
© 2012 Landes Bioscience.

Do not distribute.

Understanding the role of stromal fibroblasts
in cancer progression

Manisha Tripathi, Sandrine Billet and Neil A. Bhowmick*

Department of Medicine; Cedars-Sinai Medical Center; Los Angeles, CA USA

Keywords: microenvironment, fibroblast, stroma, carcinoma-associated fibroblast, paracrine signaling

The major cellular components of tumor microenvironment,
referred to as the cancer stroma, are composed of cancer-
associated fibroblasts that support tumor epithelial growth,
invasion and therapeutic resistance. Thus when we speak of
developing therapies that address tumor heterogeneity it is
not only a matter of different mutations within the tumor
epithelia. While individual mutations in the stromal compart-
ment are controversial, the heterogeneity in fibroblastic
population in a single tumor is not up for debate. Coopera-
tive interaction among heterotypic fibroblasts and tumor cells
contribute to cancer progression. Therefore to tackle solid
tumors, we need to understand its complex microenviron-
ment. Here we review some seminal developments in the
field of tumor microenvironment, mainly focusing on cancer-
associated fibroblast.

Stromal Contribution to Cancer

A bilateral collaborative effort of normal epithelial cells and
components of the stromal compartment (Fig. 1) maintain the
integrity of a normal physiological system. A continuous cross talk
between the stroma and epithelia dictates tissue differentiation.1,2

In the event of pathological conditions of wounding events,
including cancer, the stroma takes on the role for repair and cross-
compartmental paracrine signaling alters epithelial proliferation
and differentiation.3,4 This review will address some seminal
research done on tumor-associated stroma, mainly focused on
cancer-associated fibroblasts (CAF) signaling.

Stephen Paget pioneered the concept of tumor microenviron-
ment in 1889 in the form of the seed and soil hypothesis. Paget
analyzed more than 700 postmortem data from women that died
of breast cancer and found the distribution of metastasis to organs
to be nonrandom.5 He suggested that the site of metastasis
preferred by the cancer cell (seed) is based on the microenviron-
ment (soil) of that organ. Hart and Fiddler re-introduced the
seed/soil hypothesis in the 1980s through studies done on mice.6

They grafted lung, ovary and kidney tissues under the skin or
muscle of mice. B16 melanoma cells were then injected to these
mice. They observed that tumor growth developed preferentially

in the grafted lung and ovary tissues but not on the kidney grafts.
The study suggested that the specificity of the organ for metastasis
was due to the microenvironment (soil) of the organ that was
preferred by the cancer cell (seed) for colonization. The preference
of the location for metastasis by cancer cell makes the location a
special “niche” for the tumor cells. Later on studies have shown
that before the colonization of the cancer cells this niche
undergoes a series of preparation for it to become the future
site of metastasis, the phenomenon referred to as premetastatic
niche.7 Therefore the early observations support current findings
of microenvironmental changes characterized at the primary
cancer site, as well as directly indicated the importance of the pre-
metastatic niche. Another early concept, that a benign stromal
tissue from embryonic mammary mesenchyme has the ability to
revert the cancer phenotype of tumor cells by inducing it to a
differentiated phenotype, was revealed through studies by Decosse
and coworkers.8 Along the same lines, a seminal paper showed
that the microenvironment of mouse blastocyst suppressed
tumorigencity.9 Dolberg and Bissell demonstrated that compo-
nents of the extracellular matrix alleviated the transforming ability
of Rous sarcoma virus when injected to chick embryos.10 More
recently, the Bissell lab showed that the microenvironment
induction of a benign phenotype of cancer does not involve
reversion of chromosomal alterations pre-existing in the epithe-
lia.11 Together, these studies support that the stroma can be a
driver of epithelial phenotype. CAF can induce a cancerous
phenotype (discussed later in detail), just as stroma from benign
tissue can restore a benign phenotype in neoplastic epithelia.
Therefore the stroma could be a potential therapeutic target of
carcinogenesis. Yet, therapeutic targeting of the microenviron-
ment will only be possible as we learn the mechanisms involved in
stromal changes that dictate epithelial fate.

