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The stroma in human carcinomas consists of extracellular
matrix and various types of non-carcinoma cells, mainly
leukocytes, endothelial cells, fibroblasts, myofibroblasts and
bone marrow-derived progenitors. The tumor-associated
stroma actively supports tumor growth by stimulating neo-
angiogenesis, as well as proliferation and invasion of apposed
carcinoma cells. It has long been accepted that alterations
within carcinoma cells mediate metastasis in a cell-autonomous
fashion. Recent studies have, however, suggested an additional
notion that cancer cells instigate local and systemic changes in
the tumor microenvironment and contribute to niche formation
for metastasis. Research, aiming to establish the roles of the
tumor-associated stroma in facilitating the spread of carcinoma
cells into distant organs, has provided an abundance of data
and greater knowledge of the biology of metastatic carcinoma
cells and associated stromal cells. This has stimulated further
advances in the development of novel therapeutic approaches
targeting tumor metastasis.

Introduction

Metastasis is a life-threatening disease that accounts for as much
as 90% of cancer-related mortality.1-3 Carcinoma cells have often
spread to distant organs at the time (or even before) patients
present with cancer. Routine clinical examinations have produced
significant progress in detecting metastasis but existing methods
for screening cancer patients are incapable of detecting micro-
metastasis and disseminated tumor cells (DTCs) in distant organs.
Adjuvant chemotherapy and adjuvant radiotherapy are anticipated
to prevent relapse and death. However, over periods of time
ranging from years to decades, these metastatic cells residing in
distant organs often relapse, corrupt the local microenvironment
and acquire the ability to develop into macro-metastases.
Metastatic nodules are known to be formed by carcinoma cells
harboring increased numbers of epi/genetic alterations conferring
aggressive and drug-resistant propensities.

The invasion-metastatic cascade consists of a series of distinct
cellular events including (1) local invasion of cancer cells into

surrounding tissue, (2) their entrance into the (micro)vasculature
(intravasation), (3) survival and exit of circulating tumor cells
(CTCs) from the bloodstream (extravasation), and (4) formation
of micro and/or macroscopic metastases in distant organs (coloni-
zation).4,5 The ability of distinct carcinoma cells to metastasize
into distant organs depends on their cellular origins and the epi/
genetic alterations acquired and accumulated by these cells during
the course of tumor progression.

In addition, more recently emerging evidence supports the
notion that the tumor-associated stroma, consisting of endothelial
cells, leukocytes, macrophages, myofibroblasts, bone marrow-
derived progenitors and abundant extracellular matrix (ECM),
significantly facilitates tumor metastasis.4-7 The molecular signal-
ing underlying the complexity of heterogeneous stromal-tumor
interactions that is relevant to tumor metastasis is the subject of
intensive research. This review aims to highlight the role(s) of the
tumor-associated stroma, in addition to tumor cell-autonomous
alterations, at instigating and supporting progression of the multi-
step processes of tumor metastasis.

Tumor Cell-Autonomous Alterations
Influencing Metastasis

Evolution of metastasis. Genetic alterations harbored by
carcinoma cells have long been considered to play major roles
in promoting the invasion-metastasis cascade. Recent studies
using whole genome sequencing and copy number analyses
examined genetic alterations in detail in carcinomas, including
those of the colon, pancreas, breast and prostate.8-13 For these
studies, matched pairs of primary tumors and metastases were
employed. Considerable sharing of somatic mutations identified
in metastases with those found in the corresponding primary
tumors was revealed. It was therefore concluded that metastases
had originated from clonal evolution of small populations of
primary carcinoma cells harboring additional alterations late in
the genetic evolution of carcinomas. This conclusion supporting a
linear progression model of carcinoma metastasis contradicts a
parallel progression model. The latter proposes that carcinoma
cells, which disseminate to distant organs early during tumor
progression, may acquire genetic alterations independently of
those present in primary tumor cells.14 This discrepancy may
account for post-mortem samples derived from patients in the
terminal stages of disease in most of the above studies. In such
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cases, the primary carcinoma cells that had accumulated numer-
ous genetic alterations were likely to have spread into distant
organs. In contrast, early metastases which account for small
primary cancers at the time of their diagnosis (e.g., TNM classifi-
cation; T1M1 and T2M1)15 are assumed to stem from carcinoma
cells that were relatively less genetically altered. Metastatic cells
disseminated from early-stage tumors may evolve independently
within the local microenvironment of distant organs and therefore
harbor alterations different from those present in primary tumors.
Further analyses of samples derived from T1M1 and T2M1
cancer patients may help us to understand differences among the
existing models of metastatic tumor evolution.

