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Abstract
Prostate cancers, initially responsive to anti-androgen therapies, often advance to a hormone-
refractory “castrate resistant” stage (CRPC). However the androgen receptor (AR) pathway
remains active and key for cell growth and gene expression within tumours, even in the apparent
absence of hormone. Proposed mechanisms to explain progression, including AR amplification/
mutation, are insufficient to completely explain CRPC and possible roles of AR cofactors such as
prohibitin are poorly understood. We investigated whether prohibitin loss could sensitise prostate
cancer cells and tumours to adrenal gland-derived androgens which persist even after androgen
ablation, hence contribute to development of CRPC. Using a pair of prostate cancer cell lines,
inducibly expressing ectopic cDNA or RNAi for PHB, responses to different androgens and
hormone concentrations were studied both in vitro and in vivo. PHB was found at the promoters of
several genes, both AR and non AR-regulated, and knockdown increased histone acetylation at
these promoters. Further, PHB knockdown increased rate of AR ligand-induced chromatin
binding, and binding rate and occupancy of AR upon the PSA promoter. This resulted in increased
cell growth and AR activity in response to all androgens, including promoting a response to the
weaker adrenal androgens previously absent at physiological concentrations. In vivo this had
functional consequences such that PHB knockdown resulted in androstenedione being sufficient to
promote tumour growth, under conditions mimicking those in patients undergoing androgen
ablation therapy.

We conclude that reduction in prohibitin levels is sufficient to lower the threshold of AR activity
in vitro and in vivo; this may be via a general increase in histone acetylation that could potentially
affect signalling by other transcription factors. Prohibitin loss may provide a mechanism for
progression to CRPC by sensitizing prostate cancer cells to “castrate” conditions i.e. low levels of
testicular androgens in the continued presence of weak adrenal and dietary androgens.
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Introduction
Prostate cancer is the most commonly diagnosed cancer in males (1), and tumour growth is
initially androgen-dependent. Cellular and physiological responses to androgens are
mediated by the androgen receptor (AR), which is key to prostate cancer progression and
treatment (2, 3). There are three sources of androgenic steroids: the testes, which synthesise
testosterone from adrenal precursors; the adrenal glands, which secrete the weakly
androgenic precursors androstenedione (ASD) and dehydroepiandrosterone (DHEA); and
diet. 5α-reductase enzymes in androgen-dependent tissues such as the prostate convert
testosterone into the more potent dihydrotestosterone (DHT), which binds AR with higher
affinity. Ligand-activated AR binds to androgen response elements (AREs) located in the
regulatory regions of target genes, thus influencing the rate of gene transactivation by
recruiting gene activation complexes to the promoters of these genes and dismissing
repressive proteins, leading to androgen-dependent cell growth and function (4-9).

Currently the mainstays of prostate cancer treatment are chemical castration using LHRH
analogues to ablate testicular androgens, and anti-androgens which block androgen
signalling at the level of the AR. Initially successful, such hormonal therapies inevitably fail
and patients relapse with “castrate-resistant” prostate cancer (CRPC). Resistance results
from clonal selection of cells that circumvent androgen requirement by mechanisms
including AR gene mutation or receptor amplification (4-7, 10-12). Additionally, reduced
levels of repressor proteins may increase the activity of the AR due to a lack of repressive
action.

One such co-repressor is prohibitin (PHB) (13), previously found to be down-regulated by
androgen treatment (14). PHB has multiple roles in the cell, including as a chaperone
complex in the inner mitochondrial membrane (15), an attenuator of Raf-Mek and Akt
signalling pathways (16), and repressor of various transcription factors (including E2F and
steroid receptors), and has tumour suppressor, anti-proliferative and cell-cycle regulation
activities (17, 18). PHB has been shown to repress E2F via recruitment of the repressive
proteins HDAC1, N-CoR and the chromatin condensing proteins BRG1/Brm, (19, 20). PHB
can also repress steroid-activated nuclear receptors e.g. the androgen receptor (AR) (14) and
estrogen receptor (ER) (21), and conversely is capable of activating p53 (22). PHB is a
potent transcriptional corepressor of ERα and associates with estrogen-regulated promoters
in the absence of hormone, dissociating after hormone treatment. Interestingly, PHB
knockdown reduces the anti-proliferative actions of estrogen antagonists (23) and PHB
recruits BRG1-containing chromatin remodelling complex to antagonist-bound androgen
receptor (24). Additionally, PHB associates with HP1 proteins (25), involved in the
compartmentalisation of chromatin into heterochromatin and euchromatin (26), and may
have a role in facilitating the DNA structural changes required for gene activation and
silencing.