Stromal Fibroblastic Changes
Can Contribute to Cancer

Genetic changes in epithelial tumor cells remain an important
driver of cancer; however, cells in the tumor stroma including
fibroblasts, immune cells and endothelial cells are active partners
in tumor growth and metastasis. The “reactive” nature of cancer
associated stroma differ in structure and morphology compared
with stroma associated with benign tissues, and provide a
promoting environment for cancer progression in contrast to
the suppressive role of the benign counterpart.12 Fibroblasts are
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the predominant cells in stroma, especially in case of breast,
prostate and pancreatic carcinoma.13 CAFs are responsible for
production of paracrine growth factors, proteolytic enzymes and
ECM components.13 Early on, studies examining the stromal
effects on tumor progression were done by Leland Chung’s group
using grafts containing cancer epithelial cells with normal or
modified fibroblast.14 The observation that the combination of
cancer epithelia with fibroblasts developed larger tumors than
cancer epithelia alone constituted the first study to suggest stromal
fibroblastic cells can promote tumorigenesis. On the surface this
may seem contrary to the statement that benign fibroblasts
suppress tumorigenesis. However, there is clearly a crosstalk
between the two compartments whereby there seems to be a grade
of the cancer epithelia that cannot be reverted to a benign
phenotype. The stromal fibroblasts also respond to the neoplastic
epithelia by expressing elevated levels of collagen, growth

factors and desmoplastic factors. The fibroblastic stroma
of the mammary gland and smooth muscle stromal of
the prostate differentiate to a similar myofibroblastic
differentiation. This stromal differentiation response
is akin to the development of the protypical CAF
phenotype. Yet, just as there are grades of neoplastic
differentiation of the epithelia, all CAF are not created
equal. We have shown that the specific CAF phenotype
of the loss of TGFβ receptor type II receptor expression,
when recapitulated in transgenic mice cannot only
promote tumor expansion of neoplastic epithelia, but
also initiate neoplastic progression from benign epithe-
lia.15 The epithelia and stromal fibroblastic cells are said
to co-evolve through a mechanism that being revealed
through current active research.

Initial profiling of stromal compartments of various
tissues indicated tissue-specific differences.16 However,
the specific differences in gene expression in cancer-
associated fibroblasts (CAF) and normal tissue asso-
ciated fibroblasts (NAF) are much more complicated
due to the definition of CAF. Loose definitions of CAF,
include cells that surround cancer epithelia. However,
stricter definitions of CAF involve those fibroblastic
cells that have the ability to promote tumorigenesis.13

This latter definition was a result of careful studies
done in in vivo tissue recombination systems and in
vitro co-culture systems by Gerald Cunha’s group
where NAF had little effect on the growth of a non-
tumorigenic prostatic cell line. But the tissue recom-
bination of the specific primary CAF cells caused
explosive tumorigenic transformation and growth.
Authors reported that a genetically initiated but non-
tumorigenic human prostate cancer cells could undergo
a malignant transformation due to its exposure to
CAFs. Thus fibroblasts from tumors had acquired
the ability to promote cancer progression.17,18 The
Bhowmick lab demonstrated that human prostate
cancer associated fibroblastic cells lose expression of
the transforming growth factor β receptor type II
(Tgfbr2) gene expression in close to 70% of the cases