Experiments using mouse models of human tumors suggest
that paracrine signaling instigated by the tumor-associated stroma
provides carcinoma cells with pro-invasive and metastatic pro-
pensities during both early and late stages of tumorigenesis.16-18

However, detailed characterization of the contribution of the
tumor-associated stroma to linear and parallel tumor progression
models of metastasis remains to be addressed experimentally in
future studies.

Cancer stem cells (CSCs) and epithelial mesenchymal transi-
tion (EMT). The cells of origin for metastasis are also known
to have major effects on the invasion-metastasis cascade. The
concept of cancer stem cells (CSCs), whereby rare populations
of carcinoma cells are capable of forming a tumor, derives from
the well-established characteristics of normal tissue stem cells,
including their self-renewal and multi-potency.19 Induction of
the CSC state was repeatedly observed in various normal and
carcinoma cells which underwent epithelial mesenchymal trans-
ition (EMT).20-22 The latter is a well-characterized process of
cellular trans-differentiation through which epithelial cells acquire
the mesenchymal phenotype.23-25 This trans-differentiation
program is also reversible as judged by the cells undergoing
mesenchymal-epithelial transition (MET). Of note, the bidrec-
tional nature of the CSC phenotype (transition between CSC-
and non-CSC-states) was often observed as associated with the
reversible EMT trait and this encouraged revision of the definition
of CSCs.26-28 In addition to pro-invasive and anoikis-resistant
propensities in cells undergoing EMT, tumor-initiating ability
was therefore highlighted as one of the EMT-associated pheno-
types and as being important for the establishment of cancer
metastasis.28 The link between EMT and CSCs has been further
supported by a recent study employing a transgenic mouse
model of pancreatic intraepithelial neoplasia (PanIN) and a cell
lineage-specific labeling approach.29 Introduction of mutations in
the genes encoding K-ras and p53 proteins along with a yellow
fluorescent protein (YFP) marker specifically in pancreatic cells
of the Pdx1-Cre transgenic mouse strain, allowed tracking of
pancreatic epithelial cells during progression of PanIN toward
pancreatic ductal adenocarcinomas (PDACs). Indeed, cells with
the EMT phenotype emerged among YFP-positive (YFP+)
carcinoma cells, as demonstrated by their decreased expression
of E-cadherin, an epithelial marker, and increased expression of
ZEB-1 and fibroblast-specific protein-1 (FSP-1), both of which
are mesenchymal markers. To determine whether the carcinoma
cells undergoing EMT also display the CSC phenotype, PanINs

were dissociated into a single cell suspension and sorted for E-cad-
negative YFP+ cells using flow cytometry. These cancer cells,
when implanted orthotopically into recipient mice, showed a
substantial increase in their tumor-initiating ability relative to
the control cancer cells expressing the cell-surface E-cadherin.
In contrast, cells extracted from PDACs were of similar size in
primary tumors and liver metastases regardless of E-cadherin
status. In this experimental setting, the EMT phenotype was
associated with the CSC trait in PanINs but not in PDACs. This
finding leads to speculation that induction of the CSC phenotype
by EMT relies on a cell context-dependent process; in other
words, the CSC trait in PDACs may be independent of EMT, but
instigated by epi/genetic alterations harbored and accumulated
during tumor progression.

Circulating tumor cells (CTCs) and metastasis. CTCs found
in the bloodstream, and DTCs that have already spread and
localized in distant organs, are believed to be precursors of
metastatic nodules.30-32 Importantly, increased CTC numbers and
the presence of DTCs in bone marrow predict a poor outcome
in breast cancer patients, indicating that these cells can serve as
an independent prognostic factor for this disease.33,34 Notably,
particular genetic alterations harbored in CTCs, which are
responsible for drug-resistance, such as those of the epidermal
growth factor receptor (EGFR) gene, have been detected in non-
small-cell lung cancer patients.35 This may serve as a new
approach for monitoring the genetic changes which develop de
novo in carcinoma cells during application of systemic therapy.

A newly emerging hypothesis suggests that CTCs that are
capable of giving rise to distant metastases are enriched for CSCs,
and as such show increased invasiveness, anoikis-resistance,
tumor-initiating potential and the ability to avoid cellular
dormancy during metastatic colonization.28,31,36,37 Indeed, it has
been demonstrated that several CSC-enriched cancer cell popula-
tions show increased ability to form metastases when implanted
intravenously into recipient mice.38-40 It is however unknown
whether the emergence of spontaneous metastases observed in
cancer patients is mediated by CTCs enriched for CSCs. Techni-
cal challenges of existing methods for handling and culturing
CTCs make proving this assumption experimentally difficult.
Low numbers of CTCs present in circulating blood, their short
half-life and a paucity of functional markers available for their
identification, render isolating CTCs very challenging. Interest-
ingly, it has been shown that distinct populations of CTCs can
be found in blood samples of cancer patients, including those
circulating as single cells which show a mesenchymal or ameboid-
like appearance and those found in the circulation in the form
of epithelial sheets, indicative of collective movement of a group
of epithelial cells.41,42 Moreover, CTCs appear to contain
clusters of heterogeneous cell populations composed of platelets,
leukocytes and mesenchymal cells.43-45

