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ABSTRACT

Motivation: Massive amounts of genome-wide gene expression data

have become available, motivating the development of computational

approaches that leverage this information to predict gene function.

Among successful approaches, supervised machine learning meth-

ods, such as Support Vector Machines (SVMs), have shown superior

prediction accuracy. However, these methods lack the simple biolo-

gical intuition provided by co-expression networks (CNs), limiting their

practical usefulness.

Results: In this work, we present Discriminative Local Subspaces

(DLS), a novel method that combines supervised machine learning

and co-expression techniques with the goal of systematically predict

genes involved in specific biological processes of interest. Unlike trad-

itional CNs, DLS uses the knowledge available in Gene Ontology (GO)

to generate informative training sets that guide the discovery of ex-

pression signatures: expression patterns that are discriminative for

genes involved in the biological process of interest. By linking genes

co-expressed with these signatures, DLS is able to construct a dis-

criminative CN that links both, known and previously uncharacterized

genes, for the selected biological process. This article focuses on the

algorithm behind DLS and shows its predictive power using an

Arabidopsis thaliana dataset and a representative set of 101 GO

terms from the Biological Process Ontology. Our results show that

DLS has a superior average accuracy than both SVMs and CNs.

Thus, DLS is able to provide the prediction accuracy of supervised

learning methods while maintaining the intuitive understanding of CNs.
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1 INTRODUCTION

Discovering the biological processes that genes carry out inside
the cell is a major challenge to understand gene function

at a genome-wide scale. Unfortunately, many organisms lack
in-depth understanding about the genes involved in specific bio-

logical processes. As an example, in the favorite model in plant

biology, Arabidopsis thaliana, 16 319 (52%) of its genes lack

annotations about their biological processes in the Gene

Ontology (GO) database (GO annotations date: November

9, 2010) (Ashburner et al., 2000; http://www.geneontology.org).
Machine learning (Mitchell, 1997) has emerged as one of the

key technologies to support gene function discovery. In particu-

lar, many methods have been proposed to take advantage of the

massive amounts of microarray expression data available

(see Valafar, 2002; Zhao et al., 2008 for reviews). These predic-

tion methods can be classified into two broad groups: supervised

and semi-supervised approaches. On one hand, supervised tech-

niques use a labeled training set of genes to learn how to dis-

criminate the genes of each label or function. On the other hand,

semi-supervised approaches first group genes in an unsupervised

manner, without using any functional information, and then a

prediction is performed, usually by propagating the over-

represented functions among the genes of each group (‘guilt-

by-association’ rule, Walker et al., 1999).
Among supervised machine learning techniques, Support

Vector Machines (SVMs) (Cortes and Vapnik, 1995) have been

one of the most successful approaches to predict gene function,

as has been shown by several works (Brown et al., 2000; Mateos

et al., 2002; Yang, 2004; Barutcuoglu et al., 2006). However,

despite their theoretical advantage in terms of classification

accuracy, in practice, SVMs present the mayor inconvenience

of operating as a black-box (Barakat and Bradley, 2010).

Although additional techniques can be applied to extract com-

prehensible semantic information from SVM models, their ap-

plication is not straightforward and is usually restricted to

linear-SVM models (Guyon et al., 2002; Fung et al., 2005;

Wang et al., 2009). In the general case of non-linear SVMs, the

transformation of the data to high-dimensional spaces compli-

cates any interpretation of the SVM solution. In our experience,

this is a major limitation for gene function discovery as under-

standing the predictions is a key aspect to evaluate their biolo-

gical soundness and guide research. This aspect is even more

critical considering the incomplete nature of annotations and

the capability of genes to have multiple functions, which prevents

obtaining an error-free gold standard, and thus evaluating the

absolute accuracy of the methods (false-negative problem;

Mateos et al., 2002; Jansen and Gerstein, 2004).
In contrast to supervised methods, many semi-supervised

approaches have emerged based on simpler, but biologically

sound concepts, such as co-expression and the ‘guilt-by-associa-

tion’ rule (Eisen et al., 1998; Walker et al., 1999; Kim et al., 2001;*To whom correspondence should be addressed.
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Stuart et al., 2003; Blom et al., 2008; Horan et al., 2008;
Vandepoele et al., 2009; Lee et al., 2010; Ogata et al., 2010;
Bassel et al., 2011). The basic assumption in these methods is

that if a group of genes shows synchronized (correlated) expres-
sion patterns, then there is a high chance for them to participate
in a common biological process. Common techniques used to

group genes are clustering (Eisen et al., 1998; Alon et al., 1999;
Horan et al., 2008), biclustering (see Madeira and Oliveira, 2004;
Tanay et al., 2005; Prelić et al., 2006 for reviews) and

co-expression networks (CNs; Stuart et al., 2003; Vandepoele
et al., 2009; Bassel et al., 2011).
Unfortunately, current methods based on CNs do not offer

the accuracy of supervised methods to predict gene function, as
we show in this work by comparing the performances of CNs
and SVMs. Furthermore, their classification strategy poses some

relevant inconveniences. In particular, the selection of a suitable
correlation threshold to define co-expressed genes is often diffi-
cult and arbitrary. Furthermore, both CNs and clustering rely on

global co-expression patterns, meaning that genes need to be
co-expressed in a large proportion of the data in order to be
grouped together. Usually, these data involve hundreds or thou-

sands of microarray experiments, each measured under a wide
range of experimental conditions, such as different time points,
tissues, environmental conditions, genetic backgrounds and mu-

tations. In this scenario, expecting global co-expression becomes
a strong imposition and limitation.
The previous observation has motivated the development of

biclustering algorithms (Cheng and Church, 2000). The main
idea behind biclustering is to find clusters of genes that
co-express in subsets of experimental conditions. After the sem-

inal work by Cheng and Church (2000), an extensive list of
biclustering approaches has been developed (see Madeira and
Oliveira, 2004; Tanay et al., 2005; Prelić et al., 2006 for reviews).