Previously we have shown that PHB can repress AR activity and androgen-stimulated
growth of LNCaP prostate cancer cells and conversely that RNAi-mediated knockdown of
PHB increased AR activity and increased LNCaP cell growth in response to testicular
androgens such as testosterone, both in vitro and in vivo (27). Therefore we aimed to
determine the mechanism of AR repression by PHB, and what effects the loss of such a
repressor would have on AR activity and tumour growth under conditions mimicking those
in patients undergoing androgen ablation therapy. Circulating at relatively high levels and
unaffected by chemical castration, adrenal androgens are a significant source of androgens
in these patients. Therefore, we aimed to study whether the reduction of a repressor such as
PHB could indeed cause or contribute towards the apparent “androgen independence”
observed in CRPC and the failure of hormonal therapies.
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Results
PHB influences the rate and extent of AR binding to chromatin

A pair of doxycycline-inducible LNCaP prostate cancer cell lines was established, one
ectopically expressing PHB cDNA (LNCaP/Luc/PHB-cDNA) and one expressing PHB-
siRNA (LNCaP/Luc/PHB-RNAi) (27), each with its respective empty vector or scrambled
control line. Upon removal of soluble nuclear proteins, PHB was evident in nuclear foci
(Figure 1a), number and intensity of which altered with PHB modulation. Fractionation
demonstrated that PHB is present in both the cytoplasmic fraction and also the nucleus –
both the soluble nuclear fraction but to a greater extent the chromatin-associated fraction
(Figure 1b). Micrococcal nuclease digestion of chromatin released some of the associated
PHB into the soluble nuclear fraction, supporting the PHB-chromatin association. This
nuclear pattern is reminiscent of known PHB-interacting proteins HP1 and HDAC1, which
colocalise closely with PHB (Figure 1c). Chromatin association of PHB was reduced in cells
grown in full serum compared to hormonally-starved cells (Figure 1d), with a concomitant
increase in soluble nuclear PHB, while total and cytoplasmic PHB levels were unchanged.
Increased chromatin association of PHB was also seen in serum-starved HeLa cells (Figure
1e), which neither express AR nor are steroid responsive. Returning these cells to full serum
reduced the levels of PHB co-purifying with chromatin within 24hr.

Treating hormone-starved LNCaP cells with androgen revealed increased AR chromatin
association over time with a concomitant reduction in PHB co-purification (Figure 2a, left
hand side). Doxycycline-induced PHB-RNAi reduced the amount of PHB co-purifying with
the chromatin as expected, but accelerated AR binding, resulting in increased binding at
shorter time-points of androgen treatment (Figure 2a right hand side). Conversely, ectopic
expression of PHB cDNA resulted in increased PHB-chromatin association, with a dose-
dependent reduction in AR co-purification, even in full serum (Figure 2b). Total levels of
AR remained unchanged in each case.

To quantify the effects of PHB loss on the chromatin-binding rate of AR, hormone-starved
LNCaP cells were treated with either the potent DHT or the weak androstenedione (both at
10nM). Without doxycycline, DHT treatment resulted in maximal AR chromatin co-
purification at 120-240 minutes, whilst doxycycline-induced PHB-RNAi accelerated this,
with maximal AR chromatin co-purification at 30-60 minutes. Similarly with
androstenedione treatment: AR chromatin binding was lower in the absence of doxycycline,
whilst PHB-RNAi resulted in a statistically significant increase in AR binding at 120-240
minutes (Figure 2c). No change in rate of AR binding to chromatin was evident in the
scrambled RNAi control line.

PHB is displaced from the PSA promoter with androgen treatment
Chromatin purification experiments (Figures 1 & 2) showed global chromatin binding
patterns of PHB and AR to be in dynamic opposition. Liganded AR binds to AREs in the
promoter and enhancer regions of the well-characterised androgen target gene PSA, and
PHB can bind strongly to the PSA promoter in the presence of anti-androgens (24), but little
data is available on the effects of co-repressors on AR binding. To address this, chromatin
immunoprecipitation assays (ChIP) were performed.

In hormone-starved LNCaP cells, DHT treatment (2 hours) resulted in AR binding to the
promoter and enhancer regions as expected, with minimal binding to non-ARE containing
regions (Figure 3a). In the absence of hormone, PHB binds across the 8kb PSA promoter
region with no apparent regional specificity. DHT treatment led to reduced PHB across all
PSA-promoter regions (Figure 3a), i.e. this was not limited to ARE-containing regions. Also
PHB was recruited to both ARE-containing and ARE-negative regions under hormonally
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starved conditions as compared to full serum, and was displaced from all three regions by
androgen treatment (Figure 3b), coincident with increased AR binding in the case of the
enhancer and promoter regions.

PHB knock down increases AR binding and binding rate to the PSA promoter
Since PHB knockdown increased global AR chromatin-binding, the effects upon AR
binding to AREs in the PSA promoter were studied. DHT increased AR binding to the
enhancer and promoter regions as expected, however PHB-RNAi increased AR binding still
further (Figure 3c). DHT treatment reduced PHB binding across all regions, confirming
previous results, and PHB-RNAi knockdown reduced this further (Figure 3d). No change
was seen in total AR levels in these cells within this timeframe (see Figure 2a) and no
change in AR or PHB recruitment was seen in the scrambled siRNA control cell line
(Supplemental Figure 1a). Similar data was obtained for the similarly organised androgen-
responsive gene KLK2 (Supplemental Figure 1b).