The half-life of CTCs in the circulation is short, i.e., measured
in hours, which is partially related to their fast clearance from the
circulation and/or apoptosis.46 To date, whether CTCs and DTCs
extracted from either patients or mouse tumor models are capable
of forming metastases when introduced into recipient mice has
not been shown. These cells may require niche support to exert
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their potential to initiate and develop metastasis. Cells of primary
tumors are known to be capable of inducing both local and
systemic changes in the microenvironment that prime and
facilitate their metastatic spread and promote colonization of
distant organs.47,48 A variety of soluble factors secreted by tumor
cells and supporting stromal cells contribute to increased vascular
permeability and penetration of blood vessels by cancer cells,
immune evasion, and vascular adhesion which allow cancer cells
to intravasate, survive in the circulation and extravasate into sites
of metastatic nodule formation.47,49,50 Support provided by a local,
organ-specific metastatic niche is also thought to play a critical
role in the abilities of DTCs to initiate and develop meta-
stasis.38,47,51 Further improvements in the techniques allowing
detailed characterization of CTCs with regard to their epi/genetic
status and gene expression profiles is needed to advance our
knowledge of the metastasis-forming ability and CSC phenotype
of CTCs in future studies.

It has already been well documented in various studies that
carcinoma cells and the surrounding stromal cells co-evolve with
each other during the course of tumor progression.18,52,53

Signaling molecules produced by the tumor-promoting stroma,
initially triggered by carcinoma cells, presumably cross-talk with
cell-autonomous alterations in carcinoma cells, thereby further
influencing metastasis. The roles of tumor-associated stroma and
signaling pathways mediating stromal-tumor interactions in
processes involved in tumor metastasis will be highlighted in
the following section.

Metastasis-Promoting Signal
from the Tumor-Associated Stroma

Immune cells. Various types of non-neoplastic stromal cells are
frequently present within human primary carcinomas, including
heterogeneous populations of immune cells, endothelial cells,
fibroblasts, myofibroblasts and bone marrow-derived pro-
genitors.54-57 Immune cells are represented by those of innate
immunity, including macrophages, neutrophils, mast cells,
myeloid-derived suppressor cells, dendritic cells and natural killer
(NK) cells, and cells of adaptive immunity, such as T and B
lymphocytes. The immune cells which infiltrate the tumor
(excluding NK cells) produce tumor-promoting cytokines includ-
ing tumor necrosis factor-a (TNF-a), IL-1β, IL-6 and IL-8,
which increase NFkB and STAT3 signaling in nearby premalig-
nant cells.49 This signaling not only stimulates tumorigenic
progression, but also induces cytokine production by the
carcinoma cells themselves. The newly established positive
feedback loop allows further activation of immune cells and
maintenance of their effects on cancer progression.

Tumor-associated macrophages (TAMs), which are mature
myeloid cells, can be found within the tumor microenviron-
ment in high numbers. TAMs, when educated by microenviron-
mental cues within the primary tumor, adopt the M2/trophic
phenotype.58 M2 type TAMs produce paracrine factors promot-
ing neo-angiogenesis, immunosuppression and local inflamma-
tion, all of which facilitate the invasion-metastasis cascade.59,60

For example, IL-4 and colony-stimulating factor-1 (CSF-1)

cytokines produced by carcinoma cells and/or T-lymphocytes
stimulate recruitment and activation of TAMs, which promote
cancer cell invasion by producing epidermal growth factor (EGF)
and cathepsin B and S proteinases (Fig. 1).61-63 TAMs also play
essential roles in promoting colonization of DTCs in distant
organs. Prior to their extravasation, carcinoma cells which enter
the circulation need to overcome anchorage-independent growth
conditions, i.e., survive sheer forces and resist anoikis. The
subsequent colonization is thought to be a rate-limiting step of
metastasis, as it has been estimated that less than 0.01% of CTCs
which survive in the circulation, extravasate and give rise to
micrometastases.6 It has been shown that TAMs, which were
activated by the cancer cell-produced ECM proteoglycan versican
and vascular cell adhesion molecule-1 (VCAM-1) via Toll-like
receptor 2 (TLR2) and counterpart-receptor a4-integrins, res-
pectively, stimulate pulmonary metastatic colonization through
elevation of TNF-a and PI3K/Akt signaling in carcinoma cells
(Fig. 2A).64,65