However, besides their theoretical advantages, these approaches
have not been extensively used in practice. Based on our experi-
ence, the unsupervised local search of experimental conditions

often leads to clusters with genes from a broad range of func-
tions, thus, limiting their discriminative properties. This problem
is even worse considering the noisy nature of microarray data,

which often leads to the discovery of biologically meaningless
biclusters. Selecting datasets in a ‘condition-dependent’ fashion
should more precisely identify gene interactions relevant to a

specific biological question at hand (Bassel et al., 2011).
However, given the amount of expression data available today,
manual selection of the relevant conditions is not a practical

solution in most cases.
To overcome the state of the art limitations exposed above and

aid gene functional research, we present Discriminative Local

Subspaces (DLS), a novel machine learning method that discri-
minatively predicts new genes involved in a biological process of
interest by building a discriminative CN. DLS takes advantage

of the discriminative nature of supervised learning while main-
taining the expressiveness of CN approaches.
Unlike other co-expression-based methods, DLS exploits the

existing knowledge available in GO to construct informative
training sets. These training sets guide the search of suitable sub-
sets of experimental conditions containing expression signatures.

An expression signature corresponds to a discriminative expres-
sion pattern with two key properties: (i) it is defined in a local

subspace of the data (i.e. a particular gene and a subset of ex-

perimental conditions) and (ii) it is highly discriminative

(exclusive) for the positive training genes associated to a biolo-

gical process of interest. As a further feature and to tackle the

inherent noise of negative training sets (genes not related to a

biological process), DLS incorporates a procedure that itera-

tively predicts false-negative (FN) genes and refines the training

set in order to improve its prediction performance.
The discriminative nature of expression signatures allows DLS

to reveal novel co-expression associations for the selected pro-

cess. In contrast to discriminative black-box models, such as

SVMs, these predicted associations can be exposed in the context

of a discriminative CN, giving the scientist the possibility to visu-

alize, evaluate and interpret the predicted associations.
Unlike traditional CN, DLS does not rely on a predefined and

fixed correlation threshold to construct the networks. Instead,

DLS uses a Bayesian probabilistic approach that adaptively

derives a confidence score for each predicted association. A net-

work is then constructed based on a desired minimum confi-

dence, which is translated into different correlation thresholds

depending on the discriminative level of each signature.
In order to test the prediction power of our method, we use an

A. thaliana expression dataset containing 2017 microarray

hybridizations. We compare DLS performance with respect to

CN and two versions of SVM, linear-SVM and radial basis

kernel (RBF)-SVM. The accuracy and predictive power of the

methods are tested using cross-validation and also testing the

enrichment of year 2008 predictions with respect to new 2010

annotations, using 101 representative GO terms from the

Biological Process Ontology. Our results reveal that DLS attains

superior average accuracy and similar predictive power than

RBF-SVM. Furthermore, they show a clear advantage for

DLS over linear-SVM and CN in both tests. Remarkably, they

show that unlike SVM and CN, DLS is able to systematically

improve its predictive power when increasing the number of

available experimental conditions.
The rest of the article presents the details behind DLS method

(Section 2), our experimental setup (Section 3), the main

results (Section 4) and our principal conclusions of this work

(Section 5).

2 METHODS

DLS consists of four main consecutive steps: pre-processing of raw data,

construction of a labeled training set, training and classification (or pre-

diction). Additionally, DLS has two relevant steps for gene function pre-

diction: the construction of a discriminative CN of predictions and the

discovery of potential FNs in the training set. We detail next each of these

main parts that compose the proposed DLS method.

2.1 Expression data pre-processing

A key aspect to use massive microarray data to perform effective

gene functional predictions is to apply suitable pre-processing steps to

extract informative features and to handle the noisy nature of raw

expression data. We consider a generic case, in which we have a dataset

containing multiple microarray experiments, each performed in replicates

among several experimental conditions and coming from different

sources. We organize this dataset in M control–test pairs of experimental

conditions. These pairs can be manually defined by an expert or by
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using the automatic procedure described in the following paragraph.

For each defined pair, we apply the RankProducts algorithm

(Breitling et al., 2004), which provides a statistical methodology to find

the significance level between expression changes of genes over two

experimental conditions with replicates. From this procedure, we obtain

a N�M matrix XLR with N genes and M log-ratio expression features,

each corresponding to the logarithm of the fold change between the gene

expressions in the test with respect to the control condition. The statistical

significance of each change is provided in a second N�MXFDR contain-

ing false discovery rates (FDRs). In few words, a small FDR value indi-

cates that the corresponding change has a highly consistent rank among

the replicates of the compared experiments and thus a low probability of

being a false-positive detection (Breitling et al., 2004). The XFDR matrix is

used by DLS to guide the search of discriminative expression pattern in

XLR, by favoring the features with significant expression changes. A sche-

matic view of this process can be seen in Supplementary Figure S1.

Manual definition of control–test pairs of experimental conditions can

be a tedious and time-consuming task when using public databases con-

taining thousands of microarray slides. Unfortunately, few public data-

bases provide well-formatted annotations and labels for the available

slides. Thus, in most cases it is impossible to systematically find the

control–test pairs of conditions originally defined for each experiment.