We then analysed AR binding to the PSA promoter and enhancer in more detail. LNCaP/
Luc/PHB-RNAi cells were grown without steroids (± doxycycline) for 72 hours and then
treated with either DHT or androstenedione. DHT treatment promoted AR binding to both
regions within 30 minutes, with binding reduced at 1 hour then increasing again at 2 hours.
PHB-RNAi changed the pattern of AR binding to a more linear increase in binding with no
reduction at the 1-hour timepoint (Figure 4a). Since the kinetics of androstenedione activity
were less rapid we extended the study to 4 hours. Similar results were seen: AR recruitment
at 1 hour, dropping at 2 hours then peaking again at 4 hours (Figure 4b). Doxycycline-
induced PHB knockdown caused increased binding of‘ AR to the promoter and enhancer
regions with a peak at 1 hour and no cyclical pattern evident within this timeframe.
Confirming previous results, hormone treatment resulted in a rapid reduction (within 15
minutes) of PHB binding at the enhancer and at the promoter, with a slight increase at 30
minutes at the enhancer then a continued reduced level. Unsurprisingly, PHB-RNAi resulted
in very low levels of PHB at the enhancer or promoter throughout (Figure 4c). IgG controls
showed no changes with either treatment and a similar pattern was observed for recruitment
to the KLK2 enhancer/promoter (Supplemental Figure 2).

PHB knock down increases androgen receptor activity as measured by endogenous and
integrated reporter gene expression, but does not affect ligand binding

Both testicular and adrenal androgens activate androgen-regulated gene expression, but the
less efficient adrenal androgens are required at higher concentrations for similar effects. The
ability of these to activate the AR in our cell lines was assayed using the expression of both
endogenous androgen regulated genes (e.g. PSA) and an integrated androgen-responsive
luciferase reporter (27). Kinetics of PSA transcript production were studied after treatment
with DHT or androstenedione (10nM) ± doxycycline. DHT-induced PSA transcript levels
were increased at 6 hours post treatment and further thereafter (Figure 5a, left panel), while
PHB knockdown resulted in transcript levels peaking earlier (by 2-4 hours) and remaining
high thereafter. KLK2 and TMPRS2 showed similar trends (Supplemental Figure 3a). PHB
knockdown also increased the rate of androstenedione-induced PSA transcript production,
which was significantly higher from 4 hours hormone treatment (Figure 5a, right panel).

Similarly we investigated whether the increased AR binding rate caused by PHB-RNAi
could increase the efficacy of various androgens. After 16h treatment with 100nM hormone,
PSA expression increased 6-fold with DHT (Figure 5b-c left panels), around 3-fold for
androstenedione (Figure 5b-c, right panels), while DHEA had no significant effect (data not
shown). Overexpression of PHB-cDNA caused strong inhibition of androgen-induced PSA
expression, whether by DHT or androstenedione (Figure 5b). Conversely, doxycycline-

Dart et al. Page 4

Oncogene. Author manuscript; available in PMC 2013 April 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



induced PHB-RNAi knock down increased PSA expression in response to both testicular
and adrenal androgens (Figure 5c), significant at doses above 1nM.

Using the integrated androgen receptor luciferase reporter, we found increasing PHB
reduced luciferase activity as previously reported (27). However, PHB-RNAi resulted in
increased luciferase activity at lower doses of DHT, changing the maximal activity
concentration (Figure 5d, left panel). Similarly 1nM androstenedione in the presence of
PHB-RNAi had equal activation potency to 10nM without (Figure 5d, right panel). To
confirm that the observed stimulatory effects of PHB knockdown can be overcome by
reintroducing PHB, we transfected LNCaP/Luc/PHB-RNAi cells with a form of PHB not
sensitive to silencing. This showed that the increased androgen-dependent (both DHT and
androstenedione) luciferase activity seen in the presence of doxycycline-induced PHB
knockdown was abolished by increasing PHB levels (Supplemental Figure 3b).

Doxycycline treatment had no effect on the hormone responses of the scrambled RNAi or
empty vector control lines (Supplemental Figure 4). Scatchard analysis confirmed that
neither ectopic expression of PHB-cDNA nor PHB-RNAi significantly affected the Bmax or
dissociation constant (Kd) of ligand binding (Supplemental Figure 5).

PHB knock down results in higher baseline levels of acetylated histone H3 in hormonally-
starved cells

PHB is known to recruit HDACs and chromatin remodelling complexes including HP-1 (19,
20, 25). We saw that PHB reduction resulted in a decrease in HP-1 and HDAC1 association
with chromatin (Figure 6a), and analysed the chromatin for changes in histone acetylation in
response to PHB knockdown. This resulted in an increase in overall acetylation of Histone
H3, with increased levels of histone H3-Ac(K9) and Ac(K9) P(S10), even before androgen
treatment (Figure 6a). Additionally, androgen induction of these histone H3 modifications
was also higher in the doxycycline-treated samples. Histone H3-Ac(18) showed no
significant changes (data not shown). Conversely, increasing PHB levels by exogenous
PHB-cDNA expression resulted in a dose-dependent reduction in global histone H3
acetylation (Figure 6b).

ChIP analysis of the PSA regulatory region showed androgen-induced enrichment of H3-
Ac(K9) across most of the promoter region as expected, however when PHB was reduced a
further enrichment was observed, most notably at the enhancer and negative regions both
before and after DHT treatment (Figure 6c). Interestingly, the RNAi-mediated reduction in
PHB also increased levels of acetylated histone H3 at the promoters of the inducible TAP1
and Cyclin D1 genes, but had little effect at the constitutively active ß-actin gene (Figure
6d).

