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Drug and radiation resistance represent a challenge for most
anticancer therapies. Diverse experimental approaches have
provided evidence that the tumor-associated microenviron-
ment constitutes both a protective shell that impedes drug or
radiation access and a permissive or promotive microenviron-
ment that encourages a nurturing cancer (i.e., cancer stem cell)
niche where tumor cells overcome treatment- and cancer-
induced stresses. Better understanding of the effects of the
tumor microenvironment on cancer cells before, during and
immediately after chemo- or radiotherapy is imperative to
design new therapies aimed at targeting this tumor-protective
niche. This review summarizes some of the known mesenchy-
mal stromal effects that account for drug resistance, the main
signal transduction pathways associated with this resistance
and the therapeutic efforts directed to increase the success of
current therapies. Special emphasis is given to environment-
mediated drug resistance in general and to cell adhesion-
mediated drug resistance in particular.

Introduction

Cancer cells use diverse strategies to decrease their sensitivity to
drug therapy including alteration in drug-induced apoptosis,
reduction of proliferation rates, expression of new drug-efflux
pumps and failure to initiate DNA repair responses.1 These
strategies largely rely on the ability of tumor cells to acquire a
series of genetic changes that confer a survival advantage.
Nevertheless, this genetic resistance takes a relatively long time
to develop, whereas other “less permanent” or durable types of
resistance mechanisms come into play earlier in treatment with a
given drug. Following a selection of mutations, tumor cells
become permanently resistant to the specific drug and to
additional drug families because the selective pressure leads to
new gene expression patterns that differ substantially from the
expression patterns of the drug sensitive parental tumor cells.2

Ideally, cancer treatment would eliminate all malignant cells in
order to avoid relapse and the increased aggressiveness that is often
associated with tumor recurrence. However, even after “complete
responses” evidenced by absence of macroscopic lesions, a small
but significant number of cancer cells often survive chemother-
apy.3 These surviving cells constitute minimal residual disease
and represent a valuable diagnostic test to predict therapeutic
outcomes, especially the probability of relapse. For instance, in
acute lymphoblastic leukemia, the levels of these cells constitute
the most important prognostic factor.4 Despite the clinical
correlation between levels of minimal residual disease and pro-
bability of relapse, the mechanism whereby these cells escape the
damaging effects of chemotherapeutic agents remains unclear.5

The presence of resistant subpopulations within the tumor
mass and their subsequent selection and enrichment after treat-
ment highlight the role of the genetic variability of these resistant
cells. It has been proposed that cancer stem cells can divide
asymmetrically producing the heterogeneous array of cells that
compose a tumor while maintaining a resistant population of
stem-like cells through self-renewal. In other words, it is possible
that cancer stem cells may be the source of this heterogeneity, and
thus the stem cells constitute the so-called “resistant population.”6

An alternative model suggests that cancer cells can undergo an
epithelial-mesenchymal transition leading to the acquisition of
stem cell properties.7 In this context, epithelial to mesenchymal
transition may comprise epigenetic and/or a genetic change
resulting in altered gene expressions. The difference between these
two events is that epigenetic changes arise by alterations in RNA
or protein expression independently of changes in the DNA
sequence, while a genetic event originates from an alteration in
the DNA sequence.8 For instance, epigenetic changes caused by
extrinsic (i.e., microenvironmental), persistent or temporary cues
may induce DNA methylation changes or alteration in some
chromatin binding proteins leading to modifications in gene
expression patterns that facilitate tumorigenesis and/or to drug
resistance.9 In this case, gene expression changes, due to either
microenvironmental regulation (i.e., epigenetic) and/or to muta-
tions (i.e., genetic), convey alterations in gene expression that
confer selective survival advantages.10,11 These statements are
consistent with the traditional hypothesis of acquired resistance;
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however, this classical view solely considers resistance that is
genetic.12,13 In contrast, new approaches to the study of drug
resistance also consider microenvironmental influenced epigenetic
changes.

The above-mentioned mechanisms require a complex inter-
play between environmental signals, gene mutations and selection
pressures. Some models propose that a stepwise acquisition and
accumulation of mutations take a long time,14-16 suggesting that
cells destined to develop genetic alterations first require a
sustained protection from the toxic effects of the drug through
a non-genetic mechanism such as an altered tumor micro-
environment prior to the acquisition of a resistant phenotype.
Alternatively, a small population of cells within the drug naïve
tumor could already possess specific genetic or epigenetic pre-
dispositions, which will be selected for during the drug treat-
ment. Hence, the drug-resistant population will in time present
a different gene expression pattern from the one seen in the
original drug naïve tumor. Under this time required scenario, it
seems possible that the resistant cell population is protected by
the tumor microenvironment (or selected for by the environ-
mental pressures during treatment) providing a nurturing niche
in which the cells could undergo mutagenesis or epigenetic
changes. In both cases, the microenvironment is expected to play
a role in assisting these cells to survive until the tumor becomes
effectively drug resistant. In summary, newly genetic mutated,
epigenetically modified or existent pre-disposed cells could all
persist and regenerate resulting in what is known as an “acquired
resistance” to therapy.2,17