However, in many cases, it is possible to define which slides are replicates

and which are part of the same experimental set. Thus, we propose an

automatic procedure that uses this information in order to generate all

possible pairs of conditions within a given experimental set, generating one

log-ratio feature vector for each of them using the RankProducts method.

Thus, if an experiment has Nc different conditions, our procedure gener-

ates Nc (Nc� 1)/2 log-ratio expression features. In order to minimize the

redundancy that this procedure might generate, we consider a feature

vector only if it does not have a ‘high’ correlation with any of the already

added features of the same experiment. In the dataset used in this work, we

define as ‘high’ a correlation40.9. Although this proceduremight generate

some biologically meaningless comparisons, they should not affect the

performance of DLS because its automatic selection of discriminative

features should filter non-informative features. Moreover, even if some

unexpected informative comparisons are found, these may provide new

biological insights about the predictions and the process.

2.2 Training set: acquisition of functional labels

In order to search for discriminative expression patterns for a specific

Biological Process of interest (BP), DLS needs a labeled training set of

genes. Each training gene must be labeled as positive or negative, depend-

ing on whether the gene participates or does not participate in BP,

respectively. DLS derives these labels using the gene annotations avail-

able in GO (Ashburner et al., 2000). These annotations are organized

hierarchically as a directed acyclic graph (DAG) of functional terms,

going from the most general term, at the root node, down to the most

specific terms, at the leaves of the graph. A relevant fact of this hierarch-

ical organization is the upward propagation of functional annotations.

More precisely, genes that receive a direct annotation at a specific level of

the hierarchy also inherit all the functional annotations of their more

general ancestors in the hierarchy.

The derivation of positive class C1
BP consists of selecting the genes

annotated directly or by inheritance in GO terms related to BP.

Optionally, this list can also be customized by the user. The derivation

of the negative class C0
BP is a more ambiguous task, mainly due to missing

functional labels. In effect, the list of annotations in GO is still incom-

plete, therefore it does not preclude that a gene not annotated with a

particular biological process might indeed participate in it. Furthermore,

the almost total absence of negative annotations and the ability of genes

to be involved in multiple biological processes add extra complications.

We face these inconveniences by using the multiple GO annotations of

the positive genes to build a set C0
BP composed of genes that have a ‘low

chance’ of being involved in BP. Our main intuition is that GO terms

containing a substantial number of positive genes are likely to be func-

tionally related to BP, and hence, they have a high chance to contain

genes involved in BP. Following this intuition, we consider a GO term as

‘negative’ if it contains no more than a percentage P of genes already

included in C1
BP. Consequently, the negative training set C

0
BP is formed by

genes that have at least one direct annotation in a ‘negative’ GO term and

do not have annotations in positive (non-negative) GO terms. According

to our experiments, a value of P¼ 5% provides a good trade-off between

the rates of false and true negatives. To handle the case of mislabeled

genes, DLS also incorporates a false negatives discovery option that helps

to refine the training set (details in Section 2.6).

2.3 Training: identifying expression signatures

The aim of the training scheme used by DLS is to identify a set of suitable

expression signatures for the biological process of interest BP. Each ex-

pression signature is defined by a discriminative local subspace of the

expression data matrix XLR described in Section 2.1. The core of this

scheme is based on four concepts about gene expression:

(1) Co-expression: genes exhibiting co-expression patterns are likely to

be co-regulated, and hence, they are likely to participate in a

common biological process. Consequently, DLS uses the positive

genes C1
BP to search for characteristic co-expression patterns for

genes involved in BP.

(2) Subspaces: genes participating in the same biological process

are usually not co-regulated under all cellular conditions.

Consequently, DLS searches for co-expression patterns among

subsets of experimental conditions.

(3) Discrimination: genes not sharing a common biological

process may co-express under some experimental conditions.

Consequently, DLS uses the negative genes C0
BP to filter out

non-discriminative subsets of conditions where positive and nega-

tive genes show co-expression patterns.

(4) Locality: genes participating in the same biological process might

be regulated by different transcription factors and hence, they

might co-express under different experimental conditions.

Consequently, DLS independently searches for a suitable subset

of discriminative conditions for each positive gene in C1
BP.

In agreement with the previous concepts, the core of the training pro-

cess consists of a feature selection algorithm that looks for a suitable

expression signature for each gene gi 2 C
1
BP. We achieve this by selecting

a subset of features where gi shows ‘strong’ co-expression with genes in

C1
BP and ‘weak’ co-expression with genes in C0

BP. This feature selection

algorithm explores the space of possible subsets of features using the

Expression Signature Score (ESS) presented in equation (1). This score

evaluates the discriminative power of each potential subset (pattern).

Once the feature selection scheme is finished, each positive gene

gi 2 C1
BP has an associated subset of features fsel corresponding to the

most discriminative expression pattern found by DLS. However, only

expression patterns having an ESSðgi½fsel�Þ40 are selected as valid ex-

pression signatures and used in the classification process. We describe

next the details of the ESS score and then the main steps behind the

operation of the feature selection scheme.