irrespective of Gleason grade.15 The clinical observation supported
a specific fibroblast signaling pathways that could initiate cancer,
as demonstrated by a conditional knockout of Tgfbr2 in stromal
fibroblastic cells, in transgenic mice (Tgfbr2fspKO).19 Inactivation
of Tgfbr2 in a population of stromal fibroblasts resulted in
prostatic neoplasia and invasive squamous cell carcinoma in the
forestomach with 100% penetrance. The ablation TGFβ fibro-
blastic responsiveness led to increased HGF expression, which in
turn induced c-Met activation in adjacent epithelia.19 Other
paracrine factors overexpressed in the fibroblasts due to con-
ditional ablation of Tgfbr2 include macrophage stimulating
1 (Mst1), multiple Wnt ligands and TGFa. The Hayward group
demonstrated the upregulation of cyclin D1 in prostatic fibro-
blasts could promote tumorigenesis.20 Not surprisingly all cells
that circumscribe a tumor do not have the ability to promote
tumor growth. However, microarray analysis of prostatic CAF, by

Figure 1. Stroma-epithelia interactions. Normal microenvironment contains fibro-
blasts, immune cells, blood vessels and extracellular matrix associated with
the epithelial cells. During cancer progression the microenvironment is altered in
multiple ways including increased number of fibroblasts, blood vessels, immune
cells and ECM components. There are modifications of normal fibroblasts (NAFs) to
cancer fibroblasts (CAFs) and remodeling of ECM by degradation and increased
stiffness. The cross talk between normal fibroblasts, cancer fibroblasts and
the epithelial cells leads to cancer progression.
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the stricter definition, suggested the differential expression of
genes often attributed to changes observed in cancer epithelia.20

The endogenous mechanism for gene regulation in stromal cells is
less clear.

The phenotypic heterogeneity of the stromal fibroblasts has a
biologic role on tumor initiation and progression. Paracrine
factors regulate cell morphology, survival and death of cancer
cells.13 Several studies have shown the role of factors secreted by
stroma in tumor growth like, in human breast tumors, CAFs
secrete elevated levels of stromal derived factor (SDF1, CXCL12)
that binds to CXCR4 receptor on the breast cancer cells and
promote growth and invasion.21 Tissue recombination experi-
ments of fibroblasts with tumor cells in mouse xenograft models,
demonstrate an increase in tumor size by addition of stromal
cells.15,17,20,22,23 Although less studied, the role of stromal
heterogeneity is acknowledged since it is found that human
prostate cancer has heterogeneous stroma in terms of loss of
Tgfbr2 in the stromal compartment.15 To dissect the role of
stromal heterogeneity in disease progression, different stromal
subpopulations were mixed with epithelial cells. Along these lines,
Franco et al. demonstrated that the expression of dominant-
negative Tgfbr2 in 50% of NAF stromal cell population caused
malignant transformation of BPH1 cells (nontumorigenic human
prostate epithelial cells) associated with further myofibroblastic
differentiation of the stroma, similar to that found in CAF.24 The
mixture of NAF cells with downregulated TGF-β responsiveness
were found to upregulate SDF1 and members of the fibroblast
growth factor and bone morphogenic families.24 In a very
different approach to investigate the role of stromal heterogeneity
in cancer, Kiskowski et al. used a combination of experimental
data and mathematical modeling.25 Here the prostatic fibroblasts
from Tgfbr2fspKO mice were grown in culture to generate a 100%
Tgfbr2 knockout fibroblastic population (Tgfbr2-KO).25 These
Tgfbr2-KO fibroblasts were mixed in different ratios with
Tgfbr2floxE2/floxE2 (behave like wild-type) and found that the
mixture with 50% of each, Tgfbr2 responsive and nonresponsive
stroma, when associated with wild-type mouse prostatic epithelia,
resulted in neoplastic development. However, the recombination
with 100% Tgfbr2-KO fibroblasts only supported a pre-
neoplastic differentiation of the epithelia. Using a computational
model the mechanism of tumor progression that involved two
independent steps mediated by the two distinct stromal cell
populations was elucidated. What emerged from this study, was
that the TGFβ responsive and TGFβ nonresponsive fibroblastic
populations were interacting through the IL-1β production to
cooperatively upregulate SDF1 production. The data suggested
that the second step in the neoplastic initiation, then cancer
progression, paradigm was dependent on this SDF1 mediated
epithelial differentiation. Thus, the long recognized stromal
heterogeneity has a role in cancer progression.25