PHB knock down increases LNCaP cell growth in response to testicular and adrenal
androgens both in vitro and in vivo

Having previously shown that PHB-RNAi increased prostate cell and tumour growth in
response to testosterone (27), we tested whether it could similarly increase the response to
adrenal androgens and translate into a tumour growth effect. Interestingly, in the absence of
doxycycline we observed no cell growth in response to DHEA at doses up to and including
10nM for 96h (Figure 7a and data not shown). In culture, PHB-RNAi increased cell growth
in response to all androgens: DHT, androstenedione and DHEA (10nM) (Figure 7a). PHB-
RNAi also increased the percentage of cells in S-phase, under all conditions tested (Figure
7b).

Established prostate cancer therapies do not affect adrenal androgen production. This is
confirmed by the fact that serum androstenedione in healthy human males has a normal
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range of 1.7-10nM, while samples collected from patients treated with LHRH analogues
(Leuprorelin or Goserelin) alone (androgen ablation) or plus bicalutamide (maximal
androgen blockade) showed androstenedione values within this normal range (Table 1).
Since PHB-RNAi increased AR activity in response to these weaker ligands, we examined
in xenograft models whether normal serum levels of these androgens would be sufficient to
maintain prostate cancer tumour growth in vivo when PHB is reduced.

Adrenal androgen production in rodents is maximal post-natally but drops to undetectable
levels post-puberty (28), as adult males lack 17α-hydroxylase in the adrenal cortex (29).
Androgen synthesis is mainly testicular, from multiple precursors e.g. corticosterone,
pregnenolone or acetate, produced in the liver or peripheral tissues (30-32).
Orchidectomised male mice showed undetectable levels of both testosterone and
androstenedione (Table 1), thus specific androgens could be supplemented to study
individually. Androstenedione supplementation increased serum androstenedione to
0.3-2.1nM, coincident with the normal range (0.3-2.0nM), and no significant effect was seen
on serum testosterone, although minimal peripheral tissue conversion cannot be ruled out.
Androstenedione supplementation, therefore, mimics serum conditions of men undergoing
therapy whose circulating testosterone levels are significantly reduced, but who have normal
androstenedione levels. LNCaP/Luc/PHB-RNAi xenografts were thus grown under these
conditions. Mice were given daily testosterone supplementation (resulting in serum levels of
7-10nM) until tumour burden was confirmed, and the tumours given a relative tumour
volume (RTV) of 1. Mice were then separated into treatment groups: continued testosterone
treatment, switched to androstenedione, or vehicle only (all ± doxycycline).

In testosterone-treated castrated mice, LNCaP tumours grow with a mean doubling time of
20 days, while in vehicle-treated mice tumours stop growing and shrink within 48hr (27).
Tumours in androstenedione-treated castrated mice did not show rapid tumour growth as
seen for testosterone, but unlike vehicle controls, tumours were maintained with no
regression (Figure 7c, dashed line). Under the same conditions plus PHB-RNAi, tumours
showed a statistically significant increase in RTV as compared to control (Figure 7c), i.e.
PHB reduction promoted androstenedione-induced tumour growth in vivo. Figure 7d
summarises RTVs for vehicle, androstenedione and testosterone (± doxycycline) at the end
of the experiment.

Discussion
We set out to analyse the mechanisms by which PHB reduction increases AR activity, and
its possible contribution to the “androgen-independent” phenotype of CRPC. Although PHB
has no specific DNA-binding motifs, a large fraction is chromatin-associated, which alters
according to treatment (increased in serum-starved cells compared to either androgen-treated
LNCaP cells or serum-stimulated HeLa cells). PHB also associated closely with HP-1 and
HDAC1 proteins, which are known to be strongly chromatin-associated. PHB dissociation
from chromatin may be a requirement for (or a result of) cell cycle initiation regardless of
initiation factor, be it androgens in LNCaP cells or other serum-derived growth factors in
HeLa cells. PHB knockdown increased the amount and rate of AR-chromatin association in
response to DHT and androstenedione, while overexpression was inhibitory, suggesting AR
and PHB have dynamic and opposite roles/activities. PHB was also present upon the
promoters of non-AR-regulated genes including the constitutively active ß-actin and the
interferon-inducible gene TAP1 (33), as well as Cyclin D1 which is indirectly regulated by
androgens (See also Supplemental Figure 6a). PHB knockdown influenced the levels of
acetylated histone H3 at these promoters also, indicating a more global phenomenon than
simpy affecting directly androgen-regulated genes. The widespread increase in histone
acetylation did not however cause a global increase in gene expression (Supplemental
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Figure 6b). Basal Cyclin D1 expression increased, perhaps in part explaining the increased
cell cycle entry seen upon PHB knockdown. Basal TAP1 expression was reduced upon PHB
knockdown but upon IFN treatment, induction was moderately increased (Supplemental
Figure 7c). Caspase 7 and YY1 expression were oppositely regulated, being reduced and
increased respectively upon PHB knockdown, as previously reported by Joshi et al. (34).
This supports the growing body of evidence that PHB can have diverse effects on many
gene promoters, and also that its effects appears to be mainly repressive in the case of
androgen-regulated genes.