2.3.1 Expression Signature Score Let vector fsel be a subset of the

total set of available features. Furthermore, let gi½fsel� be the expression

pattern of gene gi considering only the features in fsel
(i.e. gi½fsel� ¼ XLRði,fsel). The ESS of gene gi for a subset of features fsel
is defined as

ESSðgi½fsel�Þ ¼ w1 � Score1ðgi½fsel�Þ � w0 � Score0ðgi½fsel�Þ ð1Þ

where Score1ð�Þ and Score0ð�Þ are functions that quantify the level of
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co-expression of gene gi with respect to the set of genes in C1
BP and C0

BP,

respectively, considering only features in fsel. More precisely

Score�ðgi½fsel�Þ ¼
X
j2C�

BP

sgdðcoexpðgi½fsel�,gj½fsel�ÞÞ; ð2Þ

where coexpð�,�Þ measures the co-expression between two patterns and

sgdð�Þ corresponds to a sigmoidal function used to establish a continuous

threshold to separate ‘strong’ from ‘weak’ co-expressions. The shape of

this sigmoidal function was tuned for best performance for function pre-

diction using tests described in Section 3 and taking into account our

biological and mathematical knowledge (Supplementary Fig. S2). As a

result, the function returns values between 0 and 1, being close to 0 for

co-expressions with values below 0.6 (weak) and above 0.5 for

co-expressions above 0.8 (strong).

To measure co-expression between the expression patterns of two

genes gi and gj considering features in fsel, we use the absolute value of

the cosine correlation, which can be expressed as the dot product of two

vectors, normalized by their respective magnitudes:

coexpðgi½fsel�,gj½fsel�Þ ¼ absðcos corrðgi½fsel�,gj½fsel�ÞÞ

¼ abs
gi½fsel� � gj½fsel�

k gi½fsel� k k gj½fsel� k

� �
:

ð3Þ

The cosine correlation (cos corr) returns a continuous value between 1

and �1, taking a value of 1 if the two patterns are correlated, �1 if they

are negatively correlated and 0 if they change independently. We use the

absolute value absð�Þ to capture positive and negative correlations indis-

tinctively among genes, which improves the prediction performance in

our test. Despite its simplicity, we consider this measure more suited than

the traditional Pearson correlation coefficient (PCC) to measure

co-expression in log-ratio expression data, in which each feature is a

comparison in itself between two conditions. This can be more clearly

seen by the following example: consider the log-ratio expression patterns

of genes g1 ¼ ½1,1,0,0� and g2 ¼ ½0,0,� 1,� 1�. Analyzing these two

patterns, we intuitively do not expect any relation between their corres-

ponding genes because the expression of gene g1 is not affected at all

when gene g2 changes (i.e. g1 ¼¼ 0$ g2 6¼ 0) and vice versa. This is

very well expressed by the cosine correlation, which returns a value

cos corrðp1,p2Þ ¼ 0. Contrarily, the PCC only considers the relative

changes within the features of the patterns, which in this example are

perfectly synchronized, thus returning a PCCðp1,p2Þ ¼ 1, the opposite

from what we expect.

In equation (1), w1 and w0 weight the influence of Score1ð�Þ and

Score0ð�Þ, respectively; w1 is defined by a function used to penalize

expression signatures with a small number of features (details

in Section 1 of Supplementary material), whereas w0 is a predefined par-

ameter that allows us to adjust the level of discrimination of the expres-

sion signatures in order to avoid overfitting the training samples.

2.3.1 Feature selection The feature selection algorithm uses the

ESS score in equation (1) to find a suitable expression signature for

each positive gene gi 2 C1
BP. An exhaustive search, however, is not pos-

sible because it requires the evaluation of 2M � 1 possible subsets of fea-

tures for each positive gene. Consequently, we use an iterative and fast

exploration scheme, referred as signFS, which uses suitable heuristics to

efficiently search for discriminative expression signatures.

Given a gene expression pattern gi ¼ XLRði, :Þ, signFS starts by select-

ing an initial set fselð0Þ of features where gene i significantly changes its

level of expression. We define as significant, a change with a FDR value

50.1 in XFDRði, :Þ. Afterwards, signFS performs an iterative process that,

at each iteration t, adds and/or removes a suitable subset of features Ft,

from fselðtÞ. These changes must increase the expression pattern score

ESSð�Þ. As a consequence, the new subset fselðtþ 1Þ should provide

better discriminative properties for gene function prediction. To favor

the exploration of changes that increase discrimination, only a 20% of

the total features, showing the lowest FDR and not in fselðtÞ, can be

added at each iteration. This fosters the inclusion of features in

fselðtþ 1Þ that show the most significant expression changes. Details

about the scheme used to select subset Ft can be seen in Section 2 of

Supplementary material. This iterative process continues until consecu-

tive modifications of fselðtÞ do not increase the respective score ESSð�Þ.

2.4 Classification: using expression signatures to predict

new gene associations

The aim of the classification scheme used by DLS is to predict new genes

for a biological process of interest BP. Briefly, as expression signatures

are discriminative, DLS considers that if a gene is highly co-expressed

with the expression signature of a gene in C1
BP, then it is likely to be

involved in BP.

A relevant issue with respect to the previous classification scheme is

that not all the expression signatures have the same potential to predict

functional associations. In effect, this potential depends on several factors

such as type of gene, type of biological process, level of noise in the data

and biological complexity of interprocess co-regulations. DLS overcomes

these issues by using a Bayesian inference approach that allows it to

adaptively decide the minimum co-expression level needed by each sig-

nature to predict a gene with a given confidence. Consider a hypothesis, h,

representing that an unknown gene gj belongs to the positive class C1
BP.

In addition, consider evidence, e, indicating that gene gj has a

co-expression level, L, with respect to the expression signature of gene

gi,ESðgiÞ. We can estimate the posterior probability PðhjeÞ by using the

Bayes rule: PðhjeÞ ¼ PðejhÞ � PðhÞ=PðeÞ.