Tumor stromal co-evolution involves selective genetic changes.
Conceptually, random somatic mutations could occasionally
generate a stromal cell with a selective advantage such that it is
able to clonally expand and replace those cells without the
mutation (occurring in a cell autonomous fashion). One of the
initial studies in this direction showed that genetic events like loss

of heterozygosity (loss) could occur in breast tumor stroma. This
study, using 11 breast samples of ductal carcinoma in situ with
five cases of infiltrating ductal carcinoma (IDC), showed LOH at
several loci exclusively in stroma along with cases with LOH
common to both epithelia and stroma. Further, the LOH
frequency in stroma of invasive cancer was higher as compared
with DCIS.26 This study was supported by the observations by
other groups in colon and breast cancer samples.27,28 Studies by
Charis Eng and colleagues on a larger scale supported the earlier
results of LOH in the stroma of breast cancer samples.29-31 Terry
Van Dyke’s group observed independent Trp53 LOH in the
fibroblastic cells, in a prostate epithelial tumorigenesis mouse
model.32 PTEN loss in stromal fibroblast resulted in mammary
epithelial tumor initiation and progression and malignant
transformation.33 Michael Ostrowski and colleagues describe the
loss in PTEN expression in breast CAF associated with poorer
prognosis of the disease.33,34 Similarly, a transgenic conditional
knockout of Tgfbr2 in breast cancer fibroblasts caused increased
proliferation, angiogenesis, and invasion of adjacent cancer cells in
vivo.35 The co-evolution hypothesis necessarily invokes a model in
which a mutation in the stromal cell provides no direct selective
advantage to itself. Whereas proponents of this model would
argue that the selective advantage derives from the symbiotic
carcinoma cells, requiring only mutant fibroblast to respond to
the signals emanating from the carcinoma cells in order for that
fibroblast clone to dominate the stromal population. This
acquired trait to outgrow the neighboring fibroblasts and generate
a dominant clonal population of CAFs would suggest the
simultaneous generation of two symbiotic malignancies: (1)
generation of carcinoma and (2) generation of sarcomas. If a
mutation resulted in clonal expansion of the CAF, the incidence
of sarcomas would be more prevalent. This would mean that the
stroma would run into “crisis” before populating millimeters of
the tissue.36 Cellular crisis could involve aberrant chromosomal
content, like end-to-end fusion and unstable dicentric chromo-
some, associated with an apoptotic check-point. However, the
idea of genetic-stromal co-evolution is not universally accepted
based on the lack of identification of such alterations in CAFs in
multiple studies.37-39 Kornelia Polyak and many others feel the
controversy surrounding the presence of somatic mutations in
fibroblastic cells may be the result of technical methods of analysis
and not necessarily the result of true genetic changes in the
fibroblasts.37-39 We found that the loss of TGFβ responsiveness in
the prostatic fibroblasts to be associated with promoter methyla-
tion changes in growth factor regulation.25 Such epigenetic
changes could have a wider effect on other pathways in CAF.
Regardless of the mechanism, the expression profiles of CAF are
clearly different from that of NAF.

Emerging Concepts in the Tumor Microenvironment

The mechanism for tumor metastatic tropism, tendency to
metastasize to specific tissues, is yet to be clearly defined. Studies
have identified some sets of genes that can predict metastasis to
the lung, bone or brain in certain breast cancer cells.40-43 For
example, in case of breast cancer cells with increased expression of
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genes like inhibitor of differentiation 1 (Id1) and MMP1 had
higher propensity for lung metastasis.43 The same group isolated
cells that metastasize to the brain from breast cancer patients and
did gene expression analysis. They found that cyclooxygenase
COX2, HBEGF and a2,6sialyltransferase (ST6GALNAC5) as
mediator of tumor cell passage across the blood-brain barrier.41