Immature myeloid cells, such as Gr-1+CD11b+myeloid-
derived suppressor cells and CD34+Gr-1-bone-marrow-derived
cells, infiltrate the invasive front of the tumor. These cells
promote local micro-invasions of carcinoma cells mediated by
CXCL5-CXCR2 and CCL9-CCR1 paracrine signaling
(Fig. 1).66,67 CXCL5 and CCL9 chemokines secreted by
carcinoma cells recruit myeloid cells upon activation of their
receptors, CXCR2 and CCR1, respectively, which are expressed
on these cells. The infiltrating myeloid cells, in turn, produce
several metalloproteinases (MMPs) which promote ECM degrad-
ation, thereby allowing carcinoma cell invasion. In addition, it
has been shown that CD34+Gr-1-bone marrow-derived myeloid
cells, which were recruited into the liver, stimulated MMP-
dependent colonization of this tissue by colon cancer cells
(Fig. 2C).68 Tumor-infiltrating regulatory T cells (T-reg) are
immunosuppressive lymphocytes that produce the cytokine
RANKL (receptor activator of NFkB ligand), a ligand for the
RANK receptor. Acting through RANK expressed on breast
cancer cells, RANKL activates IKKa, which is essential for NFkB
activation and induction of the anti-apoptotic effects of cancer
cells and their efficient extravasation.69 Activation of RANK
signaling also promotes EMT and CSC phenotypes in BRCA-1-
deficient human mammary carcinoma cells that can promote
tumorigenesis and metastasis.70

Mesenchymal cells. The presence of large numbers of stromal
cells, and the high density and stiffness of ECM are characteristic
features of the tumor stroma, which is often referred to as a
“desmoplastic” stroma.55,71,72 Fibroblasts and myofibroblasts,
collectively designated carcinoma-associated fibroblasts (CAFs),
have been shown to substantially contribute to the development
of desmoplastic stroma. Myofibroblasts are a-smooth muscle actin
(a-SMA)-positive fibroblasts which are a hallmark of activated
fibroblasts.56,71,73 Various cell types are thought to be a source for
the emergence of tumor-promoting myofibroblasts. Among these
there are resident normal fibroblasts, endothelial cells, pericytes,
smooth muscle cells, preadipocytes and bone marrow-derived
progenitors, such as fibrocytes and mesenchymal stem cells
(MSCs).56,74 Our own work demonstrated that resident mammary
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Figure 1. The roles of tumor-associated stroma in the induction of local invasion, intravasation, survival and extravasation of carcinoma cells. Breast
cancer cells secrete colony-stimulating factor-1 (CSF-1), a hematopoietic growth factor recruiting tumor-associated macrophages (TAMs) into the primary
tumor.61 Infiltrating perivascular TAMs secrete epidermal growth factor (EGF) which chemotactically attracts cancer cells toward the vasculature and
thereby facilitates their intravasation.61 In addition, IL4 produced by breast cancer cells and CD4+ T lymphocytes boosts expression of EGF and cathepsin
(Cts) B and S proteases by TAMs and further promotes TAM-instigated cancer cell invasion.62,63 In addition to the aforementioned factors TAM-derived
CCL18 has also been shown to promote invasion of breast carcinoma cells via signaling through its cognate receptor, PITPNM3,98 whereas TAM-secreted
protein acidic and rich in cysteine (SPARC) induces cancer cell migration by acting through avb5 integrin.99 CCR1+CD34+ immature myeloid cells respond
to CCL9 chemokine secreted from colorectal carcinoma cells, and infiltrate the invasive front of the tumor epithelium, where they produce
metalloproteinases (MMPs) 2 and 9.67 CXCL5, another chemokine produced by breast cancer cells, attracts a different population of immunosuppressive
myeloid cells (Gr-1+CD11b+) toward the invasive front of tumor tissues where they produce MMP2, 13 and 14 facilitating invasion and metastasis of
cancer cells.66 Similarly, CCL5 chemokine secreted by mesenchymal stem cells (MSCs) enhances invasion and metastasis of breast carcinoma cells by
activating the CCR5 receptors on these cells.16 Caveolin-1 (Cav1) expressed on carcinoma-associated fibroblasts (CAFs) facilitates tumor invasion through
the force-dependent architectural regulation of extracellular matrix (ECM), including its stiffening.85 The primary tumor microenvironment is a source of
abundant TGF-b which induces transient activation of TGF-b signaling in breast carcinoma cells promoting their motility and intravasation.88 In addition,
stromal-derived TGF-b stimulates expression of angiopoietin-like 4 (ANGPTL4) by breast cancer cells; ANGPTL4 primes cancer cells to dissociate cell-cell
junctions between vascular endothelial cells and thereby increases the levels of their extravasation.100 Notch ligands, DLL4 and/or Jagged1 (Jag1),
expressed by tumor-associated endothelial cells (EC), macrophages and fibroblasts have been shown to mediate Notch signaling-dependent invasion
of colon cancer cells.101 Activation of NFkB signaling in CAFs mediated by IL-1b secreted from infiltrating immune cells results in the production of
pro-inflammatory chemokines (e.g., CXCL1 and CXCL2) which chemotactically recruit TAMs in the primary tumor,75 whereas CCL5 secreted by CAFs
signals via the CCR1 receptor expressed on regulatory T cells (T-reg).69 The recruited T-reg can express RANKL, a ligand for the RANK receptor on the
surfaces of breast cancer cells.69 Signaling mediated upon activation of RANK resulting in IKKa and thus NFkB activation allows cancer cells to evade
apoptosis and facilitates their extravasation. Platelet-derived TGF-b induces the TGF-b-Smad2/3 signaling in cancer cells, whereas direct physical contact
between platelets and tumor cells results in activation of the NFkB pathway.90 Activation of both forms of signaling leads to induction of the EMT
phenotype in CTCs that increases their extravasation.90 hCLCA2, a Ca2+-sensitive chloride channel protein which is expressed by ECs, is implicated in
directing b4-integrin-dependent adhesion between these cells and breast carcinoma cells, allowing the latter to undergo extravasation effectively.102