Prior probability P (h) can be estimated directly from training data by

calculating the proportion of positive versus negative genes in the training

set. However, the estimation of the likelihood term PðejhÞ is not so

straightforward as we need to estimate the probability density function

of the co-expressions with respect to ESðgiÞ. In this work, we estimate

PðejhÞ using a kernel-based density function estimation (Parzen, 1962).

Given a data sample xi and a bandwidth �, we use a Gaussian kernel

function KðxÞ ¼ Nðxi, �Þ, which measures the influence of sample xi in a

location x of the input space. The bandwidth � is a parameter that con-

trols the smoothness of the density estimation and it is optimized using

the cross-validation analysis described in Section 3.

Using the previous procedure, a gene gj is predicted as positive by an

expression signature ES (gi), if the co-expressionL between them results in

a confidence P (hje) greater than a desired threshold. A graphical example

of the above-mentioned procedure can be seen in Supplementary

Figure S3.

2.5 Construction of a discriminative CN

One of the main features behind DLS is its ability to represent its pre-

dictions as a discriminative co-expression network (DCN), providing

additional insights about the predictions and the biological process of

interest. Formally, a DCN for a biological process BP is defined by a

graphGBP ¼5V,E4, where vertices in setV represent genes, and edges in

set E represent predictions from expression signatures to other genes.

More precisely, there is an edge from gene gi 2 C
1
BP to gene gj, if there

is an expression signature ES (gi) predicting that gi is related to BP with a

confidence greater than a pre-defined threshold. In order to construct a

DCN that involves all the genes related to BP, DLS applies the classifi-

cation method to all the N genes in matrix X, including the ones in CBP

used for training. This not only allows DLS to display a network descrip-

tion of the relations between training genes and predicted genes, but also

to expose relevant relations among the positive genes, known to be

involved in BP. A network description allows application of tools and

concepts (Strogatz, 2001) developed in fields such as graph theory, phys-

ics and sociology that have dealt with network problems before (Alon,

2003). For example, a simple calculation of the node degree of the genes
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in the DCN can give relevant insights to discover central and highly

coordinated genes in the biological process of interest.

2.6 Overcoming the FNs problem

One of the most relevant issues in using supervised learning methods to

predict gene function is the FNs problem. In Section 2.2, we present a

method to obtain an informative negative training set C0
BP.

Unfortunately, due to the inherent complexity of gene behavior and the

incompleteness of annotations, it is not possible to obtain a negative set

without mislabeled genes, which may damage the prediction performance

and evaluation.

To tackle the previous problem, we add to our training algorithm the

option of a bootstrap step, which is able to automatically identify and

temporarily discard from the set C0
BP, genes that are potential FNs. More

specifically, this strategy is applied at the start of each iteration t of the

feature selection algorithm signFS, performed in the training of each

positive gene gi. The strategy discards a negative gene gj from iteration

t if its co-expression with gene gi, using the selected features in fselðtÞ,

satisfies two conditions: (i) it has a value of at least min FN coexp and (ii)

it is among the top pfn% most highly co-expressed negative genes. Notice

that these potential FN genes are not discarded permanently from the

negative training set but they are only not considered in the evaluations of

the patterns generated during step t. At the end of the training process,

the method outputs the potential FNs detected by each expression

signature.

The bootstrap option explained earlier in the text allows us to avoid

overfitting problems due to the presence of FNs in the training set, how-

ever, it may affect the discriminative level of the signatures by ignoring

some true negatives during the training process. Thus, we develop an

iterative method, False-Negatives Discovery (FND), that takes advantage

of this option in order to predict FN genes in a more precise and inform-

ative manner.

Initially, the list GFN of potential FNs contains all negative genes in

C0
BP (GFN ¼ C0

BP). Then, each iteration of the method applies three con-

secutive steps, used to incrementally bound and refine the list GFN. In the

first step, a model is trained using the bootstrap option explained in the

previous paragraph. GFN is then bounded to the potential FN genes de-

tected by at least one trained signature. In the second step, the trained

signatures are used to classify the genes in GFN, filtering out the ones not

predicted as positive. Finally, in the third step, the training algorithm is

used to search for a suitable expression signature for each gene in

GFN. This algorithm is used without the bootstrap option. Then, a gene

gj in GFN is predicted as a FN if the method is able to find an

expression signature ESðgjÞ that satisfies two conditions: (i)

ESSðgj½fsel�Þ40 [equation (1)] and (ii) Score1ðgj½fsel�Þ [equation (2)] is

greater than the average Score1ð�Þ obtained among the valid expression

signatures of the positive class C1
BP. The first condition imposes to the

predicted FNs to be discriminatively connected to other positive genes,

whereas the second condition imposes them to be at least as connected as

an average positive gene.

The three steps described earlier are executed iteratively by the FND

method, automatically moving the predicted FNs to the positive set of the

next iteration. The method stops if no new FNs are predicted or if a

maximum number of iterations are reached. After performing the FND

method, the training set can be refined, either by eliminating the predicted

FNs from the negative set or by moving them to the positive set. This

refined set is then used to train a DLS model and obtain the final

predictions.

3 EXPERIMENTAL SETUP

A systematic evaluation was performed using an A. thaliana ex-

pression dataset and 101 GO biological processes. We compare

the performance of DLS against two widely used state-of-the-art

algorithms: SVMs (Brown et al., 2000) and CNs (Vandepoele

et al., 2009).