Thus, the expression profile of the cancer cells can help guide cells
to a specific organ or site. However, the other critical half of
metastatic tropism is the microenvironment of the metastatic site.
In an elegant study, David Lyden’s group demonstrated that
essential cellular events leading to the formation of the pre-
metastatic niche to be important.7 They showed that bone
marrow derived hematopoietic progenitor cells preferentially
localize to future sites of metastasis and precondition them for
the arrival and growth of circulating tumor cells.7 These bone
marrow derived cells express VEGFR1 and other hematopoietic
markers like, CD34, CD11b, c-Kit and Sca-1. Further, the
VEGFR1+ hematopoietic progenitor cells preferentially localize to
areas of elevated fibronectin. Since VEGF antagonists have not
proven to effectively prevent metastasis in patients, such as those
with renal cancer, it is likely other mechanisms of niche
development exist and must be pursued. Along the same lines,
another group has demonstrated that factors like VEGF-A,
TNFa and TGFβ from the primary tumor induce expression of
chemo-attractants S100A8 and S100A9 that help recruit CD11b
positive myeloid cells to pre-metastatic niche.44 These researchers
further show that these chemo-attractants led to induction of
serum amyloid 3 in the premetastatic lung that facilitated
metastasis.45 More recently, lysyl oxidase (LOX) has been
implicated in formation of pre-metastatic niche. In breast cancer,
LOX co-localizes with fibronectin in the pre-metastatic niche
(lung) where it helps in collagen IV crosslinking at the basement
membrane that in turn helps in CD11b+ myeloid cell recruitment.
The CD11b+ cells help in collagen IV cleavage by producing
MMP-2, which led to enhanced invasion and recruitment of
BMDCs, all contributing to attracting the metastasizing cell.46

Generally speaking, the concept of the niche, whether it be for
cancer stem cells, pre-metastatic, or the niche in which the
primary or secondary tumor resides is at the fore front of current
cancer therapeutic and preventative medicine. As we get better at

exploiting the weaknesses of the cancer epithelia, the development
of therapeutic resistance will emerge from the adaptations of the
microenvironment. The tumor microenvironment has been
shown to be capable of inducing cancer, as in the Tgfbr2fspKO

transgenic model, involving multiple paracrine factors such as
HGF and Wnt ligands.15,19,22 The colon cancer microenviron-
ment supports cancer stem cell expansion.47 These colon cancer
stem cells had elevated Wnt activity, particularly located in close
proximity to the stromal fibroblasts with HGF expression.47

These results support the potential for endogenous cancer
initiation from altered stromal cells. If so, killing the cancer
epithelia will not be enough in preventing a recurrence. Even, if
stromal initiation of cancer does not hold true, it is clear that CAF
provide the growth factors and possibly the matrix environment
that is conducive to cancer initiation.

Conclusion and Future Perspective

Finally, the stromal fibroblasts are a vital component of tumor
progression. Although a lot of research done in this tumor
microenvironment field is compelling, translation of these
discoveries to clinic will require further progress prior to
implementation. We need to better understand the cross talk of
fibroblast and epithelial compartments. These include co-culture
studies with stromal components (fibroblast, ECM or immune
cells) in the cancer epithelial cell studies and studies related to
altered microenvironment done using matrigel or hydrogel based
models. Studies in immune-competent in vivo models would be
needed. Signaling pathways identified in the fibroblastic cells need
to be targeted in a cell type specific manner. Many advanced
preclinical studies currently use targeting methodologies to the
cancer epithelia. However, development of targeting to the CAF
may be worthwhile. A challenge initially would be to define the
CAF population and distinguish it from that of wound healing
and inflammatory events occurring normally. Focus for thera-
peutic targets should involve the metastatic niche in order to
block colonization and growth at the secondary site. This area of
targeting will possibly complement the current and future
therapeutic approaches based on tumor cell targeting and alleviate
side effects, drug resistance and recurrence.
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