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Summary
Caveolin proteins drive formation of caveolae, specialized cell-surface microdomains that
influence cell signaling. Signaling proteins are proposed to use conserved caveolin-binding motifs
(CBMs) to associate with caveolae via the caveolin scaffolding domain (CSD). However,
structural and bioinformatic analyses argue against such direct physical interactions: In the
majority of signaling proteins, the CBM is buried and inaccessible. Putative CBMs do not form a
common structure for caveolin recognition, are not enriched amongst caveolin-binding proteins,
and are even more common in yeast, which lack caveolae. We propose that CBM/CSD-dependent
interactions are unlikely to mediate caveolar signaling, and the basis for signaling effects should
therefore be reassessed.

Introduction
The caveolin signaling hypothesis is an enduring model for understanding spatial
organization of signaling at the plasma membrane (Couet et al., 1997; Lisanti et al., 1995;
Okamoto et al., 1998). The central tenet of the model is that signaling proteins can form
direct protein-protein interactions with the scaffolding domain of caveolin (CSD) via a
signature peptide sequence, termed the caveolin binding motif (CBM) (Couet et al., 1997;
Oka et al., 1997) (Fig. 1). The characteristic CBMs were originally identified by screening
of a phage display peptide library (Couet et al., 1997), and subsequently found to be present
in many diverse proteins that could be immunopurified with caveolin. These consensus
CBMs are hydrophobic and rich in aromatic residues (ΩxΩxxxxΩor ΩxxxxΩxxΩor the
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combined sequence ΩxΩxxxxΩxxΩ, where Ω is a Phe, Tyr or Trp residue and x can be any
amino acid) (Table 1; Fig. S1). The caveolin interaction is generally suggested to have an
inhibitory role on signaling. Thus, signaling proteins associated with the cytoplasmic face of
caveolae were proposed to be held in an inactive state by the caveolin ‘brake’, prior to
release from caveolae upon activation (Okamoto et al., 1998).

Numerous signaling proteins have been proposed to interact with caveolin, including
cytoplasmic proteins (src family kinases, trimeric G protein subunits, Ras, PPARγ, β-
catenin), and single and multispan transmembrane proteins (Patched, β-adrenergic receptors
(β-ARs), adiponectin receptors) (Burgermeister et al., 2011; Couet et al., 1997; Hezel et al.,
2010; Ju et al., 1997; Karpen et al., 2001; Li et al., 1996; Michel et al., 1997; Mineo et al.,
1997; Mineo et al., 1998; Song et al., 1996; Song et al., 1997; Toya et al., 1998; Venema et
al., 1997) (Table 1; Fig. S1). The hypothesis has been extended to caveolin interactions with
non-signaling proteins, including extracellular viral proteins (Benferhat et al., 2009a;
Benferhat et al., 2009b; Benferhat et al., 2008; Hovanessian et al., 2004) and key autophagic
regulators such as LC3 (Chen et al., 2010), and has become a paradigm for spatial regulation
of signaling pathways.

Despite the elegance of the model and the wealth of literature supporting it, including
indirect experimental data showing association of specific proteins with caveolin or
inhibition by CSD mimetic peptides (eg. (Bucci et al., 2000)), some questions have been
raised (Liu et al., 2002; Pike, 2005) and a number of crucial aspects of the model have never
been systematically or rigorously addressed. For example, do the putative CBMs adopt a
common structure as would be predicted by the model? Are CBMs accessible for interaction
with caveolin and positioned in such a way with respect to the caveolin-containing
membrane that an interaction is feasible? How common are such motifs, and are they
enriched in caveolae-associated proteins? Surprisingly, a plausible molecular mechanism for
the interaction of CBMs with caveolin is yet to emerge. The wealth of genomic sequence
and tertiary structural information available on putative caveolin interacting proteins now
means that these questions can be definitively answered. As outlined below, the answers to
these questions raise major doubts about some of the founding principles on which the
caveolar signaling model is based, leading us to propose that a significant reassessment of
the caveolin signaling hypothesis may be needed.

Structures of putative caveolin binding proteins do not reveal a plausible
caveolin binding mechanism

The putative CBM is a short, hydrophobic sequence of 8–11 amino acid residues (Table 1;
Fig. S1). Two physical requirements must be met if it is to function as a bona fide caveolin
interaction motif. The first requirement is that a functional CBM must either lie in a
disordered region of the interacting protein (becoming ordered upon caveolin interaction), or
it must form a common recognition structure for caveolin binding. The second requirement
for a role of caveolin in sequestering proteins into caveolae is that the putative CBM should
be exposed in the folded protein structure and accessible to the CSD.

