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ABSTRACT

Summary: We developed a novel algorithm, PurityEst, to infer the

tumor purity level from the allelic differential representation of hetero-

zygous loci with somatic mutations in a human tumor sample with a

matched normal tissue using next-generation sequencing data. We

applied our tool to a whole cancer genome sequencing datasets

and demonstrated the accuracy of PurityEst compared with DNA

copy number-based estimation.

Availability: PurityEst has been implemented in PERL and is available

at http://odin.mdacc.tmc.edu/~xsu1/PurityEst.html

Contact: xsu1@mdanderson.org
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1 INTRODUCTION

Next-generation sequencing (NGS) provides a platform to com-

prehensively characterize somatic mutations, DNA copy number

changes and rearrangements in tumor tissues. Because tumor

tissues usually consist of a mixture of multiple tumor clones

and normal cells including fibroblasts and infiltrating lympho-

cytes, the observed magnitude of copy number changes is dimin-

ished, which is basis of tumor clone purity estimation using SNP

array data (Bengtsson et al., 2010; Carter et al., 2012; Loo et al.,

2010; Sun et al., 2009; and Yu et al., 2011). Gusnanto et al.

(2011) converted mapped reads to DNA copy number ratios

between tumor and normal genomes for purity estimation. In

principle, NGS also provides an alternative to copy

number-based methods, which is to use mutant allele fractions

in the heterozygous loci with somatic mutations in a tumor mix-

ture. However, modeling the mutant allele fractions is compli-

cated by two factors. One is that mutant allele fractions in a

sample may take multiple levels. The founder mutations may

have the higher levels and latent mutations lower levels.

The second factor is that copy number change can also alter

the observed fractions. When the mutant allele is amplified, the

observed mutant allele fraction can be increased; when the

wild-type allele is amplified (lost), the mutant allele fraction

can be decreased (increased). When the mutant allele is lost,

the mutant allele is simply not observable.

Here, we propose a simple approach to the purity estimation
problem.We assume that the tumor tissue can be largely approxi-

mated by a mixture of a normal clone and a tumor clone. Our
method gives a purity estimate from somatic mutations in each

chromosome and takes a robust average of the chromosome-wide
estimates to be the purity estimate of the tumor tissue. Since copy

number changes can both enrich and deplete the fractions of
mutated alleles depending on whether the copy number change

occurs to themutated allele or the wild allele, it is unlikely to affect
the chromosome-wide estimate drastically.

2 METHODS

We call our method PurityEst, which estimates the fraction of tumor

DNA molecules that is different from the normal matched tissue. A

pure tumor sample should show a mean frequency of 0.5 for mutant

alleles at heterozygous loci with somatic mutations, whereas contamin-

ation of tumor tissue with normal tissue is expected to lower the mutant

allele fractions. The tumor purity � is inferred from the allelic differential

representation of heterozygous loci with somatic mutations comparing

a tumor sample and a matched normal tissue using the following

formulation:

� ¼
�y

�x

where �y ¼
�i Bi

�iðAiþBiÞ
is the mutant allele fraction obtained from the tumor

sample, and Ai indicates the wild allele count, Bi the mutant allele count

in the heterozygous loci with somatic mutations, the summations include

all heterozygous loci with somatic mutations; �x ¼
�i Bi

�iðAiþBiÞ
is the mutant

allele fraction obtained from the normal sample and Ai indicates the wild

allele count, Bi the mutant allele count in SNP heterozygous loci, the

summations include all the SNP heterozygous loci attributed to germline

mutations. Note that the set of the somatic mutations is assumed to be

mutually exclusive with the set of germline mutations and the latter set is

usually much greater than the former. Theoretically, the expected value of

�x is 0.5. However, empirical data showed that the mean value is typically

slightly lower than 0.5, which suggests that different alleles are not equally

represented with the current sequencing technology. Hence, we choose

to use the computation of the empirical value of �x to correct for this

representational bias.

The above formulation does not explicitly consider effects of copy

number gains and losses in tumor genomes, which can bias the tumor

purity estimation. However, based on our empirical observations, the

biases appear to affect only a small fraction of the tumor genome.

Therefore, to minimize the effect of such biases, we choose to estimate

tumor purity from each autosome �i separately, and obtain a final esti-

mate from robustly averaging the �i, excluding the outliers. In PurityEst,

we implemented the ‘extreme studentized deviate’ (ESD) multiple-outlier*To whom correspondence should be addressed.
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procedure (Rosner, 1983) to remove the outliers. The tumor purity was

estimated by: �� ¼ 1
n

Pn
i¼1 �i and SE �� ¼

Sffiffi
n
p where n is the number of auto-

somes excluding the outliers, and SE �� is the estimated error from the

sample standard deviation.

3 RESULTS AND DISCUSSION

To test the accuracy of PurityEst method, we re-analyzed a pub-

lically available dataset (Berger et al., 2011). The dataset was

generated with Illumina GAII, containing 7 matched prostate

cancer samples with the paired-end 76 nt reads. We used

MOSAIK (Hiller et al., 2008) to align the reads to the reference

genome (GRCh37/hg19) and used GigaBayes (Marth et al.,

1999) to detect the single-nucleotide variations (SNVs). We fil-

tered out all known SNVs based on two public databases: UCSC

dbSNP 135 and the 1000 Genomes Project SNP database. We

then determined the somatic status of each SNV by comparing

the genotypes between matched normal tissue and tumor sam-

ples. Both wild and mutant allele counts at each heterozygous

loci of both SNPs and somatic mutations were generated by

GigaBayes. The tumor samples have a mean genomic coverage

ranging from 29.5 to 35.8, and the matched normal tissue sam-

ples with a mean coverage ranging from 18.8 to 34.9.
To estimate the tumor purity for the samples, we first esti-

mated the tumor purity level for each autosomal chromosome

in a sample. We removed the outliers in the overall tumor purity

estimation when the outliers were detected. Figure 1A showed

the autosomal purity levels of one of the samples. The purity

level estimated from chromosome 10 was found to be substan-

tially lower than other chromosomes. It is not clear what caused

this outlier, as no major copy number change in the chromo-

some. One possible cause is that the tumor was made of multiple

clones, and chromosome 10 was protected from mutation.

Alternatively, it was caused by representational bias. We note

that had the chromosome corresponded to an outlier with high

fraction of mutated alleles, we would have attributed the results

to founder mutations.
Figure 1B showed the PurityEst estimates along with the esti-

mates reported by Berger et al. (2011), who used copy number

changes derived from SNP array data of the same seven prostate

cancer samples. The correlation coefficient between the two

kinds of estimates is 0.91, demonstrating that PurityEst estimates

are consistent with that from DNA copy number data.
In summary, we showed that PurityEst can be used to estimate

tumor purity based on mutant allele fractions in a mixture of a

tumor clone and a normal clone. Multiple factors, such as cover-

age, copy number changes and representational bias can all poten-

tially affect the purity estimation. Our method can handle some,

but not all of the effects.When adequate coverage is available, our

methodmaybe extended tomodelmultiplemutant allele fractions

that reflect intra-tumorheterogeneity.Weexpect ourmethod to be

a simple and effective solution for tumor purity estimation in

cancer studies and invite users to test our software.
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Fig. 1. (A) Purity estimations by PurityEst for each autosomal chromo-

some in sample PR-1701. The error bars were estimated by bootstrap

sampling. Chromosome 10 was found to be an outlier. The mean purity

excluding the outlier is 0.535. (B) Scatter plot of tumor purity estimates

from ABSOLUTE and PurityEst. The correlation coefficient between

two kinds of estimates is 0.91 from seven patient samples
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