ChIP at the PSA and KLK2 genes showed DHT-induced binding of AR to ARE-containing
regions at 2 hours, while PHB binding decreased across all regions. Reducing PHB protein
levels resulted in enhanced AR binding, supporting the theory that PHB and AR binding are
in opposition, if not mutually exclusive. The temporal association of AR revealed a complex
pattern of association and disassociation such as reported previously (35, 36). PHB was
present on all regions in hormonally starved cells but rapidly dissociated in DHT-treated
cells. PHB-RNAi changed the pattern of AR binding: AR remained bound, with no
fluctuation within the time studied. Work from the Gannon laboratory on ER promoter-
binding describes an initial unproductive cycle then subsequent transcriptionally productive
cycles (37). A timecourse of DHT-treated LNCaP cells showed that PSA transcripts could
be detected much earlier when PHB levels were reduced. Additionally, PHB-RNAi
increased histone H3 acetylation (Ac-K9) and increased DNase sensitivity of the chromatin
(Supplemental Figure 7) both indicators of chromatin flux (or possible artefacts of the cell
cycle-promoting effects of PHB loss). PHB loss may alter histone modifications (such as H3
acetylation, as shown here) such that chromatin is in a more active state, which in the case of
androgen-responsive genes may eliminate the unproductive cycle of steroid receptor
binding. Alternatively, PHB may be required for hormone starvation-induced chromatin
silencing, with its loss preventing the full effects of such starvation on silencing of target
genes. Regardless, PHB reduction increases AR efficiency.

Although associated with chromatin and found at AR-regulated regions, PHB protein could
not be co-purified with oligonucleotides containing a consensus ARE or larger DNA
sequences representing PSA regulatory regions (data not shown). Further no DNA-binding
sequence has been described for PHB, and it associates with the nuclear matrix (38),
suggesting it may bind chromatin with higher-order structure, strongly supported by its
recruitment of Brm/Brg chromatin modifiers and association with heterochromatin-binding
protein 1 (HP1) (25), as well as its association with many and varied gene promoters. In the
context of androgen signalling, PHB may modulate AR binding to AREs via altering
chromatin conformation, and/or by recruiting repressive chromatin remodelling complexes
to the region in the absence of ligand. Repressive complex recruitment by PHB is essential
for antiandrogen effects (24). Since adrenal androgens possess weak anti-androgen activity
(39), the loss of a repressor protein such as PHB not only increases the effects of weak
androgens but also inhibits their weak anti-androgenic effects, thereby potentially greatly
increasing their potency.

Modulating PHB within LNCaP prostate cancer cells influenced AR activity with PHB-
RNAi promoting increased androgen-stimulated cell cycle entry, increased endogenous and
reporter gene transcription, and increased tumour xenograft growth in vivo (27). We
examined whether this increased AR activity would cause weak AR agonists to become
significant activators. Whereas PHB ectopic expression inhibited all hormone-induced
activity (data not shown), PHB-RNAi amplified the response to all androgens, reducing the
effective concentration required to give maximum effect approximately 10-fold. It has
previously been reported that in the C4-2b prostate cancer cell line, which is derived from
LNCaP but more aggressive in vivo, PSA is expressed even in the absence of added DHT,
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when very small amounts of AR are present at the PSA promoter (40). Upon investigation
we found that these cells exhibit approximately 20% lower levels of endogenous PHB than
LNCaP cells - as do several other more aggressive prostate cancer cells (Supplemental
Figure 8). Reducing PHB levels still further in one such line (VCaP) resulted in an increased
PSA response. It is tempting to speculate that the effective increased PSA response in C4-2
cells as compared to LNCaP may reflect, at least in part, the decreased PHB levels and
possible that this may also contribute to their more aggressive phenotype.

LNCaP tumour xenografts growing in castrated mice treated with androstenedione
mimicked conditions in androgen-ablated prostate cancer patients. Androstenedione
increased tumour volume as compared to vehicle control, but this was not statistically
significant until PHB was reduced by RNAi. Since we had shown that PHB reduction alters
the temporal dynamics of AR activity, facilitating binding of liganded AR to DNA and
consequently increasing androgenic activity of weak adrenal androgens, it is likely that this
significant tumour growth caused by androstenedione is a consequence of reduced PHB
levels. In support of this, reintroducing PHB into the depleted cells reversed the stimulatory
effects of PHB knockdown, in the presence of DHT or androstenedione. Adrenal or dietary-
derived androgens may therefore become more significant in prostate cancer patients, as
they are unaffected by androgen ablation regimens and may become sufficient to promote or
maintain tumours under conditions of “androgen ablation”. Further, this supports our
hypothesis (Dart et al., 2009) that increasing PHB levels may be of therapeutic benefit in
CRPC patients. It is important to note that, while we have also shown that reducing PHB can
also increase the stimulatory effects of low levels of potent androgens such as DHT in terms
of increasing target gene activity, we have not proven whether this involves dose-dependent
alterations in rate of AR chromatin binding or translates into a growth effect. It thus remains
an untested possibility that reduced PHB could also exacerbate the effect of any residual low
levels of testicular androgens which may be present in CRPC patients.

The AR-mediated downregulation of PHB (14) may be exacerbated during prostate cancer
development, especially in tumours with AR ligand binding domain mutations, leading to
increased sensitivity to adrenal androgens. This study thus supports the requirement for
androgen ablation that additionally targets adrenal androgen synthesis, such as CYP17
inhibitors. PHB loss is a potential mechanism that may at least partially contribute to the
increasingly significant burden of castrate-resistant prostate cancer, while co-repressors and
co-activators of AR provide new avenues for research into the treatment of recurrent
prostate cancer.