We analyzed the structures of more than 40 proteins for which caveolin interactions with
specific CBMs have been described (Table 1; Fig. S2). Some specific examples are shown
in greater detail in Fig. 2 and Movie S1. This clearly reveals that no single common
structural motif is adopted by the putative caveolin-interacting sequences. The CBM adopts
a variety of different structures within the putative caveolin binding proteins including
extended structures, α-helices, β-strands and β-turns, and no consistent conformation for
this peptide is observed. Even within individual protein families, including tyrosine kinases,
GPCRs and protein tyrosine phosphatases, the motif adopts diverse structural orientations.
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For example in the EGFR and protein kinase C (PKC) kinase domains the putative CBMs
are found in distinct sub-structures, forming either a central α-helix within the C-terminal
lobe or a peripheral β-strand on the edge of the N-terminal lobe respectively (Fig. 2). The
other major observation is that these motifs are invariably found within structured regions of
the proteins, often forming essential secondary structure elements. This is in distinct
contrast, for example, with the recognition of multiple sorting signals and sequence motifs
during formation of the analogous clathrin coated vesicle (CCV) assembly (Owen et al.,
2004; Traub, 2009). In CCVs peptide interaction motifs are always found in structurally
disordered domains, and only adopt an ordered conformation upon interaction with folded
domains within their partner molecule(s).

The second crucial requirement of the model, the accessibility of the CBM to interacting
proteins, is also illuminated by examination of the 3D structures. As discussed above, no
common structural motif is observed for the numerous putative CBM sequences. Even more
tellingly, in the large majority of cases these sequences are completely inaccessible for
interaction with caveolin. Fig. 2 shows several different examples, where the CBM is not
only inaccessible, but forms an essential part of the protein tertiary structure. Table 1
examines the solvent accessibility of putative CBMs based on the known crystal structures.
The CBM sequence is hydrophobic and rich in aromatic side chains, and we find that in all
cases the aromatic side-chains are packed within the hydrophobic core of the putative
caveolin binding proteins. Focusing on just one of these, endothelial nitric oxide synthase
(eNOS), for which there are numerous reports of caveolin scaffolding domain interactions
(Bernatchez et al., 2011; Bucci et al., 2000; Feron et al., 1998; Garcia-Cardena et al., 1997;
Hatakeyama et al., 2006; Levin et al., 2007; Zhu et al., 2004), the motif forms a key β-strand
element within the hydrophobic interior of the protein. The aromatic side-chains are tightly
packed in the protein core, and even more strikingly, directly contact the critical heme group
within the protein’s active site (Fig. 2). It is extremely unlikely that this sequence could bind
to caveolin without dramatic and detrimental conformational changes occurring. Similar
observations can be made for the majority of other proteins for which structural data is
available.

Could conformational changes facilitate caveolin binding?
One possibility we considered was that the CBMs could become accessible upon
conformational changes in the target proteins. This also appears unlikely in view of the
critical structural roles of the majority of these peptides. Invoking the hypothesis that a
conformational change could lead to binding may be a reasonable explanation perhaps for a
single or small number of binding events (although notably there is currently no data to
support such a model). However, given the large range of different proteins from diverse
structural and functional classes we have examined here, conformational change in the
signaling molecules appears highly implausible as a universal explanation. Could the
proteins interact with caveolin after synthesis, but before adopting a fully folded structure?
We cannot rule out this possibility, but it would almost certainly give rise to a non-
functional stable association with caveolin that would not be subject to the dynamic
regulation required during cell signaling.

Caveolin binding motifs are not enriched in caveolae-associated proteins
This analysis raises the question of why so many proteins, particularly signaling proteins,
which have been proposed to interact with caveolin possess CBMs? In fact, a systematic
bioinformatics analysis of full-length coding sequences from the entire mouse genome
(Carninci et al., 2005) reveals that this motif is actually present in 30% of all proteins,
irrespective of localization or function (Table 2). The motif is not enriched (and is in fact
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less abundant) in cytoplasmic proteins and the cytoplasmic regions of transmembrane
proteins that might conceivably bind caveolin at the inner leaflet of the plasma membrane.
Perhaps most tellingly, the motifs show even greater prevalence in the genome of
Saccharomyces cerevisae, which lacks caveolins altogether. Thus it is clear that CBM
sequences are not enriched in caveolae-associated molecules, and their widespread
abundance likely reflects a common requirement for hydrophobic aromatic side-chains in
protein hydrophobic cores or transmembrane segments for structural stability and function.