In our tests, we used two expression datasets, pre-processed as

described in Section 2.1, but using different procedures to define

the control–test pairs of experimental conditions. In the first

dataset,M¼ 643 pairs were manually defined by an expert, start-

ing from a raw dataset containing 2017A. thaliana ATH1 micro-

array slides (including replicates). We refer to this dataset as the

‘expert-dataset’. For the second dataset, a total of M¼ 3911 fea-

tures were derived by the automatic procedure described in

Section 2.1, starting from an updated raw dataset containing

3352 slides. We refer to this dataset as the ‘automated-dataset’.

Most slides were obtained from the International Affymetrix

Service of the Nottingham Arabidopsis Stock Centre (NASC,

www.affymetrix.arabidopsis.info).
The evaluations consider the selection of 101 representative

GO-terms from the 3500þ GO-terms available for A. thaliana

in the biological process ontology. This selection was performed

using the annotations available in GO on May 8, 2008. First, we

filtered out all the annotations with IEA evidence code (Inferred

from Electronic Annotation), as they are not reviewed by a cur-

ator. Then, we selected representative functional GO-terms using

a depth-first strategy, searching for the first GO-term of each

branch containing between 30 and 500 annotated genes. Thus,

this selection is representative of the space of possible biological

processes in the sense that all the branches of the GO DAG are

represented by at least one GO-term in our selection. In other

words, all the GO-terms that were filtered out are either subca-

tegories (descendants) or broader categories (ancestors) of at

least one of the selected GO-terms. The selected GO-terms are

Levels 2–6 in the GO hierarchy and cover a wide range of bio-

logical processes, such as responses to different stimulus and

various metabolic and developmental processes. The complete

list of selected GO-terms is available in a Supplementary material

spreadsheet file.

We derived a labeled training set for each selected GO-term, as

described in Section 2.2. The number of positive genes in these

training sets varies from 30 to 474, with an average of 162 genes.

The number of negative genes varies from 1011 to 4112, with an

average of 3105 genes. As can be seen, negative training sets are

much bigger than positive ones, which is expected, because most

genes are not involved in a particular biological process.

Cross-validation tests were performed using three 10-fold

cross-validation tests over each GO-term. Each test was per-

formed using a different 10-fold partition. As evaluation metrics

we used:

Precision ¼
jTPj

jTPj þ jFPj
, Recall ¼

jTPj

jTPj þ jFNj

F� � score ¼
1þ �2

1
recallþ

�2

precision

,
ð4Þ

where jTPj, jFPj and jFNj correspond to the number of true

positives, false positives and false negatives, respectively.

Precision measures the proportion of positive predictions that

are correct. Recall measures the proportion of positive genes

that are predicted as positive. Finally, the F� score provides a

joint evaluation of both precision and recall, by calculating their
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harmonic mean. The � parameter controls the weight given to

precision with respect to recall. In our tests, we used � ¼ 2 (F2

score), in order to favor accurate models over models with high

recalls but large false positive rates.
In addition to the cross-validation analysis, an alternative,

more realistic evaluation was performed, testing the enrichment

of new annotations available on September 7, 2010, in the

positive predictions of each method trained using the annota-

tions of year 2008. This enrichment was tested using a hypergeo-

metric distribution and a P-value threshold of 0.1 to consider

enrichment.

In order to facilitate the analysis of our results, we summarize

them using three criteria. The first criterium consists of counting

the number of GO-terms in which each method attains useful

predictions. In the case of cross-validations, we consider as useful

the GO-terms with precisions40.33, meaning that at least one of

three predictions are correct (Fig. 1A). In the case of enrichment

analyses, we consider as ‘useful’ the GO-terms attaining enriched

predictions (Fig. 2A). The second criterium consists of evaluating

the average performances of the methods considering the 101

tested GO-terms. In cross-validations, we include precision,

recall and F2-score averages (Figs 1B–D), whereas we include

P-value averages for the enrichment analyses (Fig. 2). Finally,

the third criterium consists of a pairwise comparison of the per-

formances of the methods over each GO-term. Given two meth-

ods, A and B, we count the number of GO-terms in which

A outperforms B and vice versa. Only GO-terms with useful

predictions are counted. The F2-scores and P-values were con-

sidered as performance measures for cross-validations (Fig. 1E)

and enrichment analyses (Fig. 2C), respectively.
The workflow used for the evaluations is as follows. We first

perform cross-validation and enrichment analyses using the

expert-dataset as described earlier in the text. The automated

dataset is evidently more prone to both useless and redundant

features, as some of them may be defined using biologically

meaningless comparisons. Thus, the expert-dataset is used in

order to ensure quality control–test condition pairs for the evalu-

ations. In addition, we perform enrichment analyses using the

automated-dataset with two specific aims: (i) test the potential of

the automated-dataset for function prediction and (ii) test the

performance of the methods in datasets with an increasing

number of conditions (features). Thus, in addition to the com-

plete dataset ofM¼ 3911 features, we use two additional smaller

datasets, defined by a random selection of M¼ {1000, 2000}

features.
In terms of the evaluated methods, we use the configuration

and parameters providing the highest average F2-score in the

cross-validation analysis. In the particular case of the proposed

method, we report the performance of two alternative configur-

ations, one using the False Negative Discovery method

(FND-DLS), described in Section 2.6 and other without using

it (DLS). In the case of FND-DLS, the final predicted FNs are

added to the positive training set.
For the SVMmethod, we use the implementations available as

part of the library for support vector machines (LIBSVM)