Methods
Cell Culture

LNCaP and VcaP cells were maintained at 370C, 5% CO2 in RPMI medium with 10% foetal
bovine serum (First Link UK). All LNCaP/Luc/PHB cells were maintained at 370C, 5%
CO2 in RPMI medium with 10% dox-free foetal bovine serum (Clontech, Palo Alto, USA),
12μg/ml blasticidin (Sigma), 0.3mg/ml zeocin (Invitrogen, Paisley, U.K.), and 500μg/ml
G418 (Sigma). HeLa cells were maintained in DMEM medium (Sigma) with 10% fetal
bovine serum (First Link UK, Ltd, Brierley Hill, U.K.). All media was supplemented with
2mM L-glutamine, 100units/ml penicillin, 100mg/ml streptomycin (Sigma). 72 hours before
androgen exposure, medium was replaced with ‘starvation medium’ consisting of phenol
red-free RPMI (or DMEM) medium, supplemented with 5% charcoal-stripped foetal bovine
serum (First Link UK).
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Luciferase assay
Cells were lysed in reporter lysis buffer (Promega). Lysate was mixed with luciferin
substrate and light emission measured using the Steadylite luciferase assay kit (Perkin-
Elmer, Warrington, Cheshire, UK) in a Topcount luminometer (Packard Instrument Co,
Meriden, CT, USA).

RNA extraction and RT-PCR
Total RNA samples were prepared using commercial kits (Qiashredder and RNeasy,
Qiagen) and converted to cDNA using the SuperScript First-Strand Synthesis system
(Invitrogen).

Taqman Quantitative PCR
Reactions were performed in triplicate on cDNA samples in 96-well optical plates on an
ABI Prism 7900HT system (Applied Biosystems, Warrington, U.K.). Reactions consisted of
2 μl cDNA, 7 μl PCR-grade water, 10 μl 2× TaqMan Universal PCR Master Mix (Applied
Biosystems), 1 μl Taqman specific assay probes (Applied Biosystems) for PSA, TMPRSS2,
KLK2, and L19. Parameters were: 50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for
15 sec and 60°C for 1 min. Data was recorded using Sequence Detector Software (SDS
version 2.3; PE Applied Biosystems). Levels were normalised to GAPDH or L19.

Chromatin Isolation and In Situ Cell Fractionation
Cells (4 × 107 cells/ml) were suspended in buffer A (10mM HEPES pH7.9, 10mM KCl,
1.5mM MgCl2, 0.34M sucrose, 10% glycerol, 1mM DTT, protease inhibitor cocktail
(Sigma)). Triton X-100 was added (0.1%), and incubated on ice for 5 minutes. Nuclei were
collected by centrifugation for 4 minutes at 1,200 x g with supernatant collected as the
cytoplasmic fraction. Nuclei were lysed in buffer B (3mM EDTA, 0.2mM EGTA, 1mM
DTT, protease inhibitor cocktail) and chromatin was collected by centrifugation for 4
minutes at 1,800 x g, with supernatant collected as a soluble nuclear fraction. The chromatin
pellet was washed twice in buffer B and re-suspended in Laemmli buffer.

For in situ fractionation for immunofluoresent staining, cells were grown on coverslips,
washed in PBS and fractionated by adding buffer A with 0.5% triton X-100, on ice for 5
minutes. Cells were washed twice in PBS and fixed with 1% formaldehyde for 10 minutes.

Histone Extraction
Cells were lysed for 10 minutes (4°C) in lysis buffer (PBS, 0.5% TritonX-100, 2mM PMSF,
5mM NaButyrate, protease inhibitor cocktail) at 107 cells/ml. Nuclei were pelleted by
centrifugation at 2000 x g for 10 minutes and washed in lysis buffer. Nuclei were extracted
in 0.2N HCl overnight at 4 °C. Proteins were precipitated by TCA (100%) and pelleted at
16,000 x g for 10 minutes, acetone washed and air dried, before dissolving in lysis buffer.

Immunoblotting
Immunoblotting was carried out as described (27). Primary antibodies were; β-actin
(Abcam, Cambridge, USA @1:5000), PHB (Thermo Fisher Scientific, Cheshire, U.K.
@1:1000), AR (Dako, UK), Histone H3 (Sigma @ 1:2000), Histone H3-Ac(K9), H3 Ac(K9)
P(S10), H3 Ac(K18), (New England Biolabs (UK) Ltd @1/500), HP1 (Active motif, USA,
@ 1: 500), HDAC1 (Sigma, @1:1000). Peroxidase-labelled secondary antibodies (Dako)
were used at 1:2000. The membrane was then incubated in chemiluminescent substrate
(Amersham, U.K.) and light emission detected by autoradiography.
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Chromatin Immunoprecipitation (ChIP )
Cells (1 × 107) were grown in starvation medium for 3 days then treated with hormone
(10nM MB) for 0-2hr. ChIP was performed on formaldehyde cross-linked cell samples
essentially as described (41). 5μl of DNA was used for the PCR with 30-35 cycles of 94°C
for 30 sec, 57°C for 45 sec and 70°C for 45 sec.

A full list of primers used for ChIP is given in supplemental table 1.