In summary, it is clear from the available structural and genomic data that the proposed
ΩxΩxxxxΩxxΩ CBM sequences are unlikely to represent a conserved peptide motif for
direct recognition of the caveolin scaffolding domain. Another factor to consider when
assessing the viability of the proposed caveolin interaction is the position of the putative
CBM in the protein with respect to the membrane in which caveolin is embedded. An
analogous example is the recognition of tyrosine-containing motifs by clathrin adaptors,
which must be further than 7 amino acids from the membrane interface to engage with
cytoplasmic proteins (Rohrer et al., 1996). This immediately raises an additional point
regarding interactions with caveolin; as the maximum distance of the central-most portion of
the CSD from the membrane – assuming a completely and unrealistically extended structure
– is only 30 Å, corresponding to 10 amino acids (Fig. 1). This will impose severe steric
constraints on any interactions with putative binding partners, which have been reported to
be cytoplasmic proteins, cytoplasmic domains of transmembrane proteins, or even
extracellular membrane penetrating polypeptides (eg. gp41, (Hovanessian et al., 2004)).

Implications for the caveolin signaling model
Mutations in caveolins or caveolin deficiency can clearly influence many signaling
pathways as shown both in vitro and in vivo, and there is no doubting the role of caveolins
in numerous cellular functions. The signaling proteins listed in Table 1 as well as many
other molecules can be immunopurified in caveolin-enriched membrane fractions. However,
experiments in which signaling proteins associate with caveolin as judged by
immunoprecipitation must be viewed with caution given the poor solubility of caveolin-
enriched domains (as discussed by (Parton and Simons, 2007)), and do not necessarily
indicate a direct protein-protein interaction. A number of studies have assessed the effect of
either deleting or mutating the CBM on caveolin association and in signaling assays (see
Table 1), and have generally shown a disruption in caveolin interaction and function.
However, the loss of an apparent interaction through mutation of the proposed CBM will be
highly misleading if protein folding, trafficking, or microdomain localization are disrupted,
as seems highly likely given the critical structural roles of the majority of CBM sequences.
Very few reports have addressed the localization or expression of mutant signaling proteins.
The mutant zebrafish β-catenin protein was found to at least localize to the nucleus similarly
to the wild-type molecule (Mo et al., 2010), and the mutant Maxi-K potassium channel α
subunit (Slo1) showed similar sedimentation and oligomeric properties to the WT protein in
sucrose gradients (Alioua et al., 2008). In contrast the mutant EphB1 receptor tyrosine
kinase was expressed at lower levels than the WT protein and was not localized to the
plasma membrane (Vihanto et al., 2006). Structural integrity and correct protein folding has
not been tested for any of the mutant proteins to the best of our knowledge, and should
certainly be a priority in future studies.

The inhibition of signaling processes by cell permeable peptides corresponding to the
caveolin scaffolding domain (CSD; amino acids 82–101 in caveolin-1) represent an
additional line of evidence supporting the original caveolin scaffolding hypothesis. These
studies have demonstrated a striking effect of this peptide on key signaling pathways
involving proteins such as eNOS, phospholipase D (PLD), and Rac1 both in cultured cells
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and in tissues (Bernatchez et al., 2005; Czarny et al., 1999; Gratton et al., 2003; Kim et al.,
1999; Nethe et al., 2010). In animal models administration of the caveolin-derived peptide
reduced the permeability of the tumor vasculature and delayed tumor progression, an effect
that was reduced in mice lacking the putative target, eNOS (Gratton et al., 2003).
Conversely, a non-inhibitory version of this peptide with a single amino acid change
increases basal NO release, an effect lost in tissues lacking eNOS or Caveolin-1 (Bernatchez
et al., 2011). However, only a limited number of studies have attempted to directly test
binding of the CSD peptide to signaling proteins, and in these cases binding was not
investigated in the context of an interaction with putative CBMs (Kim et al., 1999; Nethe et
al., 2010). The analyses presented here should prompt reinvestigation of the mechanisms
involved in inhibition of signaling by these peptides and, more generally, the effect of loss
of caveolin and/or caveolae on specific signaling pathways. Our findings certainly do not
preclude the regulation of signaling pathways by caveolins through other mechanisms.
These may include interactions mediated by other regions of caveolin (such as the
interaction with phosphorylated caveolin-1 on tyrosine 14, (Chen et al., 2012; Place et al.,
2011)), or by completely independent mechanisms including effects on lipid-based
organization of the plasma membrane (Gaus et al., 2006; Hoffmann et al., 2010) or
endocytosis (Cheng et al., 2010; Kirkham et al., 2005). These effects are also abrogated by
mutations in the caveolin scaffolding domain (Cheng et al., 2010; Hoffmann et al., 2010).