(Chang and Lin, 2001). Similar to Brown et al. (2000), we

tested four types of kernels: RBF, linear kernel and two polyno-

mial kernels with degrees equal to two and three, respectively. As

reported by Brown et al. (2000), RBF-SVM shows the best per-

formance. However, as linear-SVM has the advantage of being

more easily interpreted, it provides a good reference point to

compare the performance of our method. Consequently, we

report the results of both, RBF-SVM and linear-SVM. In

terms of the selection of relevant parameters for the different

SVM models, we tested different configurations following the

default values suggested by the LIBSVM library and the

Fig. 1. Results of the 10-fold cross-validation analyses performed over 101 representative GO biological processes. FND-DLS consistently shows the

best overall performance, demonstrating the power of our method and the importance of handling false negatives (FNs) present in training sets. Despite

FNs, all the tested supervised methods show superior prediction performances than the semi-supervised method CN. (E) shows the number of GO-terms

in which one method attains better F2-scores than the other (details in Section 3).
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optimization methods proposed by Brown et al. (2000). More

details about the parameters selected for the SVMs can be found

in Section 6 of Supplementary Material.
For the CN method, we construct the networks using the

cosine correlation metric. Predictions are performed using a

guilt-by-association criteria, using the hypergeometric distribu-

tion and Bonferroni correction for multiple tests. We tested five

networks, applying correlation thresholds of 0.5, 0.6, 0.7, 0.8 and

0.9, respectively. In addition, we tested three P-value thresholds,

0.1, 0.05 and 0.01. We report the results of the CN model using a

correlation and P-value value thresholds of 0.6 and 0.1, respect-

ively, as this provides the highest average F2-score.
The code and data to run these analyses over each method are

available for MATLAB� programming software and can be

downloaded from the link provided in the Availability Section.

4 RESULTS AND DISCUSSION

The results of cross-validation and enrichment analyses using the

expert-matrix are summarized in Figures 1 and 2, respectively.

The results of the enrichment analysis using the automated-

matrix are summarized in Figure 3. The complete report of

results can be found in Supplementary material spreadsheets

available online. The rest of this Section presents and discusses

these results.

4.1 FND-DLS shows the best overall prediction

performance

Our results show that FND-DLS outperforms

all competing methods, whereas RBF-SVM consistently

attains the second best performance. In the case of the cross-

validation analysis, FND-DLS attains useful predictions

(precision40:33) in 96% of the considered GO-terms, corres-

ponding to 15%, 24%, 33% and 49% more GO-terms than

RBF-SVM, DLS, linear-SVM and CN, respectively (Fig. 1A).

In addition, it attains an average F2-score of 0.44, whereas

RBF-SVM, DLS, linear-SVM and CN attain averages equal to

0.29, 0.22, 0.20 and 0.15, respectively (Fig. 1B). Although

FND-DLS attains better average precisions than the other meth-

ods (Fig. 1C), its supremacy in terms of the F2-score is mostly

explained by its higher recalls. FND-DLS attains an average

recall of 0.29, whereas RBF-SVM, DLS, linear-SVM and CN

attain average recalls equal to 0.11, 0.11, 0.08 and 0.10,

respectively (Fig. 1D).
We see four main factor that may explain the overall small

level of recalls obtained by the methods: (i) some genes may be

Fig. 2. Summary of the results of an enrichment analysis performed over 101 representative GO biological processes. The analysis consists of testing the

enrichment of new annotations from year 2010, in the predictions done by each method using annotation from year 2008. FND-DLS and RBF-SVM

show the best overall performances, with a small advantage for FND-DLS. Figure (C) shows the number of GO-terms in which one method attains

better enrichments (lower P-values) than the other (details in Section 3).

Fig. 3. Results of enrichment analyses done over gene expression datasets

with an increasing number of features (details in Section 3). In contrast to

both SVM and CN, DLS shows a remarkable ability to systematically

increase its performance when more features are added to the dataset. In

fact, for the datasets with M� 1000 DLS outperforms all other methods,

showing the greatest potential to exploit the increasing amounts of gene

expression data.
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regulated under experimental conditions not available in the ex-
pression dataset; (ii) some genes may not be regulated at a tran-
scriptional level and thus, may not have (common) expression

patterns; (iii) due to missing functional labels, some genes may
only be regulated by (or regulate) genes not present in the posi-

tive training set and thus, it may be impossible for the methods to
discriminate them and (iv) FNs genes may share and mask some
discriminative patterns present among positive genes. The higher

levels of recall achieved by FND-DLS over the other methods
remark the importance of the last two factors described above.
The higher precisions obtained by FND-DLS supports the

effectiveness of the FND process. The FND process iteratively
moves the predicted FNs to the positive set. Thus, if FND-DLS

wrongly predicted FNs, this genes would become false positive
genes which, in turn, would decrease the precision of FND-DLS.
Cross-validation is useful to assess the relative performance of

the methods; however, its results must be considered with cau-
tion (Varma and Simon, 2006). To tackle this, we use an enrich-
ment analysis over a completely new set of labeled genes (i.e. new

annotations from year 2010) to assess the performance of our
method in an alternative and more realistic scenario (details in

Section 3).
Interestingly, the results of the enrichment analysis confirm the

supremacy of FND-DLS over RBF-SVM, although its overall

advantage is smaller than in the cross-validation test (Fig. 2).
FND-DLS attains enriched predictions in 53% of the GO-
terms, whereas RBF-SVM, DLS, linear-SVM and CN attain

enriched predictions in 52%, 44%, 43% and 39% of the
GO-terms, respectively (Fig. 2A). Note that some GO-terms

have few or no new genes annotated on year 2010 with respect
to year 2008 and thus, it is very difficult or even impossible for
the predictions to be enriched. In addition, the enrichment per-

formance is affected by the same four factors exposed above for
cross-validation. In terms of enrichment P-value (lower P-value

represent higher enrichments), FND-DLS attains an average of
0.39, whereas RBF-SVM, DLS, linear-SVM and CN attain aver-
ages equal to 0.40, 0.46, 0.54 and 0.55, respectively (Fig. 2B).