Vascular endothelial growth factor (VEGF) secreted by tumor cells also aids tumor cell extravasation via induction of Src signaling in ECs and the
resulting disruption of the integrity of the EC barrier/layer.103
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fibroblasts evolve into CAF myofibroblasts via establishment of
both TGF-β-Smad2/3 and CXCL12 (also called stromal cell-
derived factor-1: SDF-1)-CXCR4 autocrine signaling pathways
during tumor progression.52 Once acquired, this autocrine
signaling allows these cells to stably maintain their myofibroblastic
state and the associated tumor-promoting propensity, even in the
absence of ongoing interaction with carcinoma cells. Another
study also indicated that IL-1β secreted by immune cells activates
NFkB signaling in locally resident stromal fibroblasts allowing
their evolution into CAFs.75 Other signaling pathways includ-
ing those of the phosphatase and tensin homolog (PTEN) and
the Hedgehog (Hh) are also known to modulate activated,

tumor-promoting phenotypes of CAFs.76-78 PTEN signaling in
stromal fibroblasts suppresses myofibroblast differentiation in
culture. Inhibition of such signaling in the tumor-associated
stroma within a transgenic mouse model did, in fact, accelerate
the initiation and progression of ErbB2-driven breast epithelial
cancers.78 The observed tumor-promoting effect was presumably
attributable to the increased desmoplastic stromal reaction,
accompanied by numerous infiltrating macrophages, promoting
the resulting tumor growth.78 It has also been shown that Hh
ligands, released from carcinoma epithelial cells, induce the
presumed Smo signaling into surrounding stroma in a paracrine
fashion.79 In a colon tumor xenograft model, inhibition of Smo

Figure 2. The role of tumor-associated stroma priming for infiltration and colonization by CTCs. (A) Contribution of tumor-associated stromal cells to
development of pulmonary metastasis. The formation of a pre-metastatic niche, facilitating homing and colonization of CTCs specifically in the lung has
been shown to be aided by signaling molecules secreted by cells from primary tumors [e.g., vascular endothelial growth factor A (VEGF-A)].47 It is
believed that VEGFR1+ bone marrow-derived cells (BMDCs), endothelial cells, CAFs and platelets, expressed by the ECM, and signaling molecules,
such as fibronectin (FN),104 CXCL12,104 MMP9,104 S100A,105 serum amyloid A (SAA) 3,106 lysyl oxidase (LOX)107 and angiopoietin 2 (Angpt2),108 are all
involved in mediating the formation of a pre-metastatic niche. To further promote metastatic colonization, monocytes, TAMs and CAFs, regulated by
cancer cells, continue to contribute to forming a specific metastatic niche. It has been shown that breast cancer cells forming pulmonary metastases
secrete the CCL2 chemokine109 which mediates infiltration of lung tissue by CCR2 receptor-expressing monocytes. These cells, in turn, produce VEGF-A
which stimulates extravasation and seeding of the lung by additional cancer cells. Pulmonary metastatic breast cancer cells secrete the ECM
proteoglycan versican which allows recruitment and activation of TAMs via Toll-like receptor 2 (TLR2).64 Activated TAMs in turn produce TNF-a which
stimulates pulmonary metastatic colonization by breast cancer cells. In addition, interaction of breast cancer cells expressing vascular cell adhesion
molecule-1 (VCAM-1) with the a4-integrin receptor expressed by myeloid cells activates PI3K/Akt signaling in tumor cells and increases their survival.65