Taken together, the findings presented here argue against a role for caveolin binding motifs
in driving direct protein recruitment to caveolae. The putative CBM sequence is not
enriched in proteins associated with caveolae, the motif does not adopt a common binding
structure and is not exposed for caveolin binding. In most cases the CBM is part of a critical
structural element, the perturbation of which is likely to lead to protein misfolding. We
suggest that these considerations must be taken into account in future studies of caveolin
interactions. In addition, previous work implicating caveolin as a scaffold for direct protein
recruitment may need to be reassessed to reveal the actual mechanisms by which caveolins
modulate specific signaling pathways.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The caveolin signalling hypothesis. (A) Schematic of the caveolin signalling hypothesis as
originally proposed (Okamoto et al., 1998), with some key interacting partners highlighted.
The sequence of the caveolin-1 scaffolding domain (CSD) and the consensus caveolin-
binding motif (CBM) are shown. (B) and (C); Two models for caveolin association with the
membrane bilayer. In model (B) the CSD is exposed and shown in an extended
conformation allowing interactions with signaling proteins. However, note that the middle of
the CSD is still very close to the membrane, even assuming a completely extended
polypeptide conformation perpendicular to the bilayer. Model (C), in which the CSD forms
part of an amphipathic cholesterol-binding in-plane helix, is an alternative model supported
by a number of studies (Kirkham et al., 2008).
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Figure 2.
Structural comparison of several examples of putative caveolin-interacting proteins. An
enhanced animation of the eNOS structure is provided in Movie S1. Left panels show
proteins in ribbon representation, with the CBM indicated in red. Key aromatic residues of
the putative CBMs are highlighted in surface representation. In each case the key aromatic
residues are tightly packed within the protein hydrophobic core. Middle panels show the
same views in surface representation, with CBMs indicated in red. The right hand panel
shows a close up view of the CBM and the surrounding environment. Key aromatic residues
of the CBMs are shown in red stick representation, and side-chains forming direct intra-
molecular contacts with these aromatic CBM residues indicated in grey stick representation.
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For eNOS, the core heme group is shown in yellow stick representation. All known
structures of putative caveolin-interacting proteins are shown in Fig. S2, with references in
Table 1. All structure images were prepared using CCP4mg (McNicholas et al., 2011).
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Table 2

Bioinformatic analysis of the abundance of consensus CBMs in mouse and yeast proteinsa

Number of
proteins

Number
containing CBM

Overall
percentage
(%)

Mouse

Full length proteinsb 33451 10076 30

Cytoplasmic sequencesc

      Soluble 22265 5936 27

      Type I transmembrane 1548 201 13

      Type II transmembrane 2869 335 12

      Multi-pass transmembrane 3821 739 19

      Total 30503 7211 24

Non-cytoplasmic sequencesc

      Soluble 2948 996 34

      Type I transmembrane 1548 488 32

      Type II transmembrane 2869 608 21

      Multi-pass transmembrane 3821 773 20

      Total 11186 2865 26

Yeast

All proteins 6736 2883 43

a
Sequences derived from CYGD database http://mips.helmholtz-muenchen.de/genre/proj/yeast/ were scanned for the presence of any of the two

putative CBM sequences; ΩxΩxxxxΩ and ΩxxxxΩxxΩ or the combined consensus sequence ΩxΩxxxxΩxxΩ (Couet et al., 1997), where Ω is either
Phe, Trp or Tyr.

b
The full set of 51135 coding sequences was reviewed, and those with annotated truncations at the N-terminus were discarded: topology with

respect to the membrane cannot be accurately determined in this set.

c
Topology with respect to the membrane was calculated based on the presence in sequences of signal peptides and integral membrane domains

using a previously published annotation pipeline (Davis et al., 2006).
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