It is important to note that de novo resistance could also
include a microenvironmental protection mechanism or physical
barrier that would limit the distribution (or the penetration) of
an anticancer agent to tumor cell populations shielding cells
from potential damage imparted by the drug.18,19 Note that this
aspect of protection was reviewed elsewhere and therefore does
not constitute a major discussion point.18,19 Nonetheless, several
factors present in the tumor microenvironment induce gene
transcription or activate post-translational modifications that
reduce toxic drug effects. As this is considered a possibly transient
and reversible type of resistance, therapeutic efforts to target these
shielding environmental factors constitute an attractive approach
to better access the tumor and to attempt to eliminate the cells
that constitute the above-mentioned minimal residual disease.
Consequently, it has been proposed that blockage of environ-
ment-mediated drug resistance (EM-DR) will lead to elimination
of relapse or at least extend the time to disease relapse.20

The tumor-associated microenvironment that epithelial cancer
cells often encounter during tumorigenesis (i.e., renal21 and
ovarian22 cancers) and/or invasion (i.e., breast and other
cancers23), consists of a rich assortment of cells (i.e, endothelial
cells, plasma cells, macrophages, adipocytes and fibroblasts), extra-
cellular matrix (ECM) fibers and stromal-derived soluble factors
that contribute to the tumor-microenvironment interactions.24

De novo EM-DR falls into two broad categories: soluble factor-
mediated resistance and cell adhesion-mediated resistance or
CAM-DR. These two forms of resistance interact in a cooperative
way. For instance, soluble factors may induce the expression of

cellular adhesion molecules initiating a positive feedback loop
and amplifying the resistance. A combination of both mechanisms
may contribute to minimal residual disease making it difficult to
separate one process from the other.25 In this review, we discuss
aspects of CAM-DR in terms of its significant biological effects
and list some promising therapeutic interventions aimed at
counteracting these effects. Nevertheless, since soluble factors
play an important role in facilitating, amplifying and strengthen-
ing CAM-DR, we will refer to selected factors whenever they
significantly enhance this type of EM-DR.

Stages of EM-DR

A strong example of development of EM-DR is observed within
the bone marrow microenvironment. Hematologic malignancies
are established in the bone marrow while many solid (i.e., non-
hematologic) tumors metastasize to the bone marrow. This
compartment is rich in interleukins, especially IL-6 (see Table 1
for a list of drugs targeting this and many other EM-DR factors),
and fibronectin both known to contribute to the acquisition of
drug resistance.26 According to models that include tumors of
primary bone origin or tumors metastatic to bone, bone marrow-
like drug resistance develops in three discrete stages (see provided
figure for representative example): homing, de novo resistance
(including soluble factor mediated resistance and CAM-DR) and
acquired resistance.27

Stage I. Homing, the first stage of EM-DR, normally refers to
the adhesion of tumor cells to bone marrow hosted cells and/or
to its ECM.27 Nevertheless, this step may not be necessary in
solid tumors, while an alternative microenvironment, such as the
lung, may play the same homing role during the metastatic
establishment of tumors.28 Both normal and malignant hemato-
poietic cells and many epithelial solid tumor cells express a
G-protein coupled receptor, CXCR4. CXCR4 is believed to be
upregulated in response to pro-inflammatory factors often seen
during tumor development and progression such as tumor
necrosis a and IL-6.29 CXCR4 binds to ligands such as stroma-
derived factor 1 (SDF-1) also known as CXCL12. This factor is
believed to attract cells to the homing tissue (i.e., bone marrow
or lung), retain them within this niche and stimulate their
survival.27,30,31 In contrast to hematopoietic cells, solid tumor cells
with greatest CXCR4 expression are those likely to metastasize
favoring tumor cell migration, invasion and metastasis. These
responses are believed to be triggered by the secondary metastatic
tissue-derived SDF-1/CXCL12 known to be expressed by a
predetermined secondary niche at the resident stromal loca-
tion.28,30,32,33 Hence, the CXCR4-SDF-1/CXCL12 axis may
constitute a general mechanism of tumor-stroma interaction that
attracts neoplastic cells to the stroma, which can subsequently
foster development of EM-DR.

Increased CXCR4 expression in clinical specimens seems to be
predictive of poor prognosis in pancreatic cancer.34 In experi-
mental systems, stromal-produced SDF-1/CXCL12, together
with additional factors such as IL-8, not only attract pancreatic
cancer cells to the experimental stroma (i.e., fibroblasts) but also
increase tumor cell survival favoring migration and invasion.35
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CXCR4 positive cells show increased activation of Akt/PKB and
ERK pathways in response to SDF-1/CXCL12 thus leading to
Bad phosphorylation, which translates into resistance to gemci-
tabine (the current preferred drug approved for the treatment of
advanced pancreatic cancer) induced apoptosis. In this context,
the interaction between CXCR4 and SDF-1/CXCR12 may con-
stitute clinical relevance since it elicits resistance to gemcitabine.
The study in question did not directly show that gemcitabine
induces pancreatic cancer CXCR4 or stromal SDF-1/CXCL12.
Nevertheless, the study shows that a small-molecule antagonist
to CXCR4 desensitizes cells to gemcitabine by an effect on
apoptosis.36