ECM proteins produced by CAFs, such as tenascin-C (TNC)91,92 and periostin (POSTN),38 are also implicated in metastatic niche formation in the lung and
promotion of pulmonary colonization by breast cancer cells. Not only CAFs, but also S100A4+ fibroblasts, a cell population within CAFs, secrete VEGF-A
which induces angiogenesis and thereby promotes metastatic spread and colonization by breast cancer cells.91 (B) The role of tumor-associated stroma
in facilitating bone metastasis. Interaction between VCAM-1 expressed on breast carcinoma cells and a4-integrins expressed by osteoclast progenitors
elevates local osteoclast activity, thereby aiding conversion of indolent micrometastasis to macrometastasis.110 Bone marrow mesenchymal cells promote
survival of breast cancer cells via secretion of the CXCL12/SDF-1 chemokine and CXCL12-dependent activation of c-Src signaling.111 TGF-b released from
its reservoir during ECM degradation accompanying bone destruction, induces Jag1 expression on breast carcinoma cells.112 Jag1-activated Notch
signaling promotes carcinoma cell proliferation, but also activates osteoclast differentiation allowing further destruction of bone.112 RANKL produced by
the bone microenvironment activates RANK receptors expressed on osteoclast progenitors and osteoclasts, leading to bone destruction and metastatic
cancer cell colonization.93 (C) Involvement of tumor-associated stroma in liver metastasis. Colon cancer cells secrete CCL9 and CCL15 which recruit bone
marrow-derived CCR1+CD34+ myeloid cells into the liver.68 These myeloid cells in turn produce MMP2 and 9 which both facilitate liver colonization by
metastatic colon cancer cells.68
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protein activity on tumor-associated stromal cells using a small
molecular antagonist of the Hh pathway clearly attenuated
primary tumor growth.79 Interestingly, another study also showed
that systemic administration of a Smo inhibitor into a murine
model of pancreatic cancer, which harbored mutant K-ras and
p53 alleles, enhanced the efficiency of intratumoral delivery of the
chemotherapeutic agent presumably due to altered composition
of the desmoplastic stroma and attenuated stromal myofibroblast
proliferation.77 Collectively, these studies demonstrated impor-
tant roles of activation of the Hh-Smo pathway in the tumor-
associated stroma that can increase primary tumor growth and
suppress drug delivery.

CAFs interact with cancer cells and collaborate with other
components of the stroma through their production and secretion
of various growth factors, cytokines and chemokines. These
signaling molecules effectively mediate neo-angiogenesis, as well as
proliferation, survival, motility and invasion of cancer cells.56,80,81

For example, CAFs activated by infiltrating immune cells produce
proinflammatory chemokines (e.g., CXCL1 and CXCL2) which
mediate recruitment of TAMs into primary tumors,75 whereas the
CCL5 chemokine secreted by CAFs recruits T-reg by signaling
through the CCR1 receptor expressed on these cells.69 CCL5
secreted from mesenchymal stem cells (MSCs) (among CAFs’
precursors), also acts through the CCR5 receptor (another
receptor against CCL5 besides CCR1) expressed on breast
carcinoma cells, thereby enhancing invasion and metastasis.16

Moreover, CXCL12 and fibroblast growth factor 2 (FGF-2)
released by CAFs stimulate neoangiogenesis by recruiting
endothelial progenitor cells and vascular endothelial cells,
respectively.82,83

Microenvironment-mediated tensile forces (e.g., matrix stiff-
ness) promote breast cancer progression.84 CAFs, which are
activated fibroblasts, can interact with ECM proteins to modulate
intracellular adhesions, cell contractility and forces within the
microenvironment. It has been shown that caveolin-1 (Cav-1),
produced by CAFs, alters the alignment of ECM proteins and
promotes stiffness of the tumor microenvironment in a force-
dependent fashion via Rho GTPase activation, thereby stimulat-
ing tumor invasion and metastasis.85

Co-metastasis with host stromal cells. During the multi-step
processes of tumor metastasis, intravasation of invasive carcinoma
cells into the circulation is crucial for their spread to distant
organs. As discussed earlier, some CTCs are present as clusters
with stromal cell populations composed of platelets, leukocytes
and mesenchymal cells, raising the possibility that host stromal
cells may direct the spread of carcinoma cells. Collective cell
migration is a principal of cancer cell migration.86 Leading cells
are known to guide migrating cell groups that respond to intrinsic
and extrinsic signals induced by interaction with their micro-
environment. A study using time-lapse imaging showed that
fibroblasts lead and direct collective invasion of co-cultured
squamous cell carcinoma (SCC) cells in 3D collagen-Matrigel.87

The collective invasion of SCC cells retaining their epithelial
characteristics depended on force- and protease-mediated matrix
remodelling by fibroblasts. Another study also suggested that
TGF-β, which is abundant in the host microenvironment of

primary tumor activated canonical TGF-β-Smad2/3 signaling
in carcinoma cells, thereby switching the cell motility from
cohesive to the single cell mode.88 The fluorescence-based, TGF-β
signaling-dependent reporter activity was examined in a rat
mammary MTLn3E tumor xenograft model using intravital
imaging. It was shown that each single cancer cell indicating
active TGF-β signaling substantially intravasated and metastasized
via the bloodstream.88 In contrast, cells without TGF-β signaling
activation formed collections of cells which spread into lymph
nodes. Taken together, these findings support the theory that
tumor stroma-derived paracrine signaling contributes to modu-
lating the motility and mode by which carcinoma cells invade and
intravasate.