Confocal microscopy
Cells grown on glass coverslips were fixed in 1% formaldehyde for 10 minutes. For in situ
fractionation cells were permeabilised in buffer (10 mM Pipes pH 6.8, 100 mM NaCl, 300
mM sucrose, 3mM MgCl2, 1mM EGTA, 0.5% Triton-X100) and washed several times in
PBS before fixation.

Coverslips were blocked with 10% rabbit serum (Dako UK Ltd, Ely, U.K.) for 30min.
Mouse anti-human PHB antibody (Neomarkers) was applied for 1 hour followed by PBS
washes. FITC labeled secondary antibody (Alexa @ 1:50) was then applied for 1 hour and
then washed in PBS, mounted on slides with Vectorshield/DAPI (Vector Labs Inc.) and
visualized on Zeiss Meta 512 confocal microscope.

Sulphorhodamine B (SRB) Assay for cell growth
Cell growth was measured by sulphorhodamine B assay as previously described (14).

Cell-cycle analysis
Cells were fixed in 70% ethanol at 4°C and stained with 5mg/ml propidium iodide and
treated with 50mg/ml RNaseA. Analysis was carried out using a Beckton-Dickinson FACS
Calibur, using linear scale representation of forward and side scatter during flow analysis, as
well as fluorescence for DNA content. Single cells were gated and the cell cycle profiles
measured. A total of 10,000 events were measured per sample.

Growth of xenografts
Xenografts growth assays were carried essentially as described (27) with the addition of
androstenedione at 50μg in 90% propylene glycol and 10% ethanol. All procedures on mice
were approved by the local ethical research board and performed under an appropriate Home
Office licence.

