking the
acquisition, but not the expression, of both
CPP and CPA (Fig. 1j) (Zarrindast et al. 2007;
Hou et al. 2009). Hippocampal AMPA-Rs also
mediate context-dependent opiate memories,
as AMPA-R antagonists block the acquisition
of CPA (Hou et al. 2009), and phosphorylation
of the AMPA-R GluR1 subunit is required for
context-dependent sensitization memory (Xia
et al. 2011) and up-regulated by extinction of
CPP (Fig. 1k) (Billa et al. 2009).

Although the role of the hippocampus in
the primary rewarding effects of opiates has
been conclusively established (Corrigall and
Linseman 1988; Sell et al. 2000), evidence for
the involvement of this structure in opiate seek-
ing is lacking by comparison. However, reduc-
tions in spine density within the hippocampus
occur only with self-administered, not experi-
menter-administered morphine (Robinson et al.
2002), suggesting that neuroadaptations within
this structure occur with opiate seeking. Fur-
ther, chronic opiate exposure can reduce adult
neurogenesis in the hippocampus (Eisch et al.
2000), and altered functional connectivity of
the hippocampus has been shown in human
heroin addicts (Ma et al. 2011a). Therefore, fu-
ture studies should be devoted to ascertaining
the precise role of this region in opiate seeking
using self-administration models of addiction.

ASCENDING DOPAMINE PATHWAYS

The VTA distributes dopamine projections
throughout the cortex and striatum (Morgane
et al. 2005) and is critically important in regulat-
ing opiate addictive behaviors (Wise 1989; Var-
gas-Perez et al. 2009; Lintas et al. 2011). NMDA-
Rs and AMPA-Rs located in the VTA are neces-
sary for both the acquisition and expression of
CPP (Fig. 1l,m) (Popik and Kolasiewicz 1999;
Harris et al. 2004; Shabat-Simon et al. 2008).
Whereas rostrally located AMPA-Rs control re-
ward, the caudal ones controlaversion (Carlezon
et al. 2000; Shabat-Simon et al. 2008), effects
mediated by GluR1-containing AMPA-Rs and
subsequent cyclic AMP response element-bind-
ing protein (CREB) activation (Carlezon et al.
1997; Olson et al. 2005; Moron et al. 2010). Fur-
thermore, the effects of NMDA-R and AMPA-R
antagonists on conditioned reinforcement are
also at least partially localized to the VTA (Xi
and Stein 2002). The VTA is another site of ac-
tion (Bossert et al. 2004), in addition to the nu-
cleus accumbens mentioned above (Bossert et al.
2006), whereby mGluR2/3 agonists reduce rein-
statement of opiate seeking (Fig. 1n). As in the
accumbens, this might occur by reducing exces-
sive glutamate release from afferent inputs, and
the pedunculopontine tegmental (PPT) area is
one likely candidate (Vargas-Perez et al. 2007;
Ting-A-Kee and van der Kooy 2012).

Because the VTA is the major source of do-
pamine in the mPFC, amygdala, and hippo-
campus (Fig. 1) (Morgane et al. 2005), we can
infer an involvement of the VTA projection in
cases in which local pharmacological manipu-
lations of dopamine receptors produce effects
on behavior. Lesions of the VTA projection to
mPFC alter the conditioned rewarding effects of
opiates (Narita et al. 2010), and dopamine D1
receptor blockade in PL prevents cue-induced
reinstatement of heroin seeking (See 2009). This
suggests that dopamine release in the VTA-PL
pathway may initiate activation of the PL-ac-
cumbens core pathway and precipitate subse-
quent relapse, as it does for cocaine (McFarland
and Kalivas 2001). It should be noted, however,
that the role of accumbens dopamine depends
on the form of reinstatement (Fig. 1), with shell
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dopamine controlling context-induced and core
dopamine cue-induced reinstatement of heroin
seeking (Bossert et al. 2007).

In the BLA, dopamine receptors regulate the
acquisition of morphine CPP; however, the par-
ticular subtype of receptor mediating this effect
depends critically on the opiate history of the
animal (Lintas et al. 2011). That is, in opiate-
dependent rats, blockade of D2 receptors pre-
vents morphine CPP acquisition, whereas in
opiate-naı̈ve rats, this effect is mediated by D1
receptors (Lintas et al. 2011). This underscores
the importance of the VTA projection to BLA
during the progression from opiate use to abuse.
Indeed, chronic opiate administration leads to a
switch in dopamine effects on BLA pyramidal
neurons from inhibition to excitation, an effect
that is mediated by presynaptic D1 receptors (Li
et al. 2011c). Both D1 and D2 receptors are im-
portant for the acquisition and expression of
morphine CPP in both the CeA (Rezayof et al.
2002; Zarrindast et al. 2003) and the hippocam-
pus (Rezayof et al. 2003). In contrast, evidence
for dopamine acting within the amygdala and
hippocampus to effect opiate seeking in a self-
administration model is lacking.

CONCLUSION

In this review, we have attempted to highlight the
importance of the multitude of memories that
contribute to opiate addiction. Conditioned re-
ward, aversion, and reinforcement processes re-
cruit similar glutamatergic circuits to accom-
plish behaviors like approach and drug taking.
The circuits controlling drug seeking under ex-
tinction conditions are of critical importance
because these circuits are operative during states
that precipitate relapse. By comparison to treat-
ments that work on opiate primary reward,
treatments that work on conditioned responses
are lacking. The retrieval of conditioned mem-
ories, in the absence of sufficient inhibition by
extinction memories, may trigger these condi-
tioned responses and lead to relapse.

NMDA-Rs play a special role in opiate ad-
diction in that they persistently maintain the
representation of opiate primary reward (e.g.,
opiate value). Hence, NMDA-R antagonists

have been examined for their efficacy, with
some success in treating opiate addiction (Her-
man et al. 1995; Krupitsky et al. 2002; Comer
and Sullivan 2007). MPEP and related mGluR5
antagonists have been proposed as an alternate
therapy, which may be analogous to methadone
treatment in that these compounds appear to
partially substitute for the primary rewarding
effects of opiates (van der Kam et al. 2009b;
Rutten et al. 2011). AMPA-Rs and glial gluta-
mate transporters have also proven important
in animal models of addiction, but many of the
compounds targeting these substrates have not
yet been approved for use in humans. N-acetyl-
cysteine, a drug that corrects a reduction in glu-
tamate availability from glia, offers an over-the-
counter solution to a primary pathology in ac-
cumbens basal glutamate, and mGluR2/3 ago-
nists are emerging as another means of correct-
ing that same pathology.

Opiate circuits may be distinct from those
for psychostimulants (Badiani et al. 2011) in
that theyengage both dorsal and ventral prefron-
tal-accumbens pathways for opiate seeking, and
show a greater contribution from stress circuits
during relapse. The latter is not surprising given
that abstinence from opiates elicits a withdrawal
syndrome characterized by acute elevations in
cortisol (Nava et al. 2006) and a heightened cor-
tisol response to opiate cues that predicts relapse
propensity (Fatseas et al. 2011). The hippocam-
pus has probably been underestimated for its
contribution to opiate seeking, as its anatomical
connectivity with other circuit components,
and its role in opiate primary reward, is striking.
An understanding of these neural circuits and
the role of glutamate within each component
should aid the development of intelligent ther-
apeutics for opiate addiction.
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