A recent study also proposed the notion that carcinoma cells
co-metastasize with host stromal cells into distant organs. This
was demonstrated in a study in which Lewis lung carcinoma cells
(LLC1) expressing ds-Red fluorescent protein were implanted
under the renal capsule graft in mice ubiquitously expressing
GFP. Sampling of the blood from these mice when tumors
reached approximately 10 mm in diameter showed that 80%
of isolated ds-Red+ CTCs traveled as single cells, while some
ds-Red+CTCs formed clusters containing viable GFP+ host
stromal cells.44 In addition, mice having GFP+ cells specifically
in their skin were generated by the parabiosis skin transplantation
and ds-Red+GFP-LLC1 tumor cells were cutaneously implanted.
These xenografts showed spontaneous lung metastasis formed
by ds-Red+LLC1 cells that were accompanied by GFP+ cells,
indicating their co-metastasis into the lungs. The GFP+ cells
were represented by a-SMA+FSP-1+ myofibroblasts (75–80%)
and F4/80+ macrophages (28%). Furthermore, human mammary
CAFs were injected subcutaneously together with murine LLC1
cells into recipient mice and allowed to metastasize with
carcinoma cells into the lung.44 To abolish support from CAFs
for metastatic colonization, mice were systemically treated with
diphtheria toxin after primary tumor resection.44 This toxin is
described as being 1,000 times more potent at killing human
cells than murine cells. As a result of diphtheria toxin treatment,
the number of lung metastatic nodules was decreased relative to
the control treatment. These observations demonstrated that
CAFs co-metastasize with primary carcinoma cells and may thus
be directly involved in promoting tumor metastasis. Similarly,
another study showed pancreatic stellate cells orthotopically
injected together with pancreatic carcinoma cells into recipient
mice to be found in metastatic nodules of distant organs.89

However, it remains to be determined whether CAFs interact
directly with carcinoma cells during their metastatic spread, or if
CAFs interact with platelets and leukocytes,30,43 and what the
signaling pathways mediating these heterogeneous aggregate
formations are.

Cancer patients with thrombosis often have poor prognoses.50

It has been demonstrated that platelets prevent the elimination
of CTCs by immune cells and stimulate adhesion of CTCs to
vascular endothelial cells, thereby supporting their survival,
extravasation and seeding into distant organs. A recent study
identified molecular signaling by which platelets prime tumor
cells for metastasis.90 It has been shown that interaction of CTCs
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with platelets leads to the induction of Smad2/3 and NFkB
signaling pathways allowing circulating colon carcinoma cells to
acquire an EMT phenotype facilitating their extravasation and
subsequent colonization.90 This study supports the notion that
the dynamic interactions between CTCs and heterogeneous
stromal cell types in the bloodstream are important, if not
prerequisite, for efficient formation of metastases.

Metastatic niche formation. Once CTCs lodge themselves in
distant organs, metastatic colonization of these cells depends
greatly on the support provided by the niche created by a unique
composition of local stromal environmental factors. It has
been shown that the CAF-produced ECM proteins tenascin C
(TNC) and periostin (POSTN) provide breast cancer cells with
tumor-initiating ability via activation of Notch and Wnt signal-
ing. These signaling pathways boost the CSC phenotype of tumor
cells and facilitate their pulmonary metastatic colonization
(Fig. 2A).38,51,91,92 During metastatic colonization, TNC expres-
sion is also induced in S100A4+stromal fibroblasts, which
constitute a heterogeneuos cell population within CAFs.91

Eradication of these fibroblasts in transgenic mice upon expres-
sion of viral thymidine kinase (tk) under the control of the
S100A4 promoter (S100A4-tk mice) and ganciclovir treatment,
resulted in decreased ability of orthotopically and intravenously
implanted 4T1 breast carcinoma cells to develop into pulmonary
metastases.91 Similar results were observed for TNC null mice
into which 4T1 cells had been introduced intravenously. These
results suggest that stromal-derived TNC plays essential role(s)
during metastatic colonization. Notably, TNC is also highly
expressed by lung metastatic breast carcinoma cell lines such as
MDA-MB-231 and has been shown to be involved in activation
of Notch and Wnt signaling, both of which allow these cells to
maintain their CSC phenotype.92

As noted above, CAFs present within pulmonary metastasis
produce the ECM protein POSTN, which has also been shown
to be required for the maintenance and/or development of the
CSC trait and metastasis-forming ability by carcinoma cells.38