Measurement of serum hormones
Serum samples from normal individuals or patients undergoing prostate cancer therapy were
collected with appropriate ethical approval (Hammersmith & Chelsea Hospitals LREC,
project registration number 2000/5816). Mouse serum was collected from anesthetized mice.
Red blood cells were removed by centrifugation at 2000 x g, and serum stored at -80°C.
Total testosterone or androstenedione from serum was measured using ELISA kits
(Calbiotech, USA).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Analysis of PHB levels within cells. (a) Immunofluorescent staining for PHB foci within the
nuclei of in situ fractionated LNCaP/Luc expressing either PHB-cDNA or PHB– RNAi,
with anti-PHB antibody detected with TRITC-labelled secondary and stained with DAPI for
DNA. Bar = 20μm. Corresponding comparison of PHB protein levels shown Western blot
alongside. (b) Western blot analysis of PHB and H3 from cellular fractionation of LNCaP
cells. Where indicated, samples were incubated for 1 min at 37°C ± 0.2 U of micrococcal
nuclease. (c) Immunofluorescent staining of LNCaP cells for PHB (TRITC detection), HP1
and HDAC1 (FITC detection), also DNA (DAPI). (d) Western blot analysis of PHB, AR and
Histone H3 in cell fractions from LNCaP cells, grown either in full serum (F) or charcoal-
stripped serum (St). (d) Western blot analysis of PHB and Histone H3 in purified chromatin
fraction from HeLa cells, grown in full serum or serum starved. Densitometry data for each
blot are given underneath.
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Figure 2.
Effects of PHB modulation on AR recruitment to chromatin. (a) Western blot analysis for
PHB, AR and Histone H3 on chromatin fractions (or whole cell extract, bottom panel) of
starved LNCaP/Luc/PHB-RNAi cells ± doxycycline treated with DHT for 0 – 240 minutes.
(b) Western blot analysis for AR, Histone H3, and PHB on chromatin fractions or whole cell
extract taken from LNCaP/Luc/PHB-cDNA cells (± doxycycline). Densitometry data for
each blot are given underneath. (c) Densitometry analysis of AR band density from western
blots of chromatin fractions taken from LNCaP/Luc/PHB-RNAi cells (± doxycycline) and
the scrambled control line treated with hormone for 0 – 360 minutes. Bars represent the
mean from three western blots normalised to histone H3 levels and then plotted normalized
to time = 0 for the appropriate dataset. ** = P<0.01, * = P<0.05 (t-test analysis). Left hand
side shows response to DHT, right hand side shows response to androstenedione. Data are
from a representative LNCaP/Luc/PHB-RNAi clone.
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Figure 3.
ChIP analysis of AR and PHB on the PSA regulatory region. (a) Diagramatic representation
of the PSA promoter indicating locations of ARE I, II, III and the intervening regions
(negative and up/down-stream). Labelling boxes indicate amplification regions of primer
pairs used for PCR. DNA immunoprecipitated with either IgG control, AR or PHB antibody
was amplified by PCR and the results for each region are shown underneath, compared to
their respective input DNA control. Densitometry data for each band for PHB are given
underneath. (b) ChIP analysis of AR and PHB binding to the PSA promoter of LNCaP cells
either grown in full serum, or hormone-starved with ±10nM DHT and for 2hr. Data
represents Taqman quantification of immunoprecipitated DNA, from three replicate
experiments, normalised to their input DNA controls. (c) ChIP analysis of AR binding to the
PSA promoter in LNCaP/Luc/PHB-RNAi cells after treatment with DHT for 0-2hrs (±
doxycycline). (d) ChIP analysis of PHB binding to the PSA promoter in LNCaP/Luc/PHB-
RNAi cells after treatment with DHT for 0-2hrs (± doxycycline). Data are from a
representative LNCaP/Luc/PHB-RNAi clone. ** = P<0.01, * = P<0.05 (t-test analysis).
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Figure 4.
ChIP analysis of AR and PHB on the promoter and enhancer regions of the PSA promoter.
(a) ChIP analysis of AR binding to the PSA promoter in LNCaP/Luc/PHB-RNAi cells after
treatment with DHT for 0-2hrs (± doxycycline). (b) ChIP analysis of AR binding to PSA
promoter in LNCaP/Luc/PHB-RNAi cells after treatment with androstenedione for 0-4hrs (±
doxycycline). (c) ChIP analysis of PHB binding to the PSA promoter in LNCaP/Luc/PHB-
RNAi cells after treatment with DHT for 0-2hrs (± doxycycline). Data are mean ± SD of 2
independent experiments performed in triplicate on a representative LNCaP/Luc/PHB-RNAi
clone. ** = P<0.01, * = P<0.05 (t-test analysis).
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Figure 5.
Analysis of gene expression in LNCaP cell lines with altered PHB levels. (a) Taqman RT-
PCR analysis of PSA transcript levels collected at time intervals (0 – 8hr) from starved
LNCaP/Luc/PHB-RNAi cells treated with 10nM DHT (left hand side) or 10nM
androstenedione (right hand side) with or without doxycycline. (b) Taqman RT-PCR
analysis of PSA transcript levels from starved LNCaP/Luc/PHB-cDNA treated with
increasing concentrations of DHT or androstenedione. (c) Taqman RT-PCR analysis of PSA
transcript levels from starved LNCaP/Luc/PHB-RNAi cells treated with increasing
concentrations of DHT or androstenedione (± doxycycline). (d) Luciferase activity from
LNCaP/Luc/PHB-RNAi cells treated with DHT (0-100nM) or Adione (0-100nM) with or
without doxycycline. Data are mean ± SD of 3 independent experiments performed in
triplicate on a representative LNCaP/Luc/PHB-RNAi clone.
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Figure 6.
PHB knockdown increases global histone H3 acetylation and Histone H3 K9-acetylation of
the PSA promoter. (a) Western blot analysis of chromatin fraction from a representative
clone of LNCaP/Luc/PHB-RNAi cells (± doxycycline) treated with DHT for 0 – 240
minutes. Ac = acetyl, P = Phospho. Densitometry data are given alongside, normalised to
Histone H3. (b) Western blot analysis of PHB, H3 and pan-acetyl H3 in LNCaP/Luc/PHB-
cDNA cells treated with increasing doxycycline for 24hours. Densitometry data are given
alongside, normalised to Histone H3. (c) ChIP analysis of Histone H3-Ac(K9) binding to the
PSA promoter in a representative clone of LNCaP/Luc/PHB-RNAi cells after treatment with
DHT for 0-2hrs (± doxycycline). * = P<0.05 (t-test analysis). (d) ChIP analysis of PHB and
Histone H3-Ac(K9) binding to the promoters of β-actin, TAP1 and Cyclin-D in LNCaP/Luc/
PHB-RNAi cells after treatment with DHT for 0-2hrs (± doxycycline). * = P<0.05 (t-test
analysis).
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Figure 7.
Effects of manipulating prohibitin levels within LNCaP/Luc/PHB-RNAi cells. (a) Cells
were grown in starvation medium for 72hrs, either with or without doxycycline and then
treated with 10nM DHT, Adione or DHEA. Cell growth was determined at 96hr post
treatment by SRB assay. (b) FACS analysis of LNCaP cells which were hormonally starved
for 72hr with or withour dox and then hormone treated (DHT or Adione at 10nM) for
48hours before. The results for the gated S-phase population is shown. ** = P<0.01, * =
P<0.05 (t-test analysis) (c) Relative tumour volume measurements of LNCaP/Luc/PHB-
RNAi xenografts grown in castrated nude male mice, treated with or without doxycycline
and with either vehicle, or androstenedione daily supplementation (d) Boxplots showing
relative tumour volumes of LNCaP/Luc/PHB-RNAi tumours at day 20 (n=8), treated with
either vehicle (V), or Adione (A). ** = P<0.01, * = P<0.05 (Mann Whitney analysis).
Previous data of similarly treated LNCaP xenografts grown with testosterone (T)
supplementation is given for comparison (in grey).
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Table 1

Serum androstenedione (ASD) concentrations in prostate cancer patients and mice.

Sample Serum ASD Concentration (nM)1

Human Males Normal Range 1.7 - 10

Patients on GnRH 1.7 - 4.2

Patients on GnRH and
Bicalutamide

1.6 – 5.5

Male Mice Intact Adult Mice
(normal range for nude mice
used in this study)

Intact Mice all ages2
(inclusive of pubertal phase)

0.3 – 2.0
0.5 - 20

Castrated Mice <0.03

Castrated Mice + Tes <0.03

Castrated Mice + ASD 0.3 – 2.1

1
ELISA measurement of serum androstenedione levels from human males both normal and patients undergoing treatment regimens for prostate

cancer (upper panel). ELISA measurement of serum androstenedione levels from male nude mice either intact or surgically castrated with and
without androgen supplementation (lower panel).

2
Sources: ALPCO Immunoassays (USA), USCN Life Sciences Inc (USA), Calbiotech (USA).
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