Interestingly, the CXCR4 and SDF-1/CXCL12 axis has other
biologic effects that are relevant to the development of drug
resistance, which do not necessarily seem to be related to hom-
ing. For example, glioblastoma cells (which usually remain in the
brain and almost never metastasize) express both CXCR4 and
CXCR7, which result in Erk 1/2 phosphorylation that also
mediate anti-apoptotic responses.37 In fact, stromal cells harvested
from lymph nodes promote drug resistance in human colon
cancer cells through a CXCR4-SDF-1/CXCL12 dependent
mechanism.38 Moreover, epithelial CXCR4 and stromal SDF-1/
CXCL12 have been shown to regulate various normal and
pathologic processes such as development, organogenesis, tissue
regeneration and tumorigenesis.31

Stage II. In the second stage of EM-DR, tumor cells also
engage the microenvironment. In turn, the engaged micro-
environment secretes well-defined soluble factors and provides a
specific adhesive milieu for the cancer cells to establish growth
(see Fig. 1). In this stage, soluble factors and adhesive substrates
can lead to drug resistance, while multiple interactions between
the two amplify the cells’ responses leading to a rapid yet
reversible resistance to therapies.27 For example, stromal cells in
the bone marrow are known to secrete IL-6, which stimulates
myeloma cells to produce vascular endothelial growth factor
known to activate endothelial (stromal) cells resulting in angio-
genesis and stroma nourishment.39 In addition, IL-6 stimulates
secretion of additional factors such as fibroblast growth factor,
which is known for its stromal mitogenic effects thus promoting
stromal fibroblast proliferation and activation. This reciprocal
stimulation generates an amplifying loop in which stromal and
tumor cells together acquire increased ability to proliferate and
survive.39-41

CAM-DR involves the adhesion of integrins and other recep-
tors with components of the ECM: various types of collagen such
as collagen I and III, splice variants of fibronectin such as ED-A,
as well as other proteins such as vitronectin, tenascin-C, SPARC
and osteopontin. Drug resistance is associated with anti-apoptotic
and anti-proliferative cues. Both strategies render cells insensitive
to chemotherapeutics that stimulate apoptosis or that target

Table 1. Examples of targets that could decrease tumor microenvironment-mediated drug resistance

Target Therapeutic agent Model and references

IL-6 Monoclonal antibody (siltuximab) Ovarian cancer xenografts and clinical trial149

CXCR4 Plerixaflor (AMD3100) Myeloid acute leukemia cells140

Glioblastoma and medulloblastoma xenografts142

Breast cancer cells and xenografts146

AMD 3465 Glioblastoma and medulloblastoma cell lines and xenografts143

CTCE-9908 Inhibitory peptide Transgenic mouse model of breast cancer144

siRNA Immunocompetent mouse model and cells for papillary
epithelial ovarian cancer141

Integrins Integrins (i.e., fibronectin synergy domain)
antagonist penta-peptide (ATN-161)

Clinical trial (solid tumors)120

Anti b1-integrin monoclonal antibody (AIIB2) Breast cancer xenografts124

General b1-integrin and natural HMG-CoA
reductase inhibitor (Simvastatin)

Head and neck squamous cell carcinoma cell lines151

aVb3-inregrin: etaracizumab Clinical trials (melanoma and advanced solid tumors)121,122

a4b1- and a4b7: shRNA Multiple myeloma cells127

Monoclonal anti a4-integrin antibody (Natalizumab) Multiple myeloma cells and mouse model128

Cholesterol biosynthesis-
dependent CAM-DR

Statins, inhibitors of HMG-CoA reductase often
through a Rho pathway inhibition manner

(i.e., cerivastatin, simvastatin, lovastatin and fluvastatin)

Breast cancer cells and xenografts152

Multiple myeloma cells153

Murine melanoma cells and xenografts156

Hedgehog IPI-926 (oral smoothened inhibitor) Murine pancreatic cancer models69

SPARC/ostenectin SPARC analog N-terminal peptide Human colon, breast and pancreatic cancer cells and xenografts139

Nanoparticles conjugated to albumin that specifically
binds to stromal SPARC (i.e., nab-paclitaxel)

Breast cancer models and clinical trials131,132,137,138

Prostate cancer clinical trial133

Pancreatic cancer clinical trial134

Note that additional (not listed) reagents may be available. The relevant targets, therapeutic agents and models used are provided.11
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pathways that are preferentially active in rapidly dividing cells.
Although several integrins have been implicated in this process, a
special emphasis has been placed on a4β1-integrin, especially in
bone marrow metastases. This receptor seems to play a crucial role
in the acquisition of de novo resistance,42-45 supported by evidence
that adhesion via β1-integrins decreases drug-induced DNA
damage, apoptosis and/or cell cycle arrest in small cell lung,46