4.2 Discriminative methods, DLS and SVM, provide more

accurate gene function predictions than CNs

According to our experiments, both versions of DLS and SVM
outperform CN. Although CN obtains similar average recall

levels than SVMs and DLS (without FND), it fails in providing
predictions as precisely as them (Fig. 1C and D). These results
show the advantages of using discriminative training techniques

in contrast to semi-supervised techniques in attaining accurate
gene functional predictions. This assertion is further supported

by the results of the enrichment analysis.

4.3 There is no method to rule them all

Although FND-DLS and RBF-SVM show the best overall per-

formances, when comparing the performance at a term-by-term
scale, we can only conclude that there is no method able to attain
the best performance through all GO-terms (Figs. 1E and 2C).

There are many factors that can bias the predictability of genes
of a biological process toward one method or another. For
example, in GO-terms related to responses, we see a bias in the

predictability toward DLS in expense of CN, as the responses are

usually expressed under specific environmental or physiological

conditions, which DLS is able to detect due to its local search for

discriminative features.

4.4 The discriminative and local expression patterns of

DLS provide effective and meaningful predictions

According to the FDR matrix XFDR, 96.2% of the expression

changes in the log-ratio matrix XLR are not significant in the

expert-dataset (considering an FDR50:1 for significance), mean-

ing that on average, genes show differential expression in only 24

(3.8%) of the 643 features. This sparseness emphasizes the im-

portance of the selection of relevant features to achieve effective

predictions, as the one performed by DLS. SVMs perform trans-

formations to higher dimensions, which can also be interpreted

as an implicit selection of relevant features. However, these trans-

formations complicate the interpretation of the predictions and

the extraction of further knowledge. Consequently, besides the

prediction power of DLS, a key advantage over SVMs and other

discriminative state of the art prediction methods is its ability to

provide biologically meaningful and interpretable predictions

while maintaining highly accurate predictions. Unlike SVMs,

DLS is able to visually expose its predictions in the form of a

network. This network delivers a much richer interpretability to

the user than SVM, providing key information about the regu-

latory linkages that may exist between the genes of the functional

class of interest. Finally, unlike both SVMs and CNs, DLS is

able to explicitly reveal the experimental conditions and genes

that are relevant for each prediction, by extracting the features

and genes that define each expression signature.

4.5 DLS systematically improves its performance as more

experimental conditions are added to the dataset

As stated above, the lack of informative features is one of the

factors that may affect the prediction potential of the methods.

In this sense, the increasing amount and variety of gene expres-

sion experiments represent both an opportunity and a challenge.

If the number of available experiments increases, chances to find

informative features among them also increase. However, the

amount of uninformative and redundant features should also

increase, adding extra noise that must be correctly handled by

the prediction methods.

The results of the enrichment analyses performed using the

automated-dataset support our previous hypothesis and one of

the most remarkable features of our method (Fig. 3). When using

the expert-dataset, containing 643 features, DLS achieves an

overall P-value of 0.46. Interestingly, when using the auto-

mated-datasets, containing 1000, 2000 and 3911 features, its

average P-value improves to 0.42, 0.34 and 0.32, respectively.

In contrast, RBF-SVM is not able to improve its performance,

linear-SVM shows little improvement, and the performance of

CN even gets deteriorated. Notice that when using the

automated-dataset, DLS achieves the highest overall perform-

ance in terms of enrichment, even without using the FND

procedure.
These results show that DLS is able to overcome the under-

lying noise added by the automated-dataset by effectively

extracting relevant and informative features. In addition, they
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support the usefulness of our automatic procedure to generate

log-ratio expression datasets from poorly annotated experiments.

But, most remarkably, they suggest that DLS should be the most

benefited method as, in the future, more microarray experimen-

tal data becomes available.

5 CONCLUSION

In this work, we described DLS, a novel method that combines

supervised machine learning and co-expression approaches to

effectively predict new genes involved in a biological process of

interest. We introduced four key concepts that allow DLS to

effectively predict gene function: the derivation of informative

training sets of genes by discovering FN training genes, the

supervised search of discriminative expression patterns in subsets

of experimental conditions (expression signatures), a Bayesian

probabilistic approach to derive the confidence for each predic-

tion and the construction of discriminative CNs to represent

predictions.
By using an A. thaliana expression dataset and 101 GO biolo-

gical processes, our experiments showed that DLS is able to

provide effective gene functional predictions, with accuracies

comparable to the highly discriminative SVMs, while maintain-

ing the expressiveness of CNs. Interestingly, they also show that,

unlike SVMs and CNs, DLS systematically improves its predic-

tion performance as more experimental conditions are added to

the dataset. Thus, we believe that the supervised use of

co-expression proposed in this work opens new opportunities

to extract meaningful biological hypothesis from the increasing

amounts of expression data, and therefore, to cope with the need

to understand gene functions and biological processes.
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