This was illustrated by a study in which CD24+CD90+ CSC-
enriched populations extracted from MMTV-PyMT breast
carcinomas were introduced intravenously into recipient mice.38

Only these cells, and not CD242CD902 carcinoma cells, were
able to form lung metastases due to their increased ability to
colonize lung tissue. Also, spontaneous lung metastasis was
shown to be attenuated in MMTV-PyMT POSTN2/2 mice as
compared with the control POSTN+/+ genetic background.
POSTN-deficient mammary carcinoma cells were extracted from
the POSTN2/2 mice and orthotopically implanted into wild-
type POSTN+/+ recipients or POSTN2/2 mice. A significant
increase in lung metastasis and the CSC trait was observed only in
POSTN+/+ mice, further supporting the key role of stromal
POSTN in the development of metastatic nodules.

Human breast and prostate cancer cells preferentially metasta-
size to bone, wherein the local host microenvironment accelerates
both bone destruction and tumor growth. Recent studies
indicated crucial roles of RANKL, produced by the host micro-
environment serving as a niche, in promoting bone metastasis
(Fig. 2B).93 RANKL is produced by osteoblasts and other stromal

cells and this cytokine binds to RANK receptors expressed mainly
on osteoclast progenitors that stimulates these cells to differentiate
into active osteoclasts, leading to excessive bone loss. Blocking
the binding of RANKL to RANK using systemic administration
of osteoprotegerin, which is a soluble decoy receptor for
RANKL, clearly inhibited the development of bone metastasis
of B16F10 melanoma cells expressing RANK, when introduced
through intracardiac injection into recipient mice.93 In contrast,
metastases of melanoma cells to other organs including the ovary,
adrenal glands and brain were comparable between control and
osteoprotegerin-treated groups.93 These findings therefore sug-
gested that the host microenvironment-produced RANKL serves
as a bone metastatic niche fostering colonization of disseminated
carcinoma cells.

Conclusions and Perspectives

The importance of tumor-associated stroma in inducing and
supporting the various stages of tumor progression and metastasis
has become evident. Carcinoma cells possess the ability to
instigate changes in the surrounding stroma in both primary and
metastatic sites, which upon activation stimulate local invasion,
dissemination and metastatic colonization of tumor cells. Various
cell-autonomous alterations within carcinoma cells resulting in
corruption of the stroma have been studied in organs including
the lungs, bone and liver.7,38,49,69,94

Many reports suggest that increased numbers of CTCs in the
bloodstream and the presence of DTCs in bone marrow are
associated with poor prognoses in cancer patients. It remains to
be determined what proportions of detected CTCs and DTCs
are prone to apoptosis and what fractions of these cells are capable
of forming metastases. Improving laboratory techniques, that
would allow culturing and functional analyses of CTCs and
DTCs extracted from cancer patients using both in vitro and
in vivo experimental approaches, could aid in establishing the
abilities of these cells to form metastases and facilitate determining
the clinical outcomes of this disease.

CSC-niche formation and retarded immune surveillance, both
of which support survival and growth of cancer cells within
primary tumors and metastatic nodules, are also thought to be
actively supported by the tumor-associated stroma. Exploration of
the signaling which underpins the formation of the niche for
CSCs suggests its dependence on complex interactions between
tumor and stromal cells, and their functional cooperation with
cell-autonomous alterations within carcinoma cells.

A better understanding of the interdependence of epithelial and
stromal cells would lead to the development of novel pharmaco-
logical agents designed to specifically target these stromal-tumor
interactions. A number of drugs anticipated to inhibit stromal-
tumor interactions have indeed shown clinical benefits. For
example, bisphosphonates blocking the osteoclast activity at bone
metastatic sites disrupt the vicious cycle in bone remodeling
and thus reduce the production of local growth factors in the
bone microenvironment. Zoredronic acid has shown anticancer
effects with a relative reduction of 36% in the risk of disease
progression in adjuvant settings for endocrine therapy-treated
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breast cancer patients.95,96 Denosumab, a fully human RANKL
monoclonal antibody, binds to the RANKL which is abundant
in the bone microenvironment and prevents the interaction
with RANK. This antibody thus blocked bone turnover and
inhibited the development of metastatic bone lesions with greater
efficacy than zoredronic acid in several large phase III studies.97

Furthermore, vismodegib, a Smo inhibitor, was approved for
the treatment of basal-cell carcinoma by the FDA in 2012 and
this drug is now in clinical trials for other tumor types. Hh-
activated Smo signaling in tumor-associated stroma is anticipated
to be inhibited by this drug. The development of therapeutic

interventions targeting stromal-tumor interactions is crucial
and combining novel approaches with conventional therapies
should be considered for increasing the efficacy of these
treatments.
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