breast47 and hematopoietic cancers.48 Inhibition of apoptosis and
increased cell proliferation can also be triggered by the binding of
tumoral Notch-1,49 with Jagged, which is often expressed as a
membrane bound ligand by bone marrow stromal cells.50 Inter-
estingly, inhibition of the Notch axis has been proposed as a
possible approach to induce pancreatic cancer apoptosis, while
inhibition of Notch interplaying factors such as Hedgehog have
been suggested for enhancing drug delivery to this highly
desmoplastic tumor.51 Moreover, Hedgehog transcriptional target
ABCG2 is well known for its stroma-dependent drug tolerance
in lymphoma.52 The expression of these types of stromal factors
and their role in protecting cancer cells against toxic therapies

support the notion that the mesenchymal tumor microenviron-
ment promotes development of CAM-DR. Interestingly in a
classic experiment, Teicher et al. produced resistant mammary
carcinoma cell lines by treating cells with four anti-neoplastic
alkylating agents and passing cells through four groups of animals
where cells were orthotopically injected. Treated tumor cells
were isolated and sequentially transferred to fresh animals. The
resultant tumors that developed in vivo acquired resistance to the
drugs.16 Strikingly, the resultant cells lost their resistance after
several passages of culture in vitro indicating that the mechanisms
responsible for the resistance were not only reversible but strictly
dependent on in vivo conditions.16

Stage III. During EM-DR, the tumor microenvironment
protects cells from harsh therapeutic conditions providing anti-
apoptotic signals that help cells resist drug-mediated DNA
damage and apoptosis.43,53-55 In addition, it has been suggested
that the mesenchymal stromal anti-proliferative cues can prevent
cells from being targeted by growth inhibitory therapies.56 Hence,
it is possible that stressful conditions promote the acquisition of

Figure 1. Stages during the development of environment-dependent drug resistance. (A) Homing or attraction. This first step requires specific cell-cell or
cell-extracellular matrix interactions. Soluble stromal factors, such as SDF-1 and IL-6, and receptor-mediated adhesion contribute to attract tumor cells to
the stromal niche where the tumor will be established. This first step is necessary in many hematopoietic malignancies,27 as well as in the establishment
of secondary (i.e., metastatic28) tumors. Although homing is often seen in primary bone marrow tumors as well as in secondary tumor establishments,
this step may not be necessary during primary solid tumor development. (B) De novo resistance. In this second stage (first stage for primary tumors
that are not established in the bone marrow), the main stress from the treatment is applied to the, until then, drug naïve tumor. This step is characterized
by a series of cell responses and the modification of the composition of the ECM creating a positive feedback loop that amplifies the pro-survival and
anti-apoptotic signals. (C) Acquired resistance. This stage is commonly regarded as being environmental-independent, yet the microenvironment still
plays an important role; for example, it can act as a barrier that physically or biochemically prevents the effective access of drugs to the tumor cells
(see ref. 18 for review). Note the presence of a small amount of cancer resistance cells at early stages of development of drug resistance. This small cell
population in what sometimes is regarded as the first stage (i.e., environment-dependent) and represents the possibility of a predisposed (i.e., cancer
stem) resistant cell or, alternatively, one that has undergone a drug resistant mutation, will be selected during the stress period rendering a genetically
different tumor signature compared with the drug naïve tumor population.
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transient reversible resistance in tumor cells that enables them to
gain time and set in motion a complex process of DNA mutation
(and/or epigenetic changes) that will ultimately lead to a state of
what is believed to be an irreversible resistance. This third stage
of EM-DR is known as acquired resistance (see Fig. 1), and, as
decades of experience demonstrate at this stage of drug resistance
development, cells become particularly difficult to treat.20,57

Biological Effects of CAM-DR

Four decades ago, Durand and Sutherland demonstrated that,
compared with single cells in suspension, CHO cells grown as
3D spheroids in which cells establish close contact with one
another were more resistant to the toxic effects of radiation.58

While the authors used spheroids exclusively composed of
epithelial cells without a stromal component, this seminal work
illustrated the importance of cell-cell adhesions in drug resistance.
Building on these observations, we recently utilized a discrete cell
culture model in which we were able to differentiate between
responses of cancer epithelial cells to drug exposure determined
by cell-cell vs. cell-ECM interactions (Cukierman and colleagues,
unpublished results). These types of tissue engineered in vitro
experimental models should assist in better understanding
mechanisms responsible for some aspects of CAM-DR and
facilitate development of pre-clinical screens for agents that can
modulate CAM-DR.

In contrast to classical two-dimensional cell culture systems,
animal models provide the complex stromal network (including
altered ECMs) and permit the study of stromal influences.23 In
addition, various three-dimensional culture systems also recapitu-
late some of the in vivo biological properties observed in the
tumor stroma.59-61 Culture of a myeloma cell line on fibronectin
provided the first indication that resistance to chemotherapeutics
may develop through cell adhesion molecules.62 Damiano et al.
has long established that CAM-DR can arise from the interaction
between a4β1-integrin expressed by the tumor epithelial cells
and the ECM protein fibronectin expressed by stromal cells.62

This adhesion elicits post-translational modifications such as
phosphorylations resulting in activation of survival signals such
as activation of IkB kinase and others tending to inhibit or
counteract drug-induced apoptosis.63 In addition, β1-integrin was
shown to play an Akt/PKB-independent role in the observed
mesenchymal matrix protective effects seen under cytotoxic drug
treatments in a plethora of cancer cells cultured onto fibroblast-
derived 3D ECMs in vitro.64 A recent study suggested that tumor
ECM can impart resistance to drugs due to β1-integrin, talin and
FAK-dependent nuclear activation of NFkB.65 Another study
suggested that a combination of specific splice variant forms of
fibronectin together with a5β1-integrin play a pivotal role in
resistance to radiation in breast cancer and that inhibiting this
specific fibronectin-integrin axis can be instrumental in ensuring
a better response to radiation treatment.66 In addition, a5β1-
integrin has been implicated in chemoresistance in pancreatic
cancer.67 In addition, CAM-DR can result in reduced availability
of pro-proliferative signal molecules and mitogenic activity
favoring a quiescent state that protects cells from current cell

cycle-dependent therapies.68 Moreover, inhibition of epithelial-
stromal signals (i.e., by inhibiting the Hedgehog pathway) has
been shown to induce increases in chemotherapy delivery using a
murine model of pancreatic cancer.69 It is well established that
tumor-associated fibroblasts (TAFs, also known as carcinoma-
associated fibroblasts or CAFs) produce a tumor-altered ECM
that differs from that associated with normal, nonmalignant
ECMs.23,59,60,70-73 In fact, it has been suggested that TAFs are
responsible for resistance to epidermal growth factor inhibition in
lung cancers with epidermal growth factor receptor-activating
mutations74 and TAFs have been blamed for supporting tumor
growth and drug resistance in some cancers (i.e., melanoma75).

Strikingly, the resistance observed in CAM-DR proved to be
similar to the so-called acquired cell-derived drug resistance (de
novo resistance of cells maintained in suspension). Using a human
myeloma cell line, Hazlehurst et al. showed a significant increase
in resistance to the alkylating agent melphalan when cells were
cultured on fibronectin (i.e., CAM-DR) and compared these
levels with levels of resistance imparted upon cells grown in
suspension (i.e., acquired to melphalan cell-derived resistance).
The levels of resistance on these two cultures were comparable.
Only 69 genes were differentially expressed in CAM-DR (e.g.,
cultured on fibronectin) with respect to the cells grown in
suspension. Among these CAM-DR 69 genes, the resistance
mechanisms most frequently observed were related to decreased
melphalan-induced mitochondrial depolarization and impaired
caspase activation. These results highlight not only the magnitude
of CAM-DR but also its reversible nature, since both the polari-
zation state of the mitochondrial membrane and the activation of
an inactive protein can be reverted using appropriate agents.15

Furthermore, the limited number of genes activated during
CAM-DR suggests that therapies directed against relevant cell-
matrix interactions could successfully target cancer cells adminis-
tered alone or together with other anticancer agents.

Cancer cells may alter the composition of the ECM to
modulate cell-matrix interactions accelerating the acquisition of
CAM-DR. For example, collagen VI, a microfibrillar collagen
associated with proliferation,76 is highly expressed in advanced
metastatic ovarian cancer77 and cisplatin-resistant ovarian cancer
cell lines. On the other hand, an ovarian cancer cell line, A2780,
proved to increase its resistance to cisplatin when grown onto
collagen VI. In this context, ovarian cancer cell lines favoring the
acquisition of resistance synthesize ECM components that
provide proliferative and adhesive advantages in the presence of
cisplatin. The expression of collagen VI increases the adhesion to
decorin, a component of the ECM, providing a specific binding
to stromal components facilitating the adhesion of ovarian
cancer cells to distant sites and favoring metastasis. Yet again,
collagen VI decreases the expression of Bax, a pro-apoptotic
protein, increasing cell survival. This paracrine mechanism
initiated by alteration of the ECM by the tumor cells establishes
a self- amplifying loop between the stroma and the tumor cells.78

Interestingly, it is important to highlight that different stromal
cells and stromal ECMs can induce alternative cancer cell
behaviors/phenotypes, which in turn are believed to be important
in the manner that cancer cells respond to drug treatments.79
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The notion that the degree of change in the stromal components
of a tumor may be predictive of tumor behavior and also of
response to treatment, leads to the concept of “stromal
staging.”23,59,64,80-82 To this end, work has emerged in various
types of cancers such as pancreatic82 and renal59 cancers demon-
strating the potential clinical utility of stromal staging (see Fig. 2).

Signaling Pathways Associated with CAM-DR

As stated before, the interaction between the tumor cells and the
stroma initiates post-translation mechanisms that confer a survival
advantage. Hence, CAM-DR does not only function as a mere
attachment of the tumor cell to the stroma but also as a power-
ful stimulus that triggers several signal transduction pathways
leading to decreased sensitivity to apoptosis and, in some cases,
inhibition of cell proliferation. Inhibition of cell proliferation (i.e.,
dormancy) may render cells resistant to anti-cancer therapies that
target the cell cycle.3,83 Moreover, epithelial cancer cell signaling
is likely to differ when engaged with the microenvironment.84

Therefore, the implication will be that amplification loops are
not only initiated by the tumor microenvironment, but unique
signals are educed within cancer cells under stimuli from both the
soluble and physical microenvironment.84

Integrins and their downstream signaling pathways have often
been implicated in cancer growth and invasion. Moreover, direct
integrin inhibition or blockade of integrin-dependent pathways
have been shown to assist in vitro to overcome drug resistance
or to better drug treatments.47,64,85 In myeloma68 and in colon
cancer86 cell lines, adhesion of a4β1- or a5β1-integrins to
fibronectin results in increased levels of expression of p27Kip1,
which inhibits the activity of the cyclin A and cyclin E associated
kinases. Inactivation of these kinases decreases the activity of
cyclins and leads to arrest in G1 phase. Interestingly, the levels of
p27Kip1 return to normal (i.e., low) basal levels within two hours
after disruption of a specific fibronectin-integrin interaction.68,86

This rapid response to cell-ECM adhesion relies on post-
translational processes rather than on transcriptional activation
of p27Kip1. In fact, adhesion of these integrins to fibronectin
activates the ubiquitin ligase complex APC-Cdh1 increasing the
ubiquitinilation and subsequent degradation of Skp-2, a nega-
tive modulator of p27Kip1.87,88 Decreased levels of Skp-2 results
in increased p27Kip1 stability leading to its accumulation in the
nucleus89 where it drives growth arrest in myeloma and
lymphoma cell lines.90 A similar mechanism has been proposed
for a2β1-integrin mediated cell growth arrest in a metastatic
melanoma.91 Adhesion of melanoma cells to polymerized fibrillar
collagen I results in cell growth arrest.91 As suggested above,
growth arrest represents a useful strategy to decrease sensitivity to
drugs that target the cell cycle. However, in solid tumors and in
the context of drugs that promote apoptosis, β1-integrin engage-
ment exerts the opposite effect: it overrides cell cycle arrest,
decreases caspase-3 activation and prevents cells from undergoing
apoptosis.92,93 Again, in this context, the ECM plays a crucial
role since it provides the ligand/substrate for engaging integrin
activities.

Increased and/or altered production of ECM proteins such as
fibronectin, collagen IV, tenascin C and others predict poor
prognosis in small cell lung carcinoma, a malignancy characterized
by a good initial response to therapy but a high incidence of
relapse indicative of CAM-DR.94 In fact in this malignancy,
increased proliferation and survival play an important role in the
aggressiveness of stromal rich tumors.94 Moreover, small cell lung
carcinoma expresses different combinations of β1-integrins
known for their abilities to bind and to respond to changes in
collagen, laminin and fibronectin. This type of lung carcinoma
expresses increased and differential spliced forms of fibronectin
potentiating the effects of signal transduction pathways and,
hence, of tumorigenic cellular responses.94 Others have shown
that the normal response to etoposide and ionizing radiation
increases levels of negative regulators of the G2/M checkpoint
including p21Cip1 and p27Kip1, which leads to decreased stability
of cyclins A, B and E and to reduced phosphorylation of CDK2
with the net effect of cell cycle arrest.46 By contrast, increased
adhesion of β1-integrins to the tumor ECM triggers the activa-
tion of the non-receptor and integrin-dependent tyrosine kinase
FAK, which in turn activates PI3 Kinase, Akt/PKB and GSK3β.
These events trigger an increase in cyclin and a decrease in both
p21 and p27 stability thus resulting in bypass of the G2/M
checkpoint and eluding the pro-apoptotic effects seen following

Figure 2. Activated stroma comprises a risk factor in non metastatic
renal cell carcinoma. Multivariate CART-based sorting of a cohort where
non metastatic patients (M0, Mx) were sorted by their stromal palladin
expression levels representing non-activated (stromal palladin # 0.75)
vs. activated (stromal palladin. 0.75) stromal levels and were compared
with metastatic patients (M $ 1) in a Kaplan-Meier curve showing time-
scale (in months) at the x-axis and corresponding survival probability
(e.g., survival fraction) at y-axis. The corresponding p values are provided.
This figure was adapted from reference 59.
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treatment with the combination of etoposide and ionizing
radiation.46

Other signal transduction pathways driven through PI3 Kinase
lead to resistance to apoptosis. Adhesion of β1-integrins activates
the PI3 Kinase recruiting Akt/PKB to the membrane and lead-
ing to Akt-mediated pro-survival signals such as inactivation
of the pro-apoptotic proteins Bad, Bim and Noxa,95,96 or to
matrix-induced resistance to paclitaxel treatment.47 Some of the
above-mentioned pro-apoptotic proteins were shown to be
ubiquitinilated for degradation (BcL-2, Bim) while others were
phosphorylated.

Cells can also evade apoptosis by decreasing the proteolytic-
dependent activation of caspase 8, a post-translational modulator
of caspase 3. For example, in multiple myeloma cells grown in
suspension, the death receptor CD-95 can be found to be
associated with the adaptor protein FADD. In turn, this complex
attracts and tethers the procaspase 8 to the plasma membrane
where it is activated by a limited and specific proteolysis. In turn,
activated caspase 8 cleaves and therefore activates caspase 3 which
promotes apoptosis. When cells bind to fibronectin, cFLIPL is
released from the endo-membrane system to the cytoplasm
competing with procaspase 8 for FADD binding. In this case,
reduced binding of procaspase 8 to the FADD results in decreased
activation of this pro-apoptotic enzyme and, thus, to ECM-
dependent increased survival.97

Therapeutic Interventions

Once cells acquire resistance to a drug, relapse of the disease
seems inevitable thus making it imperative to change treatment.
Unfortunately, each time an individual develops a specific
resistance to a given drug (or drug family) and relapse is observed,
the relapse-free time decreases and the possibility of patient
benefit diminishes.20,98 In order to prevent or delay the acquisition
of drug resistance, several therapeutic approaches have been
proposed.99 These include: (1) interference with direct tumor-
stromal interactions,51 (2) impairment of cell-ECM interac-
tions,100-102 (3) hampering of both expression and activity of
paracrine factors secreted by stromal cells,103,104 (4) inhibition of
stromal nuclear receptor super-family molecules (i.e., ligand-
activated transcription factors known to regulate lipid metabolism
and other processes105) or (5) general blockade of tumorigenic
signaling pathways.48,68,90,106-108

Integrin inhibitors have been in clinical use for two decades, for
example, in prevention of aIIβ3-dependent platelet aggregation
in patients with acute coronary thrombosis.109 Other anti-
integrin antibodies with efficacy in the treatment of psoriasis,
Crohn disease and multiple sclerosis target the a4-integrins.
Unfortunately, these agents were associated with progressive
multifocal encelopathy and were withdrawn from the market.110

However, one of these antibodies, natalizumab, was eventually
reintroduced for clinical use because of its effectiveness in
decreasing the rate of relapse in subjects with multiple sclerosis.
Despite this initial low level of success, new understanding of the
function of integrins,111-114 and the development of less toxic
drugs points to a brighter future for these therapies. Hence,

integrin inhibitors are even being considered as tumor-stromal
interaction inhibitors to attempt targeting dormant cancer cells.115

Integrins play a crucial role in tumor development, angio-
genesis and survival, as well as cell-cell and cell-ECM interac-
tions.116-119 As such, several inhibitors of integrin function have
been developed to stop tumor progression, and some of these are
being tested in the clinic.120 Etaracizumab, a monoclonal antibody
specific for aVβ3-integrin, is under clinical development for the
treatment of advanced metastatic melanoma121 and for addi-
tional solid metastatic tumors.122 Downstream effectors of
integrin activation such as FAK also constitute novel therapeutic
targets.123 The mechanism of action of these inhibitors includes
inhibition of angiogenesis, migration and survival of the epithelial
cells. However, the growing awareness that this interaction (i.e.,
that regulate integrin-ligand communications or affect integrin
functional conformational changes) leads ultimately to the
acquisition of CAM-DR makes it essential to consider the biology
of cell-ECM interactions for the development of new drugs.

Cilentigide, a cyclic peptide that blocks the pro-angiogenic
actions of aVβ3-integrin, proved to be non-toxic stimulating
investigators to search for new therapeutic approaches that target
the interaction between integrins and their ligands. Inhibition
of the β1-integrin activity by means of the use of the AIIB2
monoclonal antibody resulted in increased sensitivity to ionizing
radiation in breast cancer cell lines.124 Furthermore, abrogation of
β1-integrin signaling increased sensitivity to trastuzumab, pertu-
zumab and lapatinib in 3D but not in 2D environments despite
the similar levels of β1-integrin expression in these environ-
ments125,126 suggesting an important role for in vivo-like micro-
environmental settings in pre-clinical drug testing.61 As further
evidence of microenvironmental influence, cells grown in 2D
conditions showed changes in proliferation and apoptosis through
Akt/PKB and MAPK pathway signaling in response to HER2-
targeting agent exposure. Strikingly, cells shifted to a predomi-
nantly pro-proliferative behavior in 3D environments pointing to
their ability to adapt to different microenvironments.126 These
results validate integrins from the β1 family as valuable targets for
future therapeutic interventions. Multiple myelomas are known
to express a4-integrins such as a4β1 and a4β7. Therefore,
knockdown expression of a4-integrins in multiple myeloma cells
constitutes an effective way to sensitize these cells to bortezomib,
a proteome inhibitor drug often used in multiple myeloma
patients.127 To this end, natalizumab, a novel small adhesion
molecule inhibitor that interferes with a4β1- and a4β7-integrins,
is believed to prevent multiple myeloma cell interactions with
both stromal cells and stromal ECM as well as indirectly interfere
with VEGF secretion and insulin-like growth factor induced
signaling in the bone marrow where it increases sensitivity to
bortezomib and dexamethasone.128 These observations point to
the potential clinical use of natalizumab for patients with relapsing
multiple myeloma and other malignancies.129,130

Alternative strategies today utilize specific ECM proteins to
target drug treatments. For example, after a series of clinical trials,
the use of paclitaxel delivered through nanoparticles conjugated
to albumin “nab-paclitaxel” has been approved for treatment of
breast cancer.131 Albumin binds efficiently to osteonectin/SPARC,
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which is commonly upregulated in the activated (or desmoplastic)
stroma of many cancers such as breast,132 prostate133 and
pancreatic134 cancers where its upregulation is also associated
with bad prognostics.135,136 In a metastatic breast cancer model,
nab-paclitaxel showed synergy when used in combination with
bevacizumab, a monoclonal antibody known for blocking
angiogenesis.137 To this end, the combination of adjuvant dose-
dense doxorubicin plus cyclophosphamide followed by dose-
dense nab-paclitaxel was recently found to be safe for use in
women with early-stage breast cancer.138 Interestingly, it has also
been suggested that SPARC may be a stromal tumor suppressor
protein which conveys resistance to therapies. In fact, a recent
work demonstrated that a peptide analogous to SPARC has
tumor-regressing and chemo-sensitizing activities in vitro and in
pre-clinical animal models.139

Soluble factors involved in de novo acquired drug resistance
such as SDF1/CXCL12 represent alternative targets for cancer
therapy. In lymphoblastic leukemia cells, a CXCR4-SDF1/
CXCL12 antagonist decreased the adhesion of cancer cells to
their tumor microenvironment resulting in decreased survival and
increased differentiation.140 In another preclinical model, treat-
ment of intraperitoneally xenotransplanted ovarian cancer cells
with a selective CXCR4 antagonist resulted in decreased tumor
proliferation, increased sensitivity to drug-induced apoptosis and
enhanced activity of cytotoxic activity of T-lymphocytes.141 This
strategy has been implemented in a series of preclinical tumor
models and cells such as in oral squamous cell carcinoma,36

glioblastoma142,143 and breast cancer144-146 models with similar
positive results. IL-6 is another stromal soluble factor that is
typically upregulated during inflammatory diseases and stromal
implicated cancers (i.e., desmoplastic or containing activated
stromal cancers).147 A small molecule inhibitor of the pleotropic
serine/threonine kinase CK2 known for its regulation of IL-6
expression in inflammatory breast cancer was currently assessed in
a small clinical trial where it was shown to effectively reduce IL-6
in plasma.148 Moreover, in a platinum-resistant ovarian cancer
phase II clinical trial, it was recently demonstrated that use of
the anti-IL-6 antibody siltuximab is effective in downregulating
IL-6 induced stromal factors such as CCL2, SDF1/CXCL12 and
VEGF.149

An alternative approach considers downstream pathways
activated in CAM-DR. For example, genes involved in cholesterol
biosynthesis are upregulated in CAM-DR and in acquired drug
resistance.15 Simvastatin, one of the 3-hydroxy-3-methylglutaryl
(HMG)-CoA reductase inhibitors, was shown to decrease tumor
cell proliferation and induce cell cycle arrest at G1/S phase.150

Simvastatin resulted in decreased expression of β1-integrin,
impaired FAK phosphorylation and detachment of tumor cells

from the ECM leading to cell death in several head and neck
squamous cell carcinoma cell lines.151 Furthermore, inhibition of
cholesterol biosynthesis resulted in decreased activity of the
small GTPases Rho, Ras and RAP 1152,153 resulting in weaker
focal adhesions while decreasing the affinity of integrins for their
ligands.154-155

Inhibition of Wnt, Notch and Hedgehog pathways is
considered a promising therapeutic approach because each is
implicated in tumor-stromal interaction and may contribute to
the protection of cancer stem cells by the microenvironment.157

Some investigators are considering Notch blockage as a CAM-
DR inhibition strategy51 while Hedgehog pathway inhibitors
have already gone through massive translational research
considerations.158 Also, the feasibility and pharmacokinetics of
the Hedgehog pathway inhibitor GDC-0449 were demonstrated
in a basal-cell carcinoma phase I trial159 while a single medullo-
blastoma case study showed a temporary regression of the
disease.160 Another novel approach involves the use of low, less
toxic concentrations of naturally occurring stromal cytokines such
as gamma interferon in combination with blockade of NFkB, a
stromal-induced epithelial cell survival factor. This combination
has been found to induce cancer necroptosis in vitro.161

Conclusions

Drug resistance represents a challenge to any therapy. Unfortun-
ately, once a cell acquires a drug resistance mutation and the
change becomes irreversible, readjusted doses are no longer
sufficient and alternative therapeutic approaches are needed.
Alternatively, and often by means of epigenetic changes, tumor
cells can eventually overcome the toxic effects of chemother-
apeutics through evading apoptosis and other treatment-derived
toxic effects. To this end, the stroma in general and the tumor-
associated ECM in particular provide a permissive environment
that stimulates pro-survival pathways and an effective barrier
against many of these chemotherapeutics. Therefore, the tumor
microenvironment is considered a nurturing setting that protects
tumor cells from drug exposure and reduces cytotoxicity. In
conclusion, inhibition of tumor-stromal interactions could be a
useful approach for preventing drug resistance and improving
cancer